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Introduction

1. Recall the main concepts and faots, prarticipating in
the construction of affine schemes, to which this paper calls
- implicitly or explioitly.

Localizations. To a multiplicative subset S of a ring
R the quotient ring s™1g 1s assigned, as well as to each
BR-module M the quotient module s~1y, The ring sl 1is the

"minimal® R-algebra (universal arrow) among the R-algebras
f:R——> R' such that f£(s) is invertible for each g€ §.
The isomorphism S~ lMa s~1p eRM takes place.

Spectrum. The set of points of the Space SpecR oonsists
of the prime ideals of R, 1.e. of ideals P such that their
complement Sp is a multiplicative set. The closed sets are
the sets V(8)={pe SpecR| Bc p, where B runs through the
set IR of all the 1deals of R).It is easy to see that the
sets U(s)= SpecR~ V(Rs), se R, oconstitute a basis of open neigh-
bourhoods of the topology of the space SpecR.

Globalization. For each t e R set (t)={tklk>l} .

Theorem. For each unitary R-module ¥ there exists a unigue
sheaf W of R-modules over SpecR such that ’i(U(s)):F(U(s),ﬁ)=
=(s)"1M for each seR.

The stalk ifp of the sheaf W at 4 point PE SpecR is
isomorphic to the localization Mp= s;lm of M.

The sheaf M is p gheaf of R-modules.

All the stalks'§é= SBIR of the structural sheaf g’are
local rings.

The correspondence M—— N defines the equivalence be-
ween the category of R-modules and the category of quasicohe-

rent sheaves of R-modules.



The correspondence Rh——e-(SpeoH,§3 extends in a natural
way to contravariant full and faithful functor from the cate-
gory of commutative rings with unitwto the category of locally

ringed spaces.

How do the analogues of these concepts and results look
like (and do they exist ) for non-commutative rings?
The search for an answer in the direction of the straight-

forward generalizations leads to the following:

a multiplicative set SCR the quotient ring. But from the very
beginning the attention should be paid not to confuse the left
with the right.

A pair (B,f), where £:R—> B 1s a ring morphism, is
called the left quotient ring of R, if the following conditi-

ons are satisfied:

1) £(s) is invertible for all se€S;

2) any element of B is of the form I(s)'lf(r), where
B8E S, re R;

3) if £(r)=0, then sr=0 for some seS.

The necessary and sufficient conditions for the existence
of the left quotient ring with the denominators in S are the
following left Ore conditions:

(01) for each seS, rc R there exist s'eS and r'eR
such that s'r=r's;

(02) if reR, seS and rs=0, then tr=0 for some t€ S.

Spectrum. A straightforward analogue of prime ideals is
the completely prime ideals. Recall that a two-sided ideal p

in R is called completely prime if the set Sp=B\p is multipli-

cative.



Now note that
the elements t€R such that the multiplicative set (t)={t%|k=1}
satisfies the Ore conditions (01), (02) are, in general, rare;
for "almost all" rings the completely prime ideals form a rather
meagre set.

The fiasco at the first two steps makes futher progress
meaningless ~- there 1s no hope to recover the rings and mo-
dules from the values at the rare points of the seldom existing
quotient rings and modules. The way out of this situation, in-
sptred by the remarkable paper éy Gabriel (1], is to modify the
notion of localization.
plicative sets of elements are replaced by the idempotent topolo-
gizing sets F of the left ideals of R (otherwise called radical
sets or radical filters). They are described by the following

axioms:

(1) ReTF ;

(2) 1 m€ F, then the ideal (m:x):{zeRl zxem§ also be-
longs to F for each xeR;

(3) if m and n are left ideals of R such that m€ F and
(n:x)e F for each xe€m, then neg T .

To a radical filter F the Gabriel functor Gg.:R—mod——a
—>»R-mod and the natural transformation I ={33}N\:M-——’G$ M}
of the identi{y' functor into Gg correspond. The module Gy B
turns out to be a ring with unit, J?}R. a morphism of unitary

rings, and for each R-module M the structure\ R-module on

Q?M' extends naturally to 2 struoturej GE,R-module
A connection with the quotient rings is realised in the

following way: to any multiplicative set SC R there is associ-



ated the set Fg of left ideals m such that (m:x)N S#P for each
xc R. It is not difficult to show (exercise 22 to chapter 2 in
[3]) that Py is a radioal filter, and the following conditions
are equivalent:

(a) R has a left quotient ring with denominators in S;

(b) the canonical morphism jFS’R:R-—a-GFSR sends the
elements from S into invertidble elements of the ring GFSR;

(¢) the pair (GFSR, jFS,R) isa left quotient ring of R
with denominators in S.

