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Abstract

Given a finite-dimensional Lie algebra, and a representation by derivations on
the completed symmetric algebra of its dual, a number of interesting twisted
constructions appear: certain twisted Weyl algebras, deformed Leibniz rules,
quantized “star” product. We first illuminate a number of interrelations be-
tween these constructions and then proceed to study a special case in certain
precise sense corresponding to the symmetric ordering. It has been known earlier
that this case is related to the computations with Hausdorff series, for example
an expression for the star product is in such terms. For the deformed Leib-
niz rule, hence a coproduct, we present here a new nonsymmetric expression,
which is then expanded into a sum of expressions labelled by a class of planar
trees, and for a given tree evaluated by Feynman-like rules. These expressions
are graded by a bidegree and we show recursion formulas for the component of
fixed bidegree, and compare the recursion to the recursions for Hausdorff series,
including a nontrivial comparison of initial conditions. This way we show a di-
rect correspondence between the Hausdorff series and the expression for twisted
coproduct. The expansion labelled by planar series in particular gives a new
way to reorganize the Hausdorff series.
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1. Introduction

1.1. It is a standard and useful viewpoint to consider the enveloping algebras as
deformations of symmetric algebras. Still, there are many structures and formu-
las coming from exploration of this viewpoint which are not yet demonstrated
or known in full generality.

Enveloping algebras appear in the deformation quantization of linear Pois-
son structures on the dual vector space g∗ of a Lie algebra g ([6]). In deforma-
tion quantization one deforms given commutative product to a noncommutative
product on the same vector space of ’functions’ or ’observables’; this tauto-
logically gives a vector space isomorphism between the commutative and the
noncommutative algebra. In the case of linear Poisson structure, one considers
a vector space isomorphism ξ : S(g) → U(g). One of the common choices is
the coexponential map (cf. Section 4). Another important case is the case of
so-called Duflo map, when the coexponential map is composed with another
natural map. The Kontsevich quantization for linear Poisson structures corre-
sponds to the latter case.

1.2. When one interprets U(g) as a ’noncommutative space’ one would like also
to have appropriate notions of noncommutative tangent vectors, or conjugate
momenta, and appropriate Leibniz rules for corresponding ’noncommutative
derivations’. This way one is not deforming only the ’coordinate space’ but the
whole ’phase space’ (and even the space symmetries). We do not know good
proposals how to do this for general ξ.

However, in some examples of particular g and particular ξ, physicists intro-
duced (see e.g. [1, 3, 10]) ad hoc techniques to determine consistent definitions
and formulas for such ’tangent vectors’. Unlike the case of various q-derivations
in quantum group literature, the ’deformed derivations’ in these proposals com-
mute by (simplifying) assumption, which surprisingly worked (for the purposes
of extending many elaborated algebraic constructions from commutative to well-
behaved noncommutative counterparts).

We noticed that in fact a similar story works for general g, but precisely
for those ξ : S(g) → U(g) which are isomorphisms of coalgebras, and not only
of vector spaces. That class of deformation maps has not been systematically
studied in the mathematics literature, except for the coexponential map, which
is an example. The map corresponding to the Kontsevich quantization is not an
example. In physics literature many other such maps are considered, and the
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choice is usually determined by other data (the results in Section 2 show that
these data are equivalent to giving ξ). For some g we know the classification of
all such maps ξ (cf.[8, 9, 10]).

1.3. In the present article we define and study the deformed Leibniz rules and
related structures for general ξ in our class (being a coalgebra isomorphism and
in certain sense close to identity). Then we make elaborate calculations when
ξ is the coexponential map (’symmetric/Weyl ordering’, ’PBW quantization’),
including the main results on coproducts.

Our trees and Feynman-like rules explored to handle the combinatorics of the
main proof, have no apparent connection to now standard graphical calculations
in the study of Kontsevich quantization ([6, 7]).

1.4. The main result of this paper says that the formula in 5.13, which relates
the deformed coproduct for derivations to the star product holds for symmetric
ordering. This result can be extended to some other cases, and we conjecture
it to be true in general. The first author has earlier shown and practically used
this formula in some special cases. In some cases the deformed coproduct can be
explicitly calculated by other means, what makes the whole expression effective.
It is an open problem for which g and which ξ the corresponding star product
may be obtained using Drinfeld twist. In few special cases our formula relating
deformed coproduct for derivations with the star product, suggested a way to
find the formula for the Drinfeld twist.

1.5. (Hopf algebras) All bialgebras in the article will be associative, coasso-
ciative, with a unit map η and a counit ε, without gradings. Hopf algebras will
be bialgebras with an antipode and the standard Sweedler notation for the co-
product ∆(h) =

∑
h(1)⊗h(2) is few times used, with or without the summation

sign. Recall that the elements h ∈ H such that ∆(h) = 1⊗ h+ h⊗ 1 are called
primitive.

2. The data defining the setup

2.1. Fix an n-dimensional Lie algebra g over a field k with basis x̂1, . . . , x̂n,
and let ∂1, . . . , ∂n be the dual basis of g∗. The equation [x̂µ, x̂ν ] = Cλµν x̂λ
defines the structure constants Cλµν of g. We will usually write x1, . . . , xn for
the basis x̂1, . . . , x̂n considered as generators of the symmetric algebra S(g)
to distinguish it from elements x̂1, . . . , x̂n viewed as generators of the universal

enveloping algebra U(g). Thus xµ mutually commute, while x̂µ don’t. By Ŝ(g∗)

or Ŝ(g∗) we will denote the completed symmetric algebra on g∗, which may be
viewed as a ring of formal power series in n variables x1, . . . , xn. The main
message of this section is that there are correspondences between several kinds
of data:

• Homomorphisms of Lie algebras φ̃ : g→ Derk(Ŝ(g∗), Ŝ(g∗))

• Matrices (φαβ)α,β=1,...,n of elements φαβ ∈ Ŝ(g∗) satisfing the system of
formal differential equations (4).
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• k-linear maps φ : g → Homk(g∗, Ŝ(g∗)) such that the matrix with com-
ponents φ(−x̂ν)(∂µ) satisfies (4).

• Hopf actions of U(g) on Ŝ(g∗).

• Algebra homomorphisms U(g) → Ân,k of the form x̂µ 7→
∑n
α=1 xαφ

α
µ on

a basis x̂1, . . . , x̂n of g, with φαβ ∈ Ŝ(g∗) for α, β = 1, . . . , n. Here Ân,k is

the (semi)completed Weyl algebra with generators x1, . . . , xn, ∂
1, . . . , ∂n

which is completed with respect to the powers of ∂i-s.

• Coalgebra isomorphisms ξ : S(g) → U(g) which are identity on g ⊕ k =
U1(g) ⊂ U(g).

These correspondences are not difficult to show. Nevertheless, many special
cases of such data are studied in (mainly recent physics) literature, often with
confusion about the definitions, nature, the level of generality, the correspon-
dences between these data and related constructions.

2.1.1. The correspondences above are bijections under the assumption that the
maps φ etc. are close to the “unit” case: for example in the language of φαβ
the unit case means φαβ = δαβ and the nearby is in the sense of the topology on

k[[∂1, . . . , ∂n]] corresponding to the filtraton by powers. Analytic (nonformal)
case of the correspondences (variants in which one considers converging power
series) is interesting as well, but more difficult, and we do not have any closed
sufficiently general results for that case.

2.1.2. Note that the list can be meaningfully extended. For example, there are
popular “ordering prescriptions” which are various concrete ways determining
the coalgebra isomorphism ξ above (as the isomorphism is trivial on generators
in g one needs to know what to do with higher polynomials, hence “ordering
prescriptions”).

2.1.3. (Related datum: bijection K) There are various interesting func-
tional space extensions of S(g) viewed as the space of polynomial functions on
g∗. Exponential functions are central to many calculations and one would like
to extend the map ξ to some nice completions Ŝ(g)→ Û(g). For algebraic ma-
nipulations the natural candidate is the formal power series completion Ŝ(g) as
a domain, but unfortunately the appropriate analogue Û(g) for general g does
not exist. It is enough to know the restriction of ξ to some dense subset of Ŝ(g),
and the vector subspace spanned by all exponential power series exp(kx) for
varying k ∈ k is a good candidate for such subset. For convenience while com-
paring with the methods in the literature, we will prefer to work with exp(ikx);
of course all our calculations with exp(ikx) may be easily redone for exp(kx) in
the case that i =

√
−1 /∈ k (this case is less interesting for applications we have

in mind). First observation is that ξ(exp(ikx)) is of the form ξ(exp(iK(k)x))
where K : kn → kn is a bijection with K(0) = 0. The bijection K is determined
by φ and in turn determines φ. However, we do not know any general rule which
bijections K are admisible, though we know the classification results for some
very special g (cf. [9], especially formula (27)).
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2.2. (Morphism φ and the equation it satisfies) Suppose we are also given

a linear map φ : g → Homk(g∗, Ŝ(g∗)). We want to extend this map to a k-

linear map into continuous derivations also denoted φ̃ : g→ Derk(Ŝ(g∗), Ŝ(g∗)).

By the commutativity of Ŝ(g∗), it must hold that

φ̃(x̂)(v1 · · · vn) =

n∑
i=1

v1 · · · vi−1vi+1 · · · vnφ(x̂)(vi). (1)

This formula is linear in all arguments and symmetric under their permutations,
hence by linearity in all arguments it defines a unique extension of φ(x̂) to a

well-defined map φ̃(x) ∈ Homk(S(g∗), Ŝ(g∗)). It is straigthforward to check
that φ̃(x̂) defined via (1) is indeed a derivation. By abuse of notation, we will
henceforth denote the extension φ̃ also by φ.

