Confocal laser scanning microscopy

 

 

    Confocal laser scanning microscopy (CLSM) is a method of light microscopy used to detect light emitted exclusively from a thin layer of a thick specimen. Fluorescent confocal microscopy is of special importance in biology and medicine, where it is used to analyse fluorescent signals from fixed and stained specimens, and from living cells and tissues. Optical principles that apply in confocal microscopy are identical to those used in the design of standard fluorescence microscopes. However, construction and operation of modern confocal microscopes introduces many important innovations related to methods of excitation, detection and interpretation of obtained images.

    When contrasting the similarities and differences between wide-field and confocal microscopes, it is often useful to compare the character and geometry of specimen illumination utilized for each of the techniques. Traditional wide-field epi-fluorescence microscope objectives focus a wide cone of illumination over a large volume of the specimen, which is uniformly and simultaneously illuminated (as illustrated in Figure 1, left). A majority of the fluorescence emission directed back towards the microscope is gathered by the objective (depending upon the numerical aperture) and projected into the eyepieces or detector. The result is a significant amount of signal due to emitted background light and autofluorescence originating from areas above and below the focal plane, which seriously reduces resolution and image contrast. The laser illumination source in confocal microscopy is first expanded to fill the objective rear aperture, and then focused by the lens system to a very small spot at the focal plane (Figure 1, right). The size of the illumination point ranges from approximately 0.25 to 0.8 micrometers in diameter (depending upon the objective numerical aperture) and 0.5 to 1.5 micrometers deep at the brightest intensity. Confocal spot size is determined by the microscope design, wavelength of incident laser light, objective characteristics, scanning unit settings, and the specimen. Presented in Figure 1 is a comparison between the typical illumination cones of a wide-field (Figure 1, left) and point scanning confocal (Figure 1, right) microscope at the same numerical aperture. The entire depth of the specimen over a wide area is illuminated by the widefield microscope, while the sample is scanned with a finely focused spot of illumination that is centered in the focal plane in the confocal microscope.

    The confocal principle in epi-fluorescence laser scanning microscopy is diagrammatically presented in Figure 2. Coherent light emitted by the laser system (excitation source) passes through a pinhole aperture that is situated in a conjugate plane (confocal) with a scanning point on the specimen and a second pinhole aperture positioned in front of the detector (a photomultiplier tube). As the laser is reflected by a dichromatic mirror and scanned across the specimen in a defined focal plane, secondary fluorescence emitted from points on the specimen (in the same focal plane) pass back through the dichromatic mirror and are focused as a confocal point at the detector pinhole aperture. The significant amount of fluorescence emission that occurs at points above and below the objective focal plane is not confocal with the pinhole and forms extended Airy disks in the aperture plane. Because only a small fraction of the out-of-focus fluorescence emission is delivered through the pinhole aperture, most of this extraneous light is not detected by the photomultiplier and does not contribute to the resulting image. The dichromatic mirror, barrier filter, and excitation filter perform similar functions to identical components in a widefield epi-fluorescence microscope. Refocusing the objective in a confocal microscope shifts the excitation and emission points on a specimen to a new plane that becomes confocal with the pinhole apertures of the light source and detector.

    U praktičnoj izvedbi konfokalnih mikroskopa najvažniji dijelovi su sklopovi za pretraživanje, tj. vođenje pobudne i emitirane svjetlosti, tzv. skeneri, te detektori. Kao skeneri se najčešće koriste sustavi elektronički vrlo precizno upravljanih zrcala, a kao detektori brojači fotona, uglavnom fotomultiplikatori. Teoretska moć razlučivanja konfokalnog mikroskopa određena je, kao i u klasičnom slučaju, kutom otvora ulazne leće objektiva, tj. njegovom numeričkom aperturom, te valnom duljinom fluorescentne svjetlosti. Maksimalno povećanje, međutim, nije određeno faktorom optičkog povećanja objektiva. Ono je određeno isključivo tzv. zoom faktorom koji se može kontinuirano podešavati i odražava veličinu rasterkog polja skenera. Moguće je također odabrati i broj digitalnih elemenata rezultirajuće slike, tzv. pixela, odabirom veličine, odnosno formata slike. Preporuča se ove parametre uskladiti tako da je veličina pixela dva do tri puta manja od najmanje linearne dimenzije koju je moguće razlučiti uz date optičke uvjete. Iako je potrebno uzeti u obzir moć prostornog razlučivanja konfokalnog mikroskopa, važno je imati na umu da je vrijeme koje svaki pojedini točkasti element slike biva osvjetljen vrlo kratko i u pravilu iznosi samo nekoliko mikrosekundi. U tom periodu detektor je u stanju registrirati tek nekoliko desetaka emitiranih fotona, tako da statistička svojstva brojanja fotona igraju važnu ulogu u određivanju odnosa signala i šuma u slici. Uz određenu veličinu slike i zoom faktor, odnos signal/šum moguće je poboljšati smanjenjem brzine skeniranja kao i različitim metodama usrednjavanja (averaging). Treba imati na umu da se svim tim metodama produžava vrijeme osvjetljenja svakog pojedinog pixela, a samim tim i vrijeme potrebno za snimanje čitave slike. To je od posebne važnosti u slučaju snimanja brzih procesa u živim stanicama. Osim takvih dinamičkih ograničenja, vrijeme koje laserska zraka provede na određenoj točki uzorka (pixel dwell time) potrebno je ograničiti i zbog efekata fotoizbjeljivanja i, u slučaju živih stanica, fototoksičnosti.

    In our laboratory we are using the Leica TCS SP2 AOBS confocal microscope (Fig. 3). This instrument has two characteristic features. Instead of usual dichroic mirrors known from fluorescence microscopy, this instrument utilizes an Acusto-Optical Beam Splitter (AOBS). Furthermore, instead of standard emission filters, the total light emitted from the sample is diffracted on a prism into a wavelength spectrum, which is further divided to selected spectral regions by an array of apertures and mirrorsMore details about this instrument can be found on the web page of the Haartman Institute at the University of Helsinki.
 

 

The actin cytoskeleton

Intracellular fluorescence in 3 dimensions

Home page