If R is commutative, then the functor GFS is 1isomorphic
to the functor ST.

For any radical filter F +the functor Gy takes values
in the full subcategory R—modg: of R-mod, formed by all the
modules M, for which ;jg:.’M is an isomorphism. The induced fun-
ctor ?"4:R-mod-——»R—modg: is called #¢ localizing functor de-
fined by . filter F or the F-localization. The main pro-
perties of the functor F *: it is exaot and left-adjoint to

the embedding R-mod.,. <> R-mod. The latter means that any

F
morphism M——> N of R-modules, where N belongs to R-mod |,
may be uniquely represented as a composition M— GS-‘ M—>N.

Conversely, any full subcategory C of the category R-mod such
that the embedding C&—> R-mod has an exaot left-adjoint fun-

ctor, coincidés with R-mod for a uniquely defined radical

filter T . This means that ;iy attempt to construct localizati-
ong of modules with nice functorial properties -- the commuta-
bility with colimits and exaotness -- leads lnevitably to a -
Gabriel localization.

So, the notion of the Gabriel localization is the initial
point this work. The interpretation of the other notions --

Spectrum and globalization -- belongs to its essential part,
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to which we pass now.
II. Contents. The following informal remark seems to me
essential for understanding the essence of what will follow.
The geometry of a commutative ring R is needed for the
construction in a category (preorder) of its ideals IR
(inclusions serving as morphisms)., If R is non-commutative,
then at the first glance the role of IR is usurlped by the
category of two-sided ideals denoted by the same symbol IR
(this is actually the case in the unique known to me monograph
in non-commutative algebraic geometry [4]) unless the category
ToR of the left ideals of R (the inclusions also serve as
morphisms) takes over. From the point of view of this paper
this is not so . The left inheritor of IR is the category
of preorder IQ?R; whose objects are all the left ideals and
the arrows (ordering) are determined as follows: m -~ n
if either mcn or there exists a finite subset xc R such that

(m:x):‘.zfs{_?.e RIAeac m? belongs to n.

Now describe the results. Unless otherwise stated’the
modules and ideals are supposed to be left ones and rings non-
unitary,

The main notions dealt with in €1 : auniform filter
of left ideals, Gabriel's multiplication of sets of left jideals

and,the most 1mportant,the left spectrum.

A uniform filter & s a filter in TR, 1.e,
[heIeR,mcaeﬁoZ' and m—n]=>[ne F7J,
Tmis determined as follows: fFO‘Q: {netekl(n:-r)e'g?
for any xx € fP(m) where m is an ideal
from €3y ; here PCm) is a family of

family of finitely generated Z-submodules in m, Notice



that uniform filters may be determined as the filters
F  of left 1deals ([meT and mcnl=[nreF])
such that F = Fo{RY; and the vadicast sifters are the
filters T which are idempotents: F=FeF
with every left ideal M of R a uniform filter
_{nCIQR\n'hJM‘k is connected. The left spectrum
SPQCQR is the set of all the left ideals M for which
9';“ is radical. An ideal M belongs to SPeqeR
if and only if any of the following statement hold:
a) m¢ F, 0T, |
b) [/ues\‘o‘%']@ f/ue?U%] for any pair
¥,% of uniform filters ;
¢) if n is a left ideal and (/M:x’)+7_/u
for any x € ﬂ’(n), then n—-yu _
An important role in the majority of this paper
is played by the subset SP'EQ ¢R of the left spectrum
formed by all the left ideals p of R such that
(Pre)< p for any x ¢ R~p
We prove  (Proposition 1 6) that for any
M€ gpec(R the set JM {2e R | C/« )’){a/u}
is an ideal from SPec R and the incdusion /«c_/«,\

is an isomorphism in the category Ie% R o In par-
ticular TJM = ?Fﬁ for any
SME Specell i . We have the following