Let ∂1, . . . , ∂n be a vector space basis of g∗. Then, in terms of (algebraically
defined) partial derivatives ∂

∂(∂i) , the condition (1) generalizes to the usual chain

rule on Ŝ(V )

φ(x̂)(f) =

m∑
i=1

∂

∂(∂i)
(f)φ(x̂)(∂i) (2)

Finally, we continuously extend φ to a k-linear map φ : g→ Derk(Ŝ(g∗), Ŝ(g∗)).
It is a known fact that every derivation of the ring of formal power series in n
variables is continuous, hence this procedure gives all k-linear maps φ : g →
Derk(Ŝ(g), Ŝ(g)).

The enveloping algebra U(g) is a Hopf algebra with elements of g ↪→ U(g)

being primitive. If the linear map φ : g → Derk(Ŝ(g∗)) is a homomorphism of
Lie algebras, i.e.

φ(x̂)φ(ŷ)− φ(ŷ)φ(x̂)− φ([x̂, ŷ]) = 0, x̂, ŷ ∈ g, (3)

then φ extends multiplicatively to a unique Hopf action of U(g), i.e. to a

homomorphism φ : U(g) → Endk(Ŝ(g∗)) satisfying φ(u)(fg) = mŜ(g∗)(φ ⊗
φ)∆(u)(f ⊗ g) =

∑
φ(u(1))(f)φ(u(2))(g), for all f, g ∈ Ŝ(g∗) and u ∈ U(g),

where mU(g) is the multiplication map on U(g). Denote

φαβ = φαβ(∂1, . . . , ∂n) := φ(−x̂β)(∂α) ∈ Ŝ(g∗).

The formal power series φαβ = φαβ(∂1, . . . , ∂n) has algebraically defined partial
derivatives

∂

∂(∂i)
φαβ ∈ Ŝ(g∗).

Then φ(x̂i)φ(x̂j)(∂
k) = φ(x̂i)(−φkj ) = − ∂

∂(∂l)
(φkj )φ(x̂i)(∂

l) = − ∂
∂(∂l)

(φkj )φli.

Thus the condition (3) reads for x̂ = x̂i and ŷ = x̂j

φlj
∂

∂(∂l)
(φki )− φli

∂

∂(∂l)
(φkj ) = Csijφ

k
s . (4)
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2.3. (Weyl algebras) Consider the usual Weyl algebra An,k with generators
x1, . . . , xn, ∂

1, . . . , ∂n, and relations [xi, xj ] = [∂i, ∂j ] = 0 and xi∂
j − ∂jxi = δij

for all i, j = 1, . . . , n. As the notation for the generators suggests, the underlying
vector space of An,k will be identified with S(g)⊗ S(g∗). Let also Ân,k be the
completion of An,k with respect to the descending filtration by the degree of
“differential operator”.

2.4. Proposition. The correspondence x̂i 7→ x̂φi :=
∑n
j=1 xjφ

j
i , where φij ∈

Ŝ(g∗) extends to an algebra homomorphism

()φ : U(g)→ Ân,k

iff (4) holds.

2.5. A universal formula for a ”symmetric” solution to (4) has been found ([4]),
for any ring k ⊃ Q, and g a Lie algebra over k which is finite rank free as a
module over k, and where φ is a monomorphism. See also Section 4.

2.6. (Smash product algebras) Given any Hopf algebra H and a, say left,
Hopf action of H on algebra S, h⊗s 7→ h.s, one forms a crossed product algebra
(in Hopf literature ”smash product”) S]H. As a vector space, it is simply the
tensor product vector space S ⊗H and the associative product is given by

(s⊗ h)(s′ ⊗ h′) =
∑

s(h(1) . s
′)⊗ h(2)h

′.

The canonical embeddings S ↪→ S]H and H ↪→ S]H will be considered identi-
fications, and one usually omits the tensor sign because s⊗h = sh with respect
to these embeddings and the product in S]H. Then h . s =

∑
h(1)sSH(h(2))

where SH : H → H is the antipode. Furthermore, the rule

(s]h) . s′ := s(h . s′) (5)

defines an action of S]H on S.
Analogously, for any right action of H on S one defines the crossed product

denoted by H]S, whose underlying vector space is H ⊗ S. If the antipode
SH : H → Hop is bijective, there is a bijective correspondence between the left
and right actions (namely, composing with SH) and the crossed products for
the two corresponding (left and right) actions are canonically isomorphic and
we often identify them throughout the article.

2.7. ((g,φ)-deformed Weyl algebras.) Regarding that for any g and φ such

that (4) holds, the representation φ : U(g) → Ŝ(g∗) corresponds to a left Hopf
action, and we may define the smash product algebra

Ag,φ := Ŝ(g∗)] U(g) = Ŝ(g∗)]φU(g),

where the left action u . s := φ(u)(s) is uniquely determined by the values
φ(−x̂i)(∂j) = φij as explained above. In Lie case, the antipode is invertible,

hence the above smash product is isomorphic to U(g)]Ŝ(g∗) where the right
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action is s / u = φ(Su)(s) and where Su = −u if u ∈ g ⊂ U(g). The rule (5)

specializes to a (dual) ”natural” action of Ag,φ on Ŝ(g∗). In particular, if g = a

is an abelian Lie algebra, and φ is given by the bilinear pairing φ(−x̂i)(∂j) = δji ,
then Ag,φ is isomorphic as algebra to the usual (semi)completed Weyl algebra

Ân,k and the action is the usual action of S(a) on Ŝ(a∗). For another extreme
case, consider a general g but with full degeneration: φ = 0 identically. Then
Ag,φ

∼= U(g)⊗ S(g∗) as algebras (elements in g and g∗ commute).

2.8. From now on we suppose

(i) φ : g→ Der(Ŝ(g∗)) is a homomorphism of Lie algebras
(ii) the matrix φ (not bold) with entries φij := φ(−x̂i)(∂j) has the unit

matrix as its constant term, i.e. φij = δij +O(∂).

2.9. Under the assumptions from 2.8, φ is invertible as a matrix over the

formal power series ring k[[∂1, . . . , ∂n]] and the homomorphism U(g)]Ŝ(g∗) ∼=
S(g)]Ŝ(g∗) given on generators by

x̂α 7→ xβφ
β
α, ∂µ 7→ ∂µ

is an isomorphism. Hence the (one-sidedly) completed deformed and unde-
formed Weyl algebras are isomorphic via a nontrivial map and we often identify
them when doing calculations.

2.10. This isomorphism enables us to consider the homomorphism

()φ : U(g) ↪→ U(g)]Ŝ(g∗) ∼= S(g)]Ŝ(g∗) ∼= Ân,k

which agrees with the unique homomorphism U(g)→ Ân,k extending the rule

x̂α 7→ x̂φα := xβφ
β
α ∈ Ân,k

Furthermore, we may identify S(g)]Ŝ(g∗) ∼= Homk(S(g), S(g)). Here φβα =
φβα(∂1, . . . , ∂n) is understood as an element of the completed Weyl algebra

Ân,k ∼= S(g)]Ŝ(g∗) acting in the usual way (as differential operator; φβα is with
constant coefficients) on the polynomial algebra. Therefore we obtained an
action, depending on φ, of U(g) on S(g).

2.11. Lemma. Let χ ∈ k[[∂1, . . . , ∂n]] and let ∆ be the standard coproduct
making the polynomial algebra k[x1, . . . , xn] a bialgebra. The natural action of
Ân,k on k[x1, . . . , xn] makes xσχ ∈ Ân,k a coderivation of k[x1, . . . , xn]:

(xσχ⊗ id + id⊗ xσχ)(∆(f)) = ∆(xσχ(f)), ∀f ∈ k[x1, . . . , xn]. (6)

Proof. By linearity it is enough to prove (6) when f is a monomial. We
prove this by induction on the sum of the polynomial degree of f and the order
of differential operator χ. The identity is clearly true if either the degree of f
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or order of χ is 0. Regarding that f is monomial it is of the form xγg where g
is a monomial of a lower order. We identify id with 1 in Weyl algebra and xµ
with multiplication with xµ. For step of induction we want to prove that

(xσχ⊗ 1 + 1⊗ xσχ)∆(xγg) = ∆(xσχ(xγg))

provided this is true for χ of lower order or xγg replaced by g what is of lower
degree. Using the fact that ∆ is a homomorphism of algebras and that xγ is
primitive, we rewrite this equality using commutators:

(xσ[χ, xγ ]⊗ 1 + 1⊗ xσ[χ, xγ ])∆(g)+
+ (xγ ⊗ 1 + 1⊗ xγ)(xσχ⊗ 1 + 1⊗ xσχ)∆(g)

= ∆(xσ[χ, xγ ](g)) + (xγ ⊗ 1 + 1⊗ xγ)∆(xσχ(g))

and recall that [χ, xγ ] is of lower order. This equality holds because it is a sum
of two equations which hold by the assumption of the induction. Q.E.D.

2.12. Corollary. The action from 2.10 restricted on g is an action by coderiva-
tions with respect to the standard coalgebra structure on S(g):

(xβφ
β
α ⊗ id + id⊗ xβφβα)(∆S(g)(f)) = ∆S(g)(xβφ

β
α(f)), ∀f ∈ S(g). (7)

2.13. For us it is important to consider the special case of the action of U(g)
on S(g) from 2.10, when f is 1S(g) =: |0〉 (action on “Fock vacuum”). In the

following proposition, the notation ()φ : û 7→ ûφ ∈ Ân,k is taken from 2.10, and
the evaluation in the expression ûφ(1) = ûφ|0〉 is understood in the sense of the
natural action of Ân,k on Ŝ(g).

Proposition. The rule ξ−1
φ : û 7→ ûφ(1) = ûφ|0〉 for u ∈ U(g) is an

isomorphism of coalgebras, which restricts to the identity on k ⊕ g.
Proof. It is clear that x̂µ|0〉 = xµ, hence ξ−1

φ is indeed tautological on degree
1 terms. Consider the standard ascending filtration of the enveloping algebra
k = U0(g) ⊂ U1(g) ⊂ . . . ⊂ ∪n≥0Un(g) = U(g). We will now prove that
()φ|0〉 restricts to a linear isomorphism from Un(g) onto S≤n(g). Suppose by
induction that we have proven that (Un(g))φ|0〉 = S≤n(g) for all n ≤ n0. By
PBW theorem the dimensions of Un0+1(g) and Sn0+1(g) are equal and finite,
hence it is sufficient to prove that the linear map ()φ|0〉 restricted to Un0+1(g)
surjects onto S≤n0+1(g). Clearly the expressions of the form xνP where P ∈
S≤n0 span S≤n0+1. By assumption ûφ|0〉 = P for some û ∈ Un0

(g). Now
(x̂ν û)φ|0〉 = xαφ

α
ν (P ) = xνP + xα(φαν − δαν )(P ). By assumption 2.8 (ii) on

φ, φαν − δαν = O(∂), so that xα(φαν − δαν )(P ) is a polynomial of the order at
most n0, hence by the assumption of the induction it is of the form v̂φ|0〉 where
v̂ ∈ Un0(g). Therefore (x̂ν û− v̂)φ|0〉 = xνP , as required.

To show that the isomorphism respects the coalgebra structure we proceed
by induction on the degree of monomial in the source U(g). Thus suppose that
(∆U(g)(û))φ(|0〉⊗|0〉) = ∆S(g)(û

φ|0〉) for each û ∈ Um(g). Then the expressions
of the form x̂λû span Um+1(g) and ∆U(g)(x̂λû) = (x̂λ ⊗ 1 + 1 ⊗ x̂λ)∆U(g)(û).

Therefore (∆U(g)(x̂λû))φ(|0〉⊗ |0〉) = (xβφ
β
λ⊗1+1⊗xβφβλ)(∆U(g)(û))φ|0〉 what

is by the assumption of induction equal to (xβφ
β
λ ⊗ 1 + 1⊗ xβφβλ)∆S(g)(û

φ|0〉),
hence by (7) also to ∆S(g)(xβφ

β
λû

φ|0〉) = ∆S(g)((x̂λû)φ|0〉), as required. Q.E.D.
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2.14. Of course, the inverse of ξ−1
φ will be some isomorphism of coalge-

bras ξ = ξφ : S(g) → U(g). Conversely, every isomorphism of coalgebras
ξ : S(g)→ U(g) which is identity on k⊕g, defines a map DT : g→ Coder(S(g))
into coderivations by DT

x (f) = DT (x)(f) = ξ−1
(
ξ(x) ·U(g) ξ(f)

)
. The dual

map Dx : Ŝ(g∗) → Ŝ(g∗) is a continuous derivation, and one has DT
x (f) =

−
∑
α xαDx(∂α)(f) where the action on the left is the usual action as differen-

tial operator. Here
∑
α xα ⊗ ∂α ∈ g⊗ g∗ is the “canonical element” (the image

of idg under the isomorphism Homk(g, g) → g ⊗ g∗). Thus one defines a Lie

homomorphism φ : g → Der(Ŝ(g∗), Ŝ(g∗)) by x 7→ Dx such that φij = Dxj (∂
i)

and φij = δij +O(∂).

2.15. (Star product) We saw in 2.14 that giving the Lie homomorphism φ
for which the matrix φ(−x̂i)(∂j) = δij +O(∂) is equivalent to giving a coalgebra
isomorphism ξ : S(g) → U(g) which is identity when restricted to k ⊕ g. This
isomorphism helps us define the star product

? : S(g)⊗ S(g)→ S(g), f ? g := ξ−1(ξ(f) ·U(g) ξ(g)). (8)

2.15.1. One should note that in literature related to the representation the-
ory ([13]) and the deformation quantization ([7]) usually some other vector space
isomorphisms S(g) → U(g) are important, which do not respect the coalgebra
structure, but do have some other favorable properties. Our constructions be-
low, however, essentially use the compatibility with the coalgebra structure.

3. Deformed derivatives

3.1. We now define the deformed derivatives in several ways and show that they
are equivalent. Physicist who view U(g) as some sort of the algebra of functions
on a “Lie type noncommutative space” consider the deformed derivatives (which
mutually commute) as a sensible choice of a basis of the tangent space to this
noncommutative space ([3, 5, 8, 9, 10]).

3.2. Proposition. Consider the topological algebra freely generated by the
discrete U(g) and the topological algebra Ŝ(g∗) with the topology of the formal
power series ring and quotient it by the closed ideal generated by the relations
[∂i, x̂j ] = φij where (φij) is a matrix with elements in Ŝ(g∗). The kernel of

the quotient map restricted to Ŝ(g∗) is zero iff the formal system of differential
equations 4 holds.

Proof. In the quotient, the Jacobi identities gives

[∂l, [x̂i, x̂j ]] = [[∂k, x̂i], x̂j ] + [x̂i, [∂
k, x̂j ]]

therefore ∑
s

Csijφ
k
s = [φki , x̂j ] + [x̂i, φ

k
j ].

This is the identity in the image of Ŝ(g∗) in the quotient algebra and the commu-
tators on the right hand side can be evaluated by the chain rule. The equations
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identical to the system 4 follow, but interpreted in the quotient. Now if the
kernel is zero, this condition is non-degenerate, hence the differential equations
are satisfied. Conversely, if the equations follow then the above algebra is the
smash product algebra.

3.3. (An abstract action of the Fock space type) Given a Hopf algebra H,
a right Hopf action H on an algebra S, and a homomorphism of unital algebras
εS : S → k, in addition to the smash product algebra H]S (cf.2.6) one can also
define a k-linear left action of the smash product algebra on H. This action

(H]S)⊗H I−→ H is the composition

(H]S)⊗H ↪→ (H]S)⊗ (H]S)
mH]S−→ H]S H]εS−→ H ⊗ k ∼= H.

This action restricts along the algebra embedding S ↪→ H]S, s 7→ 1 ⊗ s to a
left action S ⊗H → H. If the antipode SH : H → Hop is an isomorphism, the
corresponding representation ρ : S → Endk(H) is faithful. Using the definition
2.6 of the smash product algebra, we may write the restricted action I |S⊗H :
S ⊗H → H in terms of Hopf action / : S ⊗H → S only:

s⊗ h 7→
∑

h(1)](s / h(2)) 7→
∑

h(1)ε
S(s / h(2)) = s I h. (9)

In particular, s I 1H = εS(s)1H , and, if u ∈ H is primitive and h ∈ H then

s I (uh) =
∑

(uh)(1)(s / (uh)(2)) I 1H
=

∑
uh(1)(s / h(2)) + h(1)((s / u) / h(2)) I 1H

= us I h+ (s / u) I h.
(10)

Similar formula holds for skew-primitive elements. The symbol for the action
I is often omitted below, unless when it is useful for clarity.

3.3.1. (Interpretation) This construction has a spirit of Fock space con-
struction: think of derivatives as primitive elements generating S. The smash
product H]S has a multiplication which involves rearrangement of factors in H
and factors in S. Once we put derivatives to the right we act with them on
vacuum, what amounts to the map εS , while the polynomial factor in S stays
intact.

3.4. We now specialize 3.3 to the case where S := Ŝ(g∗), H := U(g) and the

Hopf action is induced by φ : U(g) → Der(Ŝ(g∗), Ŝ(g∗)), and εS : P 7→ P (1) is
the application of a constant coefficient differential operator on 1 (derivatives act
in the undeformed way on 1; nevertheless we view the unit 1 as deformed vacuum
1U(g)). Recall that in that case H]S = Âφ,k. The corresponding representation

Âg,φ → Endk(U(g)) is called φ-deformed Fock space. Then the restricted

action Ŝ(g∗)⊗U(g)→ U(g) is given by s I h =
∑
h(1)ε

S(φ(SU(g)h(2))(s)) and

if h = u ∈ g and s = ∂ ∈ g∗ ⊂ Ŝ(g∗), this gives

∂ I u = φ(−u)(∂) I 1U(g) (11)

10



as from ∂1 = 0 the summand uεS(φ(1H)(∂)) vanishes. In other words, if we
restrict the left action Ŝ(g∗) ⊗ U(g) → U(g) to g∗ ⊗ g it coincides with the
restriction of right Hopf action Ŝ(g∗)⊗U(g)→ S(g∗) to g∗⊗ g, followed by the
evaluation at deformed vacuum 1U(g).

3.5. The restricted representation ρ ≡ ρφ : S → Endk(H) from 3.3 may

be alternatively described in terms of its values ∂̂µ := ρφ(∂µ) ≡ (∂µ I) ∈
Endk(U(g)) on the standard algebra generators ∂1, . . . , ∂n of S(g∗). By (11),

(10) and the fact that x̂ν is primitive for each f̂ ∈ U(g), the identity

∂̂µ(x̂ν f̂) = x̂ν ∂̂
µ(f̂) + φ(−x̂ν)(∂µ) I f̂ = x̂ν ∂̂

µ(f̂) + φµν (∂̂)(f̂) (12)

holds in U(g). Here φµν (∂̂) := ρφ(φµν ) is obtained from φµν by replacing ∂τ by

their commuting images ∂̂τ ∈ Endk(U(g)).