"estimate from below" for S‘Qeek ¢ the set
Mame’“ﬁ R of the maximal regular left
ideals of R (annihilators of the non-gero elements

i N\
of irreducible R-modules) belongs to SPeCeR



In §2 we list the data on localizations of the
category of modules, They include the above-mentioned known
facts on Gabriel's functors,the formulas for localizing
functors modulo non-radical filters (we start from the
notion of localization modulo an arbitrary set of left
ideals) and corollaries of these formulas which describe
localizations of modules modulo filters generated by a fa-
mikly of ideals of finite +type. Besides we study the rela-
tions of radical filters and a prime - spectrum, the
behaviour of SpeeeR and its subset SP’;QER under
localizations, the properties of inductive 1limits of
localizations.

The following part of the paper (£§ 3 and 4) are
devoted to globalization in the context of 1l -semi-
scheme. ﬂm are the pairs (R T) where
R is a ring a.nd J a category of radical filters
(inclusions serving as morphisms) such that T
contains together with every pair of filters F and ‘Y
their intersection T N % and the co-product F_I ®j
(equal to intersection of all the filters from T con-
taining F and Y ). The category T  is inter-
preted as a . preorder of a closed sets in a "topology".
The structure of the topology is given the co-coverings

(co since we are speaking about closed sets): a co-

covering of a filter F from T is a fami-
ly {Fe» FrlleTY T such
that N4 F:lteTYy=F . The family of co-

coverings will be denoted by CovT o T . A pair



(T , Cov T) resembles in every respect the structu-
re of closed sets of a topological space except one,
but,perhaps'the most essential: the co-restriction

of a co-covering is not a co-covering in general, i.e.
(th_z)_ll‘% < Qer (F: U9y is usually

a strict embedding.

Though exotic, the "topology" T = (T, covT)
possesses all what is needed to translate directly
the notions of presheaf and sheaf from topological
spaces, Presheaves on (T, Cov T) with values
in a category e are arbitrary functors
from J into C ; and a presheat F: T—=C
1s called a sheaf if the canonical diagram

F(e)— | TT F(a ) )RTT Fy, 119%5)

((,§)EIxT

is exact 4ov any {®)s A2 \Eelﬂje CS\V’I.

The local data of a module M is a set of loca-
lizations GCreMETF™*M | Fe T, which clearly,
constitutes a presheaf on (T, CévT) that will
be denoted by M T -

The globalization is recovering the modules
GL;M. from the diagrams

C’lg,-. </C"3r.M
(’r:; M ’

where { Fe F.ltex € Cov':r. “When
is such a recovering possible? Or, equivalently

when a presheaf MT is a sheaf?
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The key to the answer to this question is the following
Theorem 4.1. Let { F . |{eT 7} be a fi-
nite family of radical filters,and F=N{F:1teTy,
ANNANANAANANNAAAN
For any R-module M the canonical diagram
ANNANAA NN ANNAANAANANANNNNANANAANN
GrgM—>TI G,‘;M::z'l | Grg. e M
teT e G,PeTxI ¢
is exact.
NN

It is not difficult to derive from here that

If M is a sheaf, then
(w) For any pair of filters ¥ , @4 from T
the F 0% ~torsion submodule (To ‘%)M:{;G,M_\ m.$=0
for some wm € Fo @YY coincides with
the ‘Y1l F-torsions of module M.

A

If every co-covering from Covd possess-

es a finite sub-cocovering then () means that

M is a sheaf. v

The adjacent text is devoted to deciphering the
condition (HR).

The further efforts in solving the globalization
problem are connected with the notion of the spectrum

g e e e N

of a 1l -semischeme. The spectrum of A\ -semi-

CR,‘T) AN NN
%Ais the topological space SPQQe (R, T
whose points are all the left ideals P such that
[ PEFTURNT=[ pe FUWY] for any two filters F , Y
from T 5 and the topology on _SPQQQ(R,T>
is the weakest of the topologies for which all the sets

des .
vq_:-‘. Spece(R,‘J‘)n?, Fe q‘, are closed. There is a canonical
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morphism P hrem the "-roPoiogy" Spec, (R, T) o cloced
sets of the topological space s‘;eczc R,T)