3.6. We describe the action of ∂̂µ on U(g) alternatively taking (12) as the step

of an inductive definition. First of all, ∂̂µ(1) = 0 and ∂̂µ(x̂ν) = δµν . Suppose ∂̂µ

is already defined on monomials of order up to n. Then any monomial of order
n+ 1 is of the form x̂ν f̂ where ∂̂(f̂) is already defined. We set

∂̂µ(x̂ν f̂) := [∂̂µ, x̂ν ](f̂) + x̂ν ∂̂
µ(f̂) := φµν (f̂) + x̂ν ∂̂

µ(f̂),

where φµν = φµν (∂̂) (we can substitute ∂̂ because S(g∗) is a free commutative

algebra and ∂̂µ mutually commute as it may be shown a posteriori). ∂̂ is well

defined on S(g∗) (hence by continuity on Ŝ(g∗)), namely it is obviously well
defined linear operator from the free algebra on abstract variables x̂α to U(g),
and if one takes the generators of the defining ideal of the enveloping algebra
iν1ν2 = x̂ν1 x̂ν2− x̂ν2 x̂ν1−Cαν1ν2 x̂α then, applying our inductive rules for every of

the three monomials on the right-hand side, we conclude that for every f̂ ∈ U(g),

∂̂γ(iν1ν2 f̂) = φγν1(x̂ν2 f̂) + x̂ν1 ∂̂
γ x̂ν2(f̂)− φγν2(x̂ν1 f̂)− x̂ν2 ∂̂γ x̂ν1(f̂)−

−Cαν1ν2φ
γ
α(f̂)− Cαν1ν2 x̂α∂̂

γ(f)

= ∂
∂(∂ν2 ) (φγν1)(f̂) + x̂ν2φ

γ
ν1(f̂) + x̂ν1φ

γ
ν2(f̂) + x̂ν1 x̂ν2 ∂̂

γ(f̂)

−
(

∂
∂(∂ν1 ) (φγν2)(f̂) + x̂ν1φ

γ
ν2(f̂) + x̂ν2φ

γ
ν1(f̂) + x̂ν1 x̂ν2 ∂̂

µ(f̂)
)

−Cαν1ν2φ
γ
α(f̂)− Cαν1ν2 x̂α∂̂

γ(f̂)

= ( ∂
∂(∂ν2 ) (φγν1)− ∂

∂(∂ν1 ) (φγν2)− Cαν1ν2φ
γ
α)(f̂)

The injectivity of ρ implies that ∂̂γ(iµν f̂) = 0 for every f̂ iff the operator in
the brackets on the right-hand side vanishes, what amount to our main assump-
tion (4). It is trivial that ∂̂(f̂ iµν) = 0 as well, namely this is sufficient to check

for monomial f̂ , but this is f̂ ∂̂(iµν) + [∂̂, f̂ ](iµν). We already know that the
first summand is zero. The commutator in the second summand is some poly-
nomial in ∂̂-s, hence it is clearly zero modulo iµν by induction on the degree of
monomials and linearity.

11



Notice for the classical case of the abelian Lie algebra, that [∂̂, f̂ ] = ∂̂(f̂),
while this is not true in general (the equality always makes sense: the left-

hand side is the bracket ∂̂f̂ − f̂ ∂̂ in the smash product Ŝ(g∗)]U(g), while the

right-hand side is in U(g) ↪→ Ŝ(g∗)]U(g)).

3.7. Given any operator P ∈ Endk S(g) we can transport it via the vector space
isomorphism ξ = ξφ from 2.14 to an operator PU := ξPξ−1 ∈ Endk U(g). It

is particularly important for us to transport P ∈ Ân,k understood as operators
S(g) → S(g) via the usual Fock representation. Now we give a convenient

invariant description of ∂̂µ.
Proposition. ∂µU = ∂̂µ : U(g)→ U(g).

In other words, the operators ∂̂µ = ρφ(∂µ) from 3.4 are characterized by the
formula

∂̂µ(ξ(f)) = ξ(∂µ(f)), f ∈ S(g),

where ξ = ξφ is described in 2.14. Therefore also ξ−1∂̂µ = ∂µξ−1.

Proof. It is clear that the values of ∂µU and ∂̂µ agree on k⊕ g giving a basis

of induction on the standard filtration of U(g). Suppose now ∂µU û = ∂̂µû for

every û in Un(g), and for all µ. Regarding that both operators, ∂µU and ∂̂µ,
decrease the filtration, the equality extends to all formal power series P in ∂U -s
versus in ∂̂-s: P (∂U )(û) = P (∂̂)(û), for all û ∈ Un(g). For step of the induction,

it suffices to show that ∂µU (x̂ν û) = ∂̂µ(x̂ν û) for every such û and every ν; by
the definition this reads ∂µ((x̂ν û)|0〉) = (∂µ I (x̂ν û))|0〉. Now ∂µ I (x̂ν û) =
(∂µx̂ν û) I 1U(g) = (φµν û) I 1U(g) + (x̂ν [∂µ, û]) I 1U(g) + (x̂ν û∂

µ) I 1U(g),

and the rightmost summand is zero. The element [∂µ, û] is not only in Âg,φ

but actually in U(g) ⊂ Âg,φ, therefore (x̂ν [∂µ, û]) I 1U(g) = x̂ν I [∂µ, û] =
x̂ν I (∂µ I û) = x̂ν I ∂µU (û) by the assumption of the induction. ∂µU (û) is in
U(g) hence we may write x̂ν I ∂µU (û) = x̂ν∂

µ
U (û). On the other hand, (φµν û) I

1U(g) = φµν I û = (φµν )U (û) by the assumption of induction (multiplicative
extension to polynomials in ∂-s, discussed above). The conclusion is ∂µ I
(x̂ν û) = x̂ν I ∂µU (û) + (φµν )U (û). Therefore, (∂µ I (x̂ν û))|0〉 = (x̂ν∂

µ
U (û) +

(φµν )U (û))|0〉 = x̂φν∂
µ(û|0〉) + φµν (û|0〉) = (xλφ

λ
ν∂

µ + φµν )(û|0〉). By the usual
Leibniz rule this equals ∂µ(xλφ

λ
ν (û|0〉)) = ∂µ((x̂ν û)|0〉) ≡ (∂µU (x̂ν û))|0〉. Q.E.D.

3.8. Corollary. The composition S(g) ↪→ Ân,k ∼= Âg,φ

I1U(g)−→ U(g) is ξφ.
Proof. By the definition of ξ−1

φ , this says (ûφ|0〉) I 1U(g) = û for any

û ∈ U(g). Again we proceed by induction by filtration. ((x̂ν û)φ|0〉) I 1U(g) =

(x̂φν û
φ|0〉) I 1U(g) = (xλφ

λ
ν û

φ|0〉) I 1U(g). Because xλ ∈ S(g), we may

write (xλ(φλν û
φ|0〉)) I 1U(g) = xλ I ((φλν û

φ) I 1U(g)). By 3.7, φλν û
φ|0〉 =

φλν (∂̂)(ûφ)|0〉 and, regarding that φλν (∂̂)(ûφ) is of degree not bigger than the de-

gree of ûφ, we may use the assumption of induction, in the form φλν (∂̂)(ûφ)|0〉 I
1U(g) = φλν (∂̂)(ûφ). Therefore, (x̂φν û

φ|0〉) I 1U(g) = xλ I φλν (∂) I ûφ = x̂ν û
φ.

Q.E.D.
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3.9. Corollary. The following (external) square of linear maps commutes:

Âg,φ

x̂→x̂φ,∂→∂
��

(−)I1U(g) // U(g)

(−)φ|0〉
��uu

Ân,k
(−)|0〉 // S(g).

ii (13)

3 inner triangles also commute in the sense of those morphism compositions
which start either at U(g) or S(g) (hence 3 identities total). The diagonal
S(g)→ Âg,φ is the homomorphism of algebras xν 7→ x̂λ(φ−1)λν and the diagonal

U(g) → Ân,k is the homomorphism of algebras x̂ν 7→ xλφ
λ
ν . The left vertical

arrow is an isomorphism of algebras and the right vertical arrow an isomorphism
of coalgebras; the horizontal arrows are surjective linear maps, not respecting the
multiplication in general. However, the horizontal arrows are homomorphisms
of algebras when restricted to either the first or second tensor factor in Âg,φ

∼=
U(g)]φŜ(g∗) and in Ân,k ∼= S(g)]δŜ(g∗) respectively.

3.10. Corollary. The deformed Fock space is a faithful module over (g,φ)-
deformed (completed) Weyl algebra Âg,φ if φµν = δµν +O(∂).

Proof. Suppose the opposite: the representation is not faithful. Then there
is an element P ∈ Âg,φ such that P I û = 0 for all û ∈ U(g). Thus (Pû) I
1U(g) = 0, hence 0 = ((Pû) I 1U(g))|0〉 = (Pφûφ|0〉) I 1U(g). As Pφûφ|0〉 is by

definition in S(g) (not only in Âg,φ) then this means a fortiori Pφûφ|0〉 = 0. But
as û runs through whole U(g), ûφ|0〉 runs through whole S(g). Therefore this
means that Pφ is zero, because the classical Fock representation is faithful. But
()φ is an isomorphism on the whole twisted Weyl algebra, therefore P vanishes
as well. Q.E.D.

3.11. Definition. The deformed coproduct ∆(∂̂µ) =
∑
∂̂µ(1)⊗ ∂̂

µ
(2) is defined by

∂̂(u ·U(g) v) =
∑

∂̂µ(1)(u) ·U(g) ∂̂
µ
(2)(v) for u, v ∈ U(g).

3.11.1. This coproduct is equivalent to the “deformed Leibniz rule”, popular
in some physics works:

∂µ(f ? g) =
∑
i

∂µ(1)f ? ∂
µ
(2)g ≡ m?∆(∂)(f ⊗ g), f, g ∈ S(g),

as the following calculation shows: ∂µ(f ? g) = ∂µ(ξ−1(ξ(f) ·U(g) ξ(g)) =

ξ−1(∂̂µ(ξ(f)·U(g)ξ(g))) = ξ−1(∂̂µ(1)ξ(f)·U(g)∂̂
µ
(2)ξ(g)) = ξ−1(ξ∂̂µ(1)(f)·U(g)ξ∂̂

µ
(2)(g)) =

∂µ(1)(f) ? ∂µ(2)(g).

3.12. This coproduct is related to but different from the dual coproduct

(S(g))∗ ∼= Ŝ(g∗)
∆′→ Ŝ(g∗)⊗̂Ŝ(g∗) to the star product (8). The defining property

of ∆′ is 〈u1′ , f〉〈u2′ , g〉 ≡ 〈∆′(u), f ⊗ g〉 = 〈u, f ? g〉 for u ∈ S(g)∗ ∼= Ŝ(g∗),
f, g ∈ S(g).

13



The correspondence P 7→ (f 7→ P (f)(0)) is the linear isomorphism from the
space of derivations of S(g) to the space of linear functionals S(g)∗. Evaluating
at zero the n-th partial derivative is the same as evaluating the product of first
partial derivatives except that one has to adjust the factor of n! what amounts
to a different pairing between the graded components Sn(g) and Sn(g∗) (i.e. a
different identification Sn(g∗) ∼= Sn(g)∗).

In [15] it is shown that in fact the coproducts ∆ and ∆′ may be directly
related; and that the dual coproduct ∆′ may be used to identify Ag,φ with a
topological Heisenberg double of U(g).

3.13. Lemma. If â = aαx̂α and f̂ ∈ U(g) then

∂̂µ(âpf̂) =

p−1∑
k=0

(
n

k

)
aα1aα2 · · · aαk âp−k[[[∂̂µ, x̂α1 ], . . . , x̂αk ](f̂) (14)

Proof. This is a tautology for p = 0. Suppose it holds for all p up to some p0,
and for all f̂ . Then set ĝ = âf̂ = aαx̂α. Then ∂̂µ(âp0+1f̂) = ∂̂µ(âp0 ĝ) and we

can apply (14) to ∂̂µ(âp0 ĝ). Now

[[[∂̂µ, x̂α1
], . . .], x̂αk ](ĝ) = aαk [[[∂̂µ, x̂α1

], . . .], x̂αk ](x̂αk+1
ĝ)

= â[[[∂̂µ, x̂α1
], . . .], x̂αk ](f̂) +

+ aαk+1 [[[[∂̂µ, x̂α1
], . . .], x̂αk ], x̂αk+1

](f̂).

Collecting the terms and the Pascal triangle identity complete the induction
step.

4. Symmetric ordering

4.1. Given a basis x̂1, . . . , x̂n in a Lie algebra g, and structure constants defined
by [x̂i, x̂j ] = Ckij x̂k, denote by C the matrix with entries in An,k whose (i, j)-th
entry is

Cij = Cijk∂
k

In [4] we have shown that if ξ : S(g)→ U(g) is the coexponential map then the
corresponding φ is determined by

φ(−x̂β)(∂α) = φαβ =

∞∑
N=s

(−1)N
BN
N !

(CN )αβ

where BN are the Bernoulli numbers. For the reason of structure of the co-
exponential map, from now on we will say that this is the case of symmetric
ordering. It has the property that ξ−1(exp(aαx̂α)) = exp(aαxα).

4.2. For general φ, [∂̂µ, x̂α] = φµα, [∂̂µ, x̂α](1) = δµα, and

[[∂̂µ, x̂α], x̂β ] =
∂

∂(∂ρ)
(φµα)φρβ = φµα,ρφ

ρ
β

14



holds. In the case of the symmetric ordering (cf. 4.1), that is when ξ is the
coexponential map ([4]), also

φµα,ρφ
ρ
β(1) =

1

2
Cµαβ

and the higher order terms are not so easy to evaluate at 1 in general in a closed
form (this involves identities between different tensors in C-s, what is combina-
torially involved, hence one should probably handled it using tree calculus).

4.3. (Notation: subscripts after comma for derivatives.) Given φαβ ∈ Ŝ(g∗) as
above, denote

φαβ,ρ1ρ2...ρk :=
∂

∂(∂ρk)
. . .

∂

∂(∂ρ2)

∂

∂(∂ρ1)
φαβ

and we use the extension of this notation to more complicated expressions, e.g.
(ab),ρ = a,ρb+ ab,ρ is the derivative of the product ab with respect to ∂ρ.

4.4. Lemma. Let x̂1, . . . , x̂n be a basis of g. For any φ as above,

[. . . [[∂̂µ, x̂α1
], x̂α2

], . . . , x̂αk ] = (. . . ((φµα1,ρ1φ
ρ1
α2

),ρ2φ
ρ2
α3

),ρ3 . . .),ρk−1
φρk−1
αk

(15)

The proof is an obvious induction, using the chain rule.

4.4.1. Using the Leibniz rule we can rewrite the formula (15) as a sum of terms
for which every derivative operator ∂

∂(∂ρ) is applied only to a single φ-series,

rather than to products. Indeed, it is clear that ∂
∂(∂ρ1 ) applies only to φµα1

, then
∂

∂(∂ρ2 ) applies either to φµα1
or φρ1α2

, and in general, ∂
∂(∂ρs ) applies to φ

ρp−1
αp where

1 ≤ p ≤ s and ρ0 := µ. This means that we have (k − 1)! summands. For
example for k = 4 we have 6 summands:

φµα1,ρ1φ
ρ1
α2,ρ2φ

ρ2
α3,ρ3φ

ρ3
α4

+ φµα1,ρ1φ
ρ1
α2,ρ2ρ3φ

ρ2
α3
φρ3α4

+ φµα1,ρ1ρ3φ
ρ1
α2,ρ2φ

ρ2
α3
φρ3α4

+φµα1,ρ1ρ2φ
ρ1
α2
φρ2α3,ρ3φ

ρ3
α4

+ φµα1,ρ1ρ2φ
ρ1
α2,ρ3φ

ρ2
α3
φρ3α4

+ φµα1,ρ1ρ2ρ3φ
ρ1
α2
φρ2α3

φρ3α4

I will call this expansion “expansion 1”.

4.5. We now specialize to the case of the series corresponding to the symmetric
ordering

φαβ,ρ1,...,ρs =
∞∑
N=s

(−1)N
BN
N !

(CN )αβ,ρ1...ρs

The sum over N ≥ k for each φ in the form of expansion 1, will be called
expansion 2. By applying the Leibniz rule again, we notice that (CN ),ρ1...ρs is a
sum of N !/(N − s)! summands, each of which is monomial which is a product
of N − s C-s and s C-s. This is the expansion 3. Performing consequently
expansions 1,2 and 3, the commutator in (15) becomes a multiple sum of terms
which are labelled by certain class of attributed planar trees and each summand
is certain contraction of several C-tensors and several C-tensors with k + 1
external indices µ, α1, . . . , αk, and with some pre-factor involving (products of)
Bernoulli numbers and factorials. To describe the details, we introduce several
“classes” of planar rooted trees and their “semantics”.
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5. Tree calculus for symmetric ordering

5.1. Class T consists of all planar rooted trees with two kinds of nodes, white
and black, where black nodes may only be leaves.

We will draw the trees in T with the root on the top. ’Planar’ implies that
the (left to right) order of child branches of every node matters. If t ∈ T ,
then w(t) ≥ 0 and b(t) ≥ 0 are the number of white and black nodes in t
respectively. Class T is graded in obvious way T =

∐∞
P=1 TP by the total

number of nodes P , and bigraded by the numbers b and w of black and white
nodes: T =

∐
w+b>0 Tw,b. Clearly TP =

∐
w+b=P Tw,b.

Class T ord consists of pairs (t, l) where t ∈ T and l is a numeration (with
values 1, . . . , w) on the set of white nodes of t which is descending in the sense
that white children nodes are always assigned greater values than their parent
nodes. Let T ord

P and T ord
w,b be the sets of all pairs (t, l) ∈ T ord such that t ∈ TP

and t ∈ Tw,b respectively. Given s ∈ T ord and t ∈ T we say s ∈ t if s = (t, l)
for some numeration l. This means that we identify t with the set of all pairs
of the form (t, l).

5.2. (Example: counting trees in T ord) Let sw be the cardinality of T ord
w,0 ,

that is the number of distinct numerated planar rooted trees with descending
numeration and only white nodes. We suggest reader to check that s1 = s2 =
1, s3 = 3 an s5 = 15. It is easy to derive a recursion for sw. The trees
in T ord

w+1,0 have a root node with at most w numerated branches which are
themselves planar rooted trees with labels. The exact labelling is determined
by first choosing the set of labels of each branch, and then choosing a descending
numeration on the labels within each branch. For the whole process w labels are
available, regarding that the root branch is mandatory labelled with 1. Thus
we obtain the recursion

sw+1 =

w∑
k=1

∑
w1+w2+...+wk=w

w!

w1!w2! · · ·wk!
sw1

sw2
· · · swk , w ≥ 1.

The solution of this recursion is sw = (2w − 3)!! = 1 · 3 · 5 · · · (2w − 3).
Cardinality of T ord

b,w may be determined similarly: for w ≥ 0,

sw+1,b =
w∑
k=1

∑
w1 + . . .+ wk = w
b1 + . . .+ bk = b

w!

w1!w2! · · ·wk!
sw1,b1sw2,b2 · · · swk,bk .

5.3. Suppose now g and its basis x̂1, . . . , x̂n are fixed; and hence the dual basis
∂1, . . . , ∂n and the structure constants Cijk.

Given a tree t ∈ T ord
w,b and labels 1 ≤ µ, α1, . . . , αw ≤ n, define

ev(t)µα1,...,αw ∈ S(g∗)

as follows. First replace the numeration labels 1, . . . , w on white nodes with
α1, . . . , αw. Then label arbitrarily the inner lines by distinct new variables
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ρ1, . . . , ρw+b−1, and attach a new external incoming line to the root node and
label it with label µ.

To form an expression ev(t)µα1,...,αw apply the Feynman-like rules:

• To each white node with label αk, incoming node ρl and outgoing nodes
ρv1 , . . . , ρvs assign value (−1)s Bss!