into the "topology’ I =(7T, C&vT) . We find
out the conditions under which Pr is an iso-
morphism (then the categories of presheaves and sheaves

on Specc (R, T) and T

are isomorphic) and the relations of the prime spectrum

SPee R with the space SPGCQ(R, T,
The most satisfactory is the case when all the fil-

ters from T are symmetric and of bifinite
type (i.e. contain a cofinal subset of finitely generated
an '
two-sided ideals). In this case is isomor-
Fo A

phism, Srec R < SPQQC(R) )

and, moreover, for every closed subset "W C gpec_e(({,T)
the intersection W N Spec R is dense
in W, Besideg' "

the embedding Seec R < $Peee (R,'T)
is continuous if and only if T consists of the
radical filters generated by two-sided ideals;

any radical filter generated by a two-sided ideal
which is finitely generated as a left ideal is symmetric
and of bifinite type.

This makes 1t clear that the most convenient for
applications are left Noetherian rings.

To a left Noetherian ring R the "canonical" semi-
scheme (R, Tre ) > where TR
consists of radical filters generated by all the two-sided
ideals of R corresponds. The embedding S pec Ruspece(R, Tep?
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is a quasihomeomoyphism (induces an isomorphism of the
categories of closed sets) and,therefore,the "topology"

Tip 1is isomorphic to the "topology" of closed sets
ome prime spectrum SpecR . With the help of this
isomorphism the structure presheaves M 5?IR correspond-
ing to R-module M are transfered @nto SPecR. Thus obtai-
ned geometric picture may be described directly:

To every closed set VG():{ PGSPec.R[_q(cP}
assign the "radical closure" {?;?} of an ideal OX;
i.e. the intersection of the radical filters containing

ol (it &5 shown That Q’; = {;('} iff

V ()=V (') ); toevery R-module M a pre-
sheaf ,hrcorresponds which sends V () into

(}1{;23 M . Among others the following statements
are proved:

If R is a semiprime 1left Noetherian ring with unit,
then a presheaf of ring;E'is a sheaf and the canonical
morphism of R into Tkevﬁhj r‘EE of the global sections
of %tia an isomorphism,

(Recall that a ring R is called semiprime . if
its lower Bair radical (k(kﬂ?:%% n{P{PG Spec R'S

is zero.)

If M is a unitary module over a left Noetherian ring

R and for any e M~1 075 the annihilator

of % contains Bair's radical of its symmetric part,

teo.  Anni > J5 (CAnn%) ) 25 p | PeV (@),
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(such modules are called here semiprim )’ thenﬁ,
is a sheaf and the canonical R-module morphism
MM an isomorphism.
The strongest results obtained so far in the same
direction suggest that R {3 prime (i.e. O |is
a prime ideal)’in addition to the left Noetherian
property, and T (Ammi) = AmmRE =0 for
all J€ M~ {07,
In §5 we study the left spectrum rigged with
topologisand structure presheaves and sheaves. On
‘;')Pece{l we consider three topologies:
5, f_
'So assigns an arbitrary W C S’pec'.e R
the set qOW:{ P l M- P for some /MG'W,%,‘
,,fsg\. has for a base of closed sets the
family & V{Ch3 | n ¢ IR q}, where
Ve (0D is a family of all the pP¢€ SPeCeR
such that n >P; and the closed sets of the topology
5 are all the Ve (o where X
runs the family IR of the two-sided ideals of R,

3'1 and 3 . The closure in

To every set W' c gpeee R
we associate the radical filter T, = ﬂ{g—P l
b eW—L A %PQQCR\FW-FS , and to an arbitrary
Gp on (SpegR,35)
sending a closed set W into C’a}- M,
w

R-module M the presheaf

o
The restrictions of 61‘4 onto the topologies

'\S'i and T are denoted by 4@,\4

GIVL respectively. Let us discuss
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the peculiarities of the local behaviour of the associa-
o a 1 @ aQ
ted sheaves 6/‘4 s 6M and @)M
° ~a
The fibre of the sheaf GE@L. associated
o
with 6/‘4 at P &€ S(:eceR is isomorphic
to C}zEF M . Under certain "finiteness"
conditions (e.g. 3TF’ contains a cofinite
subset of left ideals of finite type; the condition
which is clearly satisfied if R is commutative or
left Noetherian; or if the torsion submodule
EFP M is finitely generated) the
some is true for the fibre at p of the sheaf 1@;\4’
1 .
X - 1 A4 ~
associated with 6./\4_ 5 1.e. @.M'., P GS'PM'
The conditions similar to those listed in parenthe-
ses for the filter §<P> ﬂ'{t‘f: ‘ﬂegpecek JMSCPS}
lead to an isomorphism «
In general there are natural embeddings
POk, Y Gy M and
O pr—Gig M which differ but slightly from
Py
isomorphisms.
Notice that C7r3 R
P
and R
n Gy F< ey possess properties
close to 1locality.
The first ring is left quasilocal meaning that
N\J\/’\/\
there exists a left ideal M ( C,S.. P}
such that for any left ideal n of Chg.
either n -?;n or the natural map c":; R = Hdm (n (,, R)
is a bijection (in the latter case n is called q—n0n-

proper).
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613 R is symmetrically quasilocal,
<pc? AN e AN e
meaning that there exists a proper two-sided ideal
m = (&n -

( C %s )s ) such that for any two-sided
ideal n of Gg R either

CPs?

nc m or n is a q-nonproper.

The second half of the section concentrates around
the statements which are analogues of Jacobson's the-
orems on”main homeomorphisms”of the structural spaces
(= the spaces of primitive ideals).

Proposition 5.9. Let K b/e\/m

- e m me e =

of R.
~
1) Themp P P/ determizess
homeomorphism of the closed  subspace Ve () (SpecR,%)
ante (Ppee R > T
2) Thomep P> pANoX 182 gussihomeoner-
Phism of an open subspace Ve () = Spec, R~V G0=
= {peSpeq R | otk T dale Speceo
and the homeomorphism of '(.79 K )= '[fe(q)ﬂ SP‘CQCR
NN AT
oo Spacgel  with respegt to the topolostes
T , T, and X,
- - AN —

(Even this statement slone
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Proposition 5.11. I’J\_e,i;/\e/ be a non-zero idempotent in R
- m - - - NN NN AN N AN AN
and  U,(eRe)={pe Sfec,R | eRe ¢
AN e - Pe P9(.€ eke P}
The map  p > pNeRe

determines a homeomorphism of the subspace
ANANANANANANS ANANANNNANANNANL UNANNANANN AN

Up(eRe)  of the space (SpeceR, )
onto the subspace  Spee eRe  of (SpecieRye,S).

One of corollaries of Proposition 5.9 having a "classical"
prototype in the theory of structural spaces, is the following
one:

The map pr—PpPNR determines a homeomorphism
with respect to either of the three topologies '3'01%4.

and kY of the subspace SP/Eee R(‘D\ %PQCZ
onto s{e\ceR’ “whereAR(“ ‘:f the ring obTaiﬂned *by acljou’nihg the unit
to R, Specz®is identi§ied with V(R)={pe SFeceR®| RCpT,

Among the corollaries of Proposition 5.11 are the
having well~known prototypes statements on the relations of
the structure of central idempotents of R and the structure
of the open-closed subsets  of (SpeceR ,)"_S:)

One more important character of this section is the left
radical vad, = “Lao(eR the function assigning
to every left ideal n of R the intersection [\ {P \Pe’\/;(nfg ,
provided \Q (ry={pe Spece Rl h—pT
is non-empty, and R otherwise. It 1{s eastly veri§ied that
’Zc::(olz‘Q is a functor from IG} R into
IR. With the help of Proposition 5.9 cited above we prove
that the function -‘za\o(e assigning to an associative
ring R the two-sided ideal “zadk(cﬂr (\{PlPGSPeceR} is torsion,

i.e. for any R a ring morphism ¥: R — R'
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and a two-sided ideal « of R we have
@ (1@dg(RY) < 220l (¢(R)),  2ad, ( Q/za‘o(e(m)= 0,
wad, ()= 7ael,(RIN .