∑n
k1,...,ks−1=1 C

k1
αkρv1

Ck2k1ρv2
· · ·Cρlks−1ρvs

.

If s = 0 (the white node is a white leaf), the value is Kronecker delta δρlα .

• To each black leaf assign ∂ρl ∈ g∗ ⊂ S(g∗).

• Multiply so assigned values of all nodes and sum over all values from
1 to n of labels of all internal lines ρ1, . . . , ρw+b−1.

5.3.1. Example:

µ
��
α1

ρ1

��

ρ2

!!
• α2

B2

2!

∑
k

(Ckα1ρ1∂
ρ1)Cµkρ2δ

ρ2
α2

=
1

12

∑
k

Ckα1
Cµkα2

(16)

5.3.2. Clearly ev(t)µα1,...,αw are components of some tensor which will be of
course denoted ev(t) ∈ g⊗ Tn(g∗). In this notation,

[. . . [[∂̂µ, x̂α1
], x̂α2

], . . . , x̂αw ] =

∞∑
b=0

∑
t∈T ord

w,b

ev(t)µα1,...,αw (17)

5.4. For a tree t ∈ T ord
w,b one defines its full evaluation

fev(t)µ :=
1

w!
∂α1 · · · ∂αw ⊗ ev(t)µα1,...,αw ,

and for s ∈ T one defines

fev(s)µ :=
∑

t∈s,t∈T ord

fev(t)µ.

5.5. (Basic selection rule) Suppose a tree t ∈ T has at least one white node
y such that its most left child branch is a white leaf. Then for all µ,

fev(t)µ = 0.

Proof. Once the Feynman rules are applied the fact is rather obvious. Namely,
suppose that white node has s child branches, its label is k and of its most left
child branch is l (then l > k). Then the Feynman rules for ev(t)µα1,...,αk,...,αl,...,αw
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assign to the white node y the factor (−1)s Bss! C
∗
α1ρ1C

∗
∗ρ2 · · ·C

ρ0
∗ρs if the incoming

line to y is labelled by ρ0 and outgoing from left to right by ρ1, . . . , ρs. The white
leaf contributes by a factor δρ1α2

. Thus we get a factor of the type C∗αkρ1δ
ρ1
αl

=
C∗αkαl which is antisymmetric in lower indices. To obtain fev(t)µ contract
1⊗ ev(t)µα1,...,αk,...,αl,...,αw

with the symmetric tensor 1
w!∂

α1 · · · · · · ∂αw ⊗ 1 what
vanishes by symmetry reasons. Q.E.D.

5.5.1. Notice that this selection rule holds for fev but not for ev (the latter
does not involve symmetrization). The subset of trees which are not excluded
in calculation of fev by the basic selection rules are called (fev)-contributing
trees and the correspoding subclasses are distingushed with supersctipt c, e.g.
T cw,b ⊂ Tw,b.

By similar symmetry reasons, the following result holds:

5.6. Lemma. Let x̂1, . . . , x̂n be a basis of g. If ξ : S(g) → U(g) is the
coexponential map, then for w ≥ 2,∑

σ∈Σ(w)

[. . . [[∂̂µ, x̂σα1
], x̂σα2

], . . . , x̂σαw ](1) = 0,

where on the left hand side the evaluation at unit element (“vacuum”) is in the
sense of the action of the Weyl algebra on the usual symmetric algebra S(g).

The evaluation at vacuum simply kills all the strictly positive powers of ∂-s,
hence only the terms coming from trees in T ord

w,0 survive. Thus the lemma may
be restated as ∑

σ∈Σ(k)

∑
t∈T ord

w,0

ev(t)µσα1···σαw = 0.

The proof in the latter form is obvious: applying the Feynman rules to a graph
with w nodes and w − 1 internal lines produces a tensor which is proportional
to some contracted product of w− 1 copies of the structure constants tensor C,
w − 1 contractions, w lower external labels and one upper external label µ. In
particular at least one pair of labels αi, αj will be attached as lower labels of the
same C-tensor. By the antisymmetry in subscripts of C, after symmetrization
of α1, . . . , αw we obtain zero.

5.7. Corollary. In the symmetric ordering (if ξ is the coexponential map), the
formula for the derivatives of (â)p = (aβ x̂β)p is of the classical (undeformed)
shape, i.e.

1

s!
∂̂α1 ∂̂α2 · · · ∂̂αs(âp) =

(
p

s

)
aα1aα2 . . . aαs âp−s, p ≥ s.

This follows by an induction on k; the induction step involves applying the case
k = 1. For k = 1, the formula follows from (14) for f̂ = 1 after noticing that
aα1aα2 · · · aαk in (14) is symmetric under permutations of α1, . . . , αk, hence by
5.6 the only term which survives is the top degree term which is of classical
shape.
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5.8. Up to the fourth order in total derivative, or equivalently, third order in
C-s one gets the following

∆∂̂µ = 1⊗ ∂̂µ + ∂̂µ ⊗ 1 + 1
2C

µ
αβ ∂̂

α ⊗ ∂̂β + 1
12C

?
αβC

µ
?γ(∂̂α ⊗ ∂̂β ∂̂γ + ∂̂β ∂̂γ ⊗ ∂̂α)

− 1
24C

∗
αβC

∗
∗γC

µ
∗δ∂̂

α∂̂γ ⊗ ∂̂β ∂̂δ +O(C4)

where we sum on pairs of repeated indices (including ∗, where on two consecutive
ones).

5.9. Theorem. If ξ is the coexponential map, the coproduct is given by

∆∂̂µ = 1⊗ ∂̂µ + ∂̂α ⊗ [∂̂µ, x̂α] +
1

2
∂̂α∂̂β ⊗ [[∂̂µ, x̂α], x̂β ] + . . .

or, in symbolic form,

∆∂̂µ = exp(∂̂α ⊗ ad (−x̂α))(1⊗ ∂̂µ) (18)

and in the tree expansion form, using the notation from 5.4,

∆∂̂µ =
∑

t∈T ord

fev(t)µ. (19)

Of course, each ad(−x̂α) in (18) has to be applied to ∂̂µ before applying the
whole expression on the elements in S(g) ⊗ S(g) (for the Leibniz rule for the
star product) or on the elements in U(g) ⊗ U(g) (for the Leibniz rule for the
usual noncommutative product).

Proof. It is well known that the expressions of the form (â)p where â =∑
α a

αx̂α with varying a = (aα) span U(g). Thus it is sufficient to show that

for all a, all f̂ ∈ U(g) and all p the twisted Leibniz rule

∂̂µ(âpf̂) =

p∑
w=0

1

w!

∑
α1,...,αw

∂̂α1 · · · ∂̂αw(âp)[[. . . [∂̂µ, x̂α1
], . . .], x̂αw ](f̂).

holds. This follows by comparing the Corollary 5.7 which holds for symmetric
ordering only with the formula (14) which holds for general ordering.

5.10. Let ∂abc = ∂a∂b∂c and so on. Recall φµν = φµν (∂) = [∂̂µ, x̂ν ].

Corollary. In symmetric ordering, for any f̂ , ĝ in U(g),

φµν (∂)(f̂ ĝ) =

∞∑
N=1

1

N !

∑
i1,...,iN

N∑
k=1

∂i1···ik−1ik+1···iNφikν (∂)(f̂)·[[. . . [∂µ, x̂i1 ], . . . , x̂iN ](ĝ)

Notice that the last sum is from 1, not 0. Summation over repeated indices
understood. This formula is equivalent to giving the formula deformed coprod-
uct for the argument ∆([∂̂µ, x̂ν ]) = ∆(φµν ). For the proof, calculate ∂̂µ((x̂ν f̂)ĝ)
using the twisted Leibniz rule from the theorem 5.9, and subtract similarly
x̂ν ∂̂

µ(f̂ ĝ) and group the terms and commutators appropriately.
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5.11. Let τ : S(g∗)⊗̂S(g∗) → S(g∗)⊗̂S(g∗) be the standard flip interchanging
the tensor factors (in the completed tensor product).

Theorem. Let s1,p be the unique tree in T ord
1,p . Then for all µ,

τ(fev(s1,p)
µ) = (−1)p+1

∑
(t,l)∈T ord

p,1

fev(t)µ (20)

or more explicitly

ev(s1,p)
µ
β ⊗ ∂

β = (−1)p+1
∑

t∈T ord
p,1

1

p!
∂α1 · · · ∂αp ⊗ ev(t)µα1,...,αp (21)

µ
��
α1

ρ1

~~
ρ2

��
ρ3

  

ρ4

''

s1,4

• • • •

µ

��

t1

�� �� �� ''•

µ

��

t2

��

�� �� ��•

µ

��

t3

�� �� ''

��
•

µ

��

t4

�� ��

�� ��•

µ

��

t5

��

��

�� ��•

µ

��

t6

��

�� ��

��
•

µ

��

t7

�� ��

��

��
•

µ

��

t8

��

��

��

��
•
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The diagrams above show s1,4 and the 8 diagrams t1, . . . , t8 ∈ T c4,1.
Proof. For p = 1 the assertion is a tautology. Let us prove the assertion for

p > 1.
By the Feynman rules, the left-hand side of (21) equals

(−1)p
Bp
p!

∑
k1,...,kp−1

Ck1βρ1C
k2
k1ρ2
· · ·Cµkp−1ρp

∂ρ1∂ρ2 · · · ∂ρp⊗∂β = (−1)p
Bp
p!

(Cp)µβ⊗∂
β .

Therefore it is sufficient and we will show by induction that∑
t∈T ord

p,1

1

p!
∂α1 · · · ∂αp ⊗ ev(t)µα1,...,αp = (−1)p+1Bp

p!
(Cp)µβ ⊗ ∂

β .

Bournulli numbers and hence this expression are zero for odd p > 1 and nonzero
for even p > 1.

By the basic selection rule 5.5, the only trees t ∈ Tp,1 (no labelling) which
may give a nonzero contribution are those who have no leftmost white leafs, and
regarding that there is only one black node in our case, only one white node
may have a leftmost leaf (which is black). That means that every contributing
tree in T cp,1 is composed as follows: start with a vertical chain made of r+ 1 ≤ p
white nodes ending with a black node on the bottom and on this white chain
there are attached (p − r − 1) ≥ 0 right-hand side leafs (to some among the
white nodes of the vertical chain), but no branches of length ≥ 2 are attached.

Notice that each t ∈ T cp,1 for p > 1 may be also composed alternatively
starting with the top white node, attaching the left-most branch t′ ∈ T cr,1 and
p − r − 1 leafs, r ≥ 0. We group the trees by the number 0 ≤ r < p. Let us
now consider the ordered trees t ∈ T c,ord

p,1 . To the top node we must assign label
1, then we may choose any r remaining numbers β1, . . . , βr to distribute them
within t′ branch according to the usual ordering rules within t′ and distribute
the remaning p − r − 1 labels γ1, . . . , γp−r−1 to the white leafs in any order.
Other way around, given t with labels, if t′ as a branch of t, then its labels are
renumerated as 1 to r in the same order. For example, labels 2, 5, 7, 8, 3 of white
nodes in t′ as a branch will be replaced by the position labels 1, 3, 4, 5, 2 in t′ as
an independent tree. Thus for a given ordering

evµ1,...,r(t) = (−1)p
Bp
p!

∑
ρ,k1,...,kp−r−1

Ck11,ρC
k2
k1γ1
· · ·Cµkp−r−1γp−r−1

evρβ1,...,βr
(t′)

(of course each i has to be replaced by αi). Now we need to count all order-
ing and combine into fev. The ordering constraints described above give some
combinatorial factors, as well as 1/n! in the definition of fev. We obtain∑
t∈T c1,p

fev(t)µ =
1

p!

∑
r

(−1)p−r+1 Bp−r
(p− r)!

(
p− 1

r

)
r! fev(t′)ρ(p−r−1)!((Cp−r)µρ⊗1).

Notice here an additional sign from the first C-factor (by antisymmetry of lower
indices): C∗α1ρ∂

α1 = −C∗ρ .
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By the induction hypothesis, fev(t′)ρ = (−1)r Brr! (Cr)ρβ ⊗ ∂β , hence,

∑
t∈T c1,p

fev(t)µ =
1

p
(−1)p

∑
r

Bp−r
(p− r)!

Br
r!

((Cp)µβ ⊗ ∂
β)

Regarding that, for p > 1, Bp−r and Br on the right are simultaneously nonzero
if and only if r and p− r are both even, the proof finishes by applying the well
known identity for Bernoulli numbers

l∑
s=1

B2s

(2s)!

B2l−2s

(2l − 2s)!
=
−B2l

(2l − 1)!
+

1

4
δl,1, l > 0.

5.12. In these terms we state the following conjecture on the star product
In our notation we will often not distinguish any more ∂ from ∂̂; with the

convention that when we write [∂, x̂] where x̂ ∈ U(g) we mean ∂̂; as well as when

we apply ∂̂(f̂) with f̂ ∈ U(g); however when we apply ∂(f) with f ∈ S(g) we
mean the usual (undeformed) Fock representation. In any case ∆ is deformed
and ∆0 undeformed coproduct: ∆0(∂µ) = 1⊗ ∂µ + ∂µ ⊗ 1.

5.13. General conjecture. (for all φ)

f ? g =
∑

i1,i2,...,in≥0

xi11 x
i2
2 · · ·xinn

i1! · · · in!
m

((
n∏
l=1

(∆−∆0)((∂l)il)

)
(f ⊗ g)

)
, (22)

where f, g ∈ S(g) and m is the commutative multiplication of polynomials
S(g) ⊗ S(g) → S(g). Notice that for any concrete f and g, the summation on
the right has only finitely many nonzero terms. This formula is proved in some
special cases ([10]) and in this article for general g and symmetric ordering. For
general φ, if f is a first order monomial and g arbitrary, this formula boils down
to our main formula of article [4].

Formula (22) can be expressed via normal ordered exponential :exp(): (here
x-s to the left, ∂-s to the right)

f ? g = m : exp(xα(∆−∆0)(∂α)) : (f ⊗ g)

and m is the usual product. Notice that : exp(xα(∆ − ∆0)(∂α)) : is not an
element of the tensor product H ⊗H where H is the algebra of formal vector
fields; namely the position of x-variables is to the left from the ∂-s, but the
tensor factor is not chosen, and it does not matter as we use m after application
of the derivatives to f ⊗ g. But we believe there is a correct alternative form
where the positions of x-s in tensor factor is chosen and cocycle conditions for
a Drinfeld twist are satisfied (cf. 9.1).

5.14. In articles [8, 10] for a particular Lie algebra, the case of “kappa-deformed
Euclidean space” in dimension n for which the commutation relations are of the
type [x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ) for some vector a = (a1, . . . , am), the conjecture
has been verified for general φ.
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5.15. Main theorem. For symmetric ordering the conjecture 5.13 holds for
all g.

In fact we can prove the conjecture in more general case, for those φ which
are obtained using certain procedure of twisting basis by a wide class inner
automorphisms of semicompleted Weyl algebra.

6. Some facts on Hausdorff series

6.1. (The recursive form of Hausdorff series) Given X,Y ∈ g where g
is finite-dimensional with a norm inducing the standard topology. The series
H(X,Y ) is uniquely defined by

exp(X) exp(Y ) = exp(H(X,Y ))

and it converges in such norm. Then H(X,Y ) =
∑∞
N=0HN (X,Y ) where

“Dynkin’s Lie polynomials” HN = HN (X,Y ) are defined recursively by
H1 = X + Y and

(N+1)HN+1 =
1

2
[X−Y,HN ]+

bN/2−1c∑
r=0

B2r

(2r)!

∑
s

[Hs1 , [Hs2 , [. . . , [Hs2r , X+Y ] . . .]]]

where the sum over s is the sum over all 2r-tuples s = (s1, . . . , s2r) of strictly
positive integers whose sum s1 + . . .+ s2r = N . This identity is well-known and
we do not reprove it here.

6.2. (Linear parts in either X or Y ) The linear part in X of the Hausdorff
series is H1,?(X,Y ) =

∑∞
N=0(−1)N BN

N ! [Y, [. . . , [Y,X]]] where N is the degree of
Y in the Lie polynomial involved. Similarly, the linear part in Y is H?,1(X,Y ) =∑∞
N=0

BN
N ! [X, [. . . , [X,Y ]]] where N is the degree of Y in the Lie polynomial

involved.

6.3. (Symmetries of Hausdorff series) Identity eXeY = (e−Y e−X)−1 im-
plies H(−Y,−X) = −H(X,Y ). Dynkin’s polynomials are of fixed total degree,
hence the change (X,Y ) 7→ (−Y,−X) does not mix them and HP (−Y,−X) =
−HP (X,Y ) for all P > 0. We refine the degree grading on a free Lie algebra
on two generators by a bigrading which induces a decomposition HP (X,Y ) =∑
w+b=P Hw,b(X,Y ) where Hw,b is the sum of all Lie polynomials in HP (X,Y )

of degree w in X and degree b in Y . Clearly, knowing HP determines Hw,b for
all w, b with w + b = P .

6.4. Proposition. The following w-recursion and b-recursion hold

(w + 1)Hw+1,b =
1

2
[X,Hw,b] +

bw/2−1c∑
r=0

B2r

(2r)!

∑
wi,bi

[Hw1,b1 , [. . . , [Hw2r,b2r , X] . . .]]

bHw+1,b = −1

2
[Y,Hw,b] +

bb/2−1c∑
r=0

B2r

(2r)!

∑
wi,bi

[Hw1,b1 , [. . . , [Hw2r,b2r , Y ] . . .]]
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where in the sum on the right-hand side
∑
i wi = w and

∑
i bi = b for the

w-recursion and
∑
i wi = w + 1 and

∑
i bi = b− 1 for the b-recursion.

Proof. For the purpose of the proof we introduce two new sets of Lie poly-
nomials. The first set will have members HW

w,b and the latter HB
w,b where

w ≥ 0, b ≥ 0, w + b > 0. For w = 0 we set HW
w,b = H(w, b) what is 0 un-

less b = 1 when HW
0,1 = X; similarly for b = 0 we set HB(w, b) = H(w, b). Also

set HW
1,0 = Y and HB

0,1 = X, regarding that (0, 0) point is undefined. By defini-

tion, w-recursion is used to define HW
w,b at all other pairs (w, b) and similarly the

b-recursion is used to define HB
w,b. E.g. for w-recursion we first use the recursion

at the line b = 0, increasing from w = 1 on, then at the line b = 1, increasing
from w = 1, and so on. Clearly each recursion relation is used exactly once to
determine one new value and all instances of relations are used. Notice that on
the line b = 0, the w + 1 = w + b+ 1 = P + 1, hence the w-recursion gives the
same values on this line as the standard recursion for Hw,b. In that manner we
notice that the initial values (line b = 0 and (0, 1)) given to HB agree with the
value of HW and H obtained by w-recursion and the standard recursion. The
initial values hence also satisfy the symmetries Hw,b(X,Y ) = −Hb,w(−Y,−X)
in both cases. We want to prove that the values within the quadrant agree as
well, not only the conditions on the boundary. But, the b-recursion may be
obtained from w-recursion also by the same symmetry operation! Regarding
that the symmetry holds for initial values and also for the recursion, than this
is true for each pair of new points to which the two recursions assign the values.
Conclusion: HB = HW . Therefore we can now safely combine two recursions
without being afraid of nonconsistency. But adding up the w-recursion and b-
recursion we clearly get the standard recursion. Regarding that the initial value
w+b = P = 1 for standard recursion is checked and that the standard recursion
is the consequence, and also that the values HP determine Hw,b, we conclude
H = HB = HW .