The main happening of § 6 is appearance of left quasi-
schemes and schemes. A left Affine quasi-scheme is a ringed
space isomorphic to the ringed space (SP_E—CR , -é?l )

for an associative ring R;here Spec R is the subspace of the

prime - spectrum formed by all the prime ideals which
are intersections of ideals from SpeceR y i.e, all the p€
€ Spec R satisfying an e?/ua‘fion p= 'zao(e(p), and

0] the presheaf assigning to a closed subset

R

V(?O: {Pluc p} of Spec R the ring

Gr F R, . (D: the sheaf associated with
— Vo (o) .
G ¢ . A left Affine quasi-scheme (X , ()

is called a left Affine scheme if (X,®)=~(SpecR, Of)
where R is a ring with & unit. Left Affine quasi-schemes
and schemes are the ringed spaces locally isomorphic to left
Affine quasi-schemes and schemes respectively.

Notice that the map assigning to a left ideal p the two-
sided ideal Ps = pN (p: R determines a quési-
homeomorphism ( SPGQQ R , Yy — SP—EB_ R
which naturally extends to aJ quagi-isomorphism of ringed spaces
CSPQCQR_’@; )-——»(S’ﬁe’ck,é‘a). The preference showed to
Spee R is caused by its social advantages of above the same
kind as those of Spec A as compared with the space Max A
of the closed points even if A is the ring of regular functions
on an Affine variety: isomorphism of the pre-order X

of the closed sets of a topological space X onto oeS[;e—c R

uniquely determines a quasi-homeomorphism X — SP?C R.
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We will verify +that for any associative ring R and its
N
two-sided ideal the canonical bijection Ué(o()za
= SP/e\cep(' , P pn, naturally induces isomorphisms

of pre-ringed gpaces

(Tj}e(‘*) » Opl fié(on7 —> (Sfﬁce"‘ » Ou ),
(U600, "Or1G,00) = (Spec,a, 1Ox),
(Tpe) 5 Orlfyen) == (Spec, O,
(T &), Oplgey) = (Speexk, G,).

This implies besides other corollaries, that an open subspace
of a left Affine quasi-scheme is a left Affine quasi-scheme:
(T, OF |ge ) = (8pece, B)

One of the main statements of the section is the following
one:

if R is a QQO{Q -semisimple (i.e. ?g\c(e(R)= o)
ring with unit,then the canonical morphism R — F'('b'g
is an isomorphism.

This fact is a corollary of a more general result:

Let M be a unitary module over an arbitrary associative
ring with unit R such that %adp (Arn§ )< Annt
for any §e€ M.
Then the canonical R-module morphism M — r@;
is an isomorphism (c.f. with the statements of ¢ 4
on semiprime- - rings and modules).

A ringed space (X s @) is called
reduced (or -"(a\de -reduced) if (O is a sheaf of
!zacle -gemisimple rings. It is not difficult to verify that a
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left Affine scheme (SP_Q—cR R 6; ) is reduced if and only
if R is nad, -semisimple.

§ 7 is devoted to geometrization whose destination is
to serve irreducible modules, modules of finite length and
rings semisimple in the sense of Jacobson (the rings with
zero Jacobson radical). Actually we imitate the main stages
of GSections 5 and 6 starting this time not from the left
spectrum., but from the set Maocl'aﬂR
of regular left maximal ideals of R.

First of all notice that the ordering -
is expressed on Macc(ugR in extremely

nice terms:
E/"‘ ———»ﬂ‘}(ﬁ [ﬂ&/u":(é:)[/ﬂ‘: (mit) for some
+ € R~ M] & [ the simple R-modules R(/M
and R//Ml are isomorphic}.
To an arbitrary subset X CMa.oc:jegR
we assign the radical filter é:x = N{TF, |me MaxTR~X T,

any topology T on SpeceR induces a topology (4

on Maxeug R, and to any R-module M
Red ~

the presheaf on (Max,“YR | T) corresponds

which sends a closed set W into G s M,
A Fw

Thus, to the topology 'S'i we assign the presheaf
1 é\M - mand to the topology '_/S\'

the presheaf 61"1 (the topology %\o is of hardly
any interest since (Max?"ﬁ' R, iS\O )

is quasi-homeomorphic to the discrete space
'"'/Vtaacg‘ﬂ R of isomorphecy classes of ideals

from Mcncg"ff R ). The local behaviour
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1054 a
of the associated sheaves