6.5. (Recursive formula for D = D(k, q)) Let x̂1, . . . , x̂n be a basis of g,
i =

√
−1, X = ikax̂a, Y = iqax̂a and H(X,Y ) = iDa(k, q)x̂a, where k =

(k1, . . . , kn), q = (q1, . . . , qn); let also D = D(k, q) = (D1(k, q), . . . , Dn(k, q)).
Then Dµ(k, q) =

∑∞
N=0D

µ
n(k, q) where Dµ

1 (k, q) = kµ + qµ and the recursion

(N + 1)Dµ
N+1 =

1

2
(ka − qa)(EN )µa +

bN/2−1c∑
r=1

B2r

(2r)!

∑
s

(ka + qa)(Es1 · · ·Es2r )µa

(23)
holds where

(EP )µν :=
∑
σ

iCµνσD
σ
P , P ≥ 1,

are the components of a matrix EP , and the product of matrices on the right
is via the convention that the superscript is the row index. The sum over a on
the right is understood and the sum over s is again over 2r-tuples of positive
integers adding up to N .
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7. Fourier notation and using exponentials

7.1. If some linear isomorphism S(g) → U(g) preserves the degree filtration,
then it clearly extends by continuity to a linear map among the corresponding

completions Ŝ(g) → Û(g). If the isomorphism is a coalgebra map, then the
extension respects the completed coproducts ∆ : Ĥ → Ĥ⊗̂Ĥ (H = S(g) or
U(g)). Thus, it makes sense to consider the behaviour of exponential series
(as a formal series) under coalgebra isomorphism ξ as above. It is also useful
to extend the field by

√
−1 if it is not present and consider formal series of

the type exp(ikαxα). If the field is C then such series are specially important
because of Fourier integral methods. However, Fourier integral is defined only for
some formal series, so the formulas, though useful for other spaces of functions
(one can extend our coproducts etc. to various functional spaces, but we will
avoid this here) the formulas involving Fourier integrals in this paper will be
understood just in the following sense: every abstract series involved is a finite
sum of formal power series of the form exp(iaαxα). The linear space of such

such finite sums (of exponentials), Se(g) ⊂ Ŝ(g) is dense in the space of all
formal power series. Thus if we prove that some identity between functionals
continuous with respect to the power series filtration, holds when restricted
to this space, the identity holds in general. Even when the identity is proved
for finite sums of exponentials we heuristically write integrals, instead of sums.
The imaginary unit is just for suggestiveness of applications in physics, one can
correct the

√
−1 factors and prove the formulas just for the sums of functions

of the form exp(iaαxα) but we will not spend time on these nicetess.

7.2. Coalgebra isomorphisms ξ : S(g)→ U(g) which are identity on k⊕ g, and
which are extended to the completions have the property

ξ(exp(ikαxα)) = exp(iK(~k)β x̂β) (24)

for some bijection K : kn → kn. (Proof: All group like elements both in Ŝ(g)
and in Û(g) are of such exponential form. ξ is a bijection and preserves the group
like elements because it is a coalgebra map.) We would like to know which K
in turn come from such a coalgebra isomorphism ξ = ξK . Main example, if K
is the identity map, is the case of symmetric ordering: ξK is the coexponential
map (when considered defined on S(g) only).

8. The results leading to the proof of the main theorem

8.1. For the coexponential map ξ, the equality ξ(exp(ikaxa)) = exp(ikax̂a)
holds. Therefore the star product f ?g = ξ−1(ξ(f) ·ξ(g)) reduces to calculations
with Hausdorff series. Namely if f(x) = exp(ikaxa), g(x) = exp(iqaxa), then
(f ? g)(x) = exp(iDa(k, q)xa). For general f and g, it is convenient to expand f
and g in Fourier components (reasoning understood in the sense of 7.1) f(x) =∫

dnk
(2π)n (Ff)(k) exp(ikaxa) and, by bilinearity, we obtain

(f ? g)(x) =

∫
dnk

(2π)n

∫
dnk

(2π)n
(Ff)(k)(Fg)(q) exp(iDa(k, q)x),
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or alternatively,

(f ? g)(x) = m exp(iza(Da(−i∂ ⊗ 1,−i⊗ ∂) + i∂a⊗ 1 + i⊗ ∂a))(f ⊗ g)(x)|za=xa

where ∂ = (∂1, . . . , ∂n). Now notice that Da
1(−i∂⊗1,−i⊗∂) = −i∂a⊗1−i⊗∂a,

hence

(f ? g)(x) = m exp(iza(Da −Da
1)(−i∂ ⊗ 1,−i⊗ ∂))(f ⊗ g)(x)|za=xa

Notice that iDa
1(−i∂ ⊗ 1,−i⊗ ∂) = ∆0(∂a). In fact, using the filtration by the

total degree, we now see that the main theorem 5.15 is equivalent to

8.2. Theorem. Let ∆P (∂a) be the summand in ∆(∂a) consisting of terms of
total homogeneity P ≥ 1. Then for every P ≥ 1,

iDa
P (−i∂ ⊗ 1,−i⊗ ∂) = ∆P (∂a)

The theorem will be proved by induction on P . In other words, we have to prove
the corresponding recursion for ∆P . We use two tools: 1. Fourier transform (this
is only heuristic term here, strictly speaking we use the denseness of the linear

span of all exponential series exp(aαxα) in Ŝ(g) and do not require the existence
of the imaginary unit, as explained in 7.1) and 2. the combinatorics of the trees
whose Feynman rule contribution is involved here. Namely expression (19) can
be recursively computed after being filtered by the bidegree

∆∂̂µ =
∑

t∈T ord

fev(t)µ =

∞∑
b+w=1

∑
t∈T ord

b,w

fev(t)µ =

∞∑
b+w=1

∆b,w∂̂
µ.

After evaluating, b and w correspond to the power of ∂-s in the left and right
tensor product factor respectively. In other words, exactly Every degree in
homogeneity corresponds to a node (white nodes for right tensor product factor
and black leaves for left factor) as it is easily seen from the expression for fev
and Feynman rules for ev. The new node in induction procedure can always be
assumed to be the top node, and, in particular white. Then one uses the two
crucial lemmas which use the expansions encoded in our Feynman-rule calculus:

8.3. Lemma. w-recursion formula holds (in Fourier transformed form) for

calculating ∆∂̂µ, where increasing w-degree by 1 corresponds to one white node
added and this w-recursion formula is the same as for Hausdorff series in Fourier
transformed form.

The proof is obtained using our Feynman rules and accounting for correct
combinatorial factors, in the same way as the counting of trees in 5.2, but with
weights. We leave this to the reader.

8.4. Lemma. The initial conditions for w-recursion are the same as for the
w-recursion of the Hausdorff series.

This lemma follows from 5.11.
Therefore the theorem 8.2 follows and hence the main theorem 5.15.
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9. Special cases and other results

9.1. (Classical cases and twists) The classical case of Moyal noncommuta-
tive space, where the deformation is given by an antisymmetric matrix θµ,ν and
the commutation relations are given by [xµ, xν ] = θµ,ν can be treated as special
case of this framework by multiplying θµ,ν by a central element c. Then one
calculates the star product and obtains the classical formula, after setting back
c to 1. In the classical case also one has the formula f ? g = mF (f ⊗ g) where
F ∈ H ⊗H is a Drinfeld twist where H is the universal enveloping algebra of
Lie algebra of formal vector fields. One would like to have this property in gen-
eral. Our “normally ordered exponential” formula for the star product should
be rewritten in form f ? g = mF (f ⊗ g) where F is indeed in H ⊗ H. In one
case of interest (“kappa-deformed space” [8, 9, 10]) the answer is known for all
orderings. The unique choice of an element in H⊗H is made there by trying to
write our normally ordered exponential using in addition to ∂µ ∈ H which may
be considered as momenta operators also some special operators which have the
role of angular momenta (defined in [10]). We hope some similar principles will
enable us to find Drinfeld twists which yield our star products in many new
cases.

9.2. (Formal arguments) By the Hausdorff formula, using the notation
from (24),

ξ(exp(ikx))ξ(exp(iqx)) = exp(iK(k)x̂) exp(iK(q)x̂)
= exp(iD(K(k),K(q))x̂)
= ξ(exp(iK−1(D(K(k),K(q)))x))

where we wrote the contractions with surpressed indices. If we denote

Dφ(k, q) := K−1(D(K(k),K(q))), K = Kφ,

then we write this as ξ(exp(ikx))ξ(exp(iqx)) = ξ(exp(iDφ(k, q)x)) or equiva-
lently

exp(ikx) ?φ exp(iqx) = exp(iDφ(k, q)x).

In physics papers (e.g. [9, 10]) ξ(exp(ikx)) is usually written as φ-ordered ex-
ponential : exp(ikx̂) :φ. Similar expressions one can write for the deformed
coproducts (in Fourier harmonics picture).

iDµ
φ(k, q) exp(iDφ(k, q)x) = ∂µ(exp(iDφ(k, q)x))

= ∂µ(exp(ikx) ?φ exp(iqx))
= mφ(∆φ(∂µ)(exp(ikx)⊗ exp(iqx)))
= ∆µ

φ(ik, iq)(exp(ikx) ?φ exp(iqx))

= ∆µ
φ(ik, iq) exp(iDφ(k, q)x)

where ∆µ
φ(ik, iq) is obtained from ∆φ(∂µ) by substituting ∂α 7→ kα or qα de-

pending on the tensor factor and multiplying. Thus iDµ
φ(k, q) = ∆µ

φ(ik, iq).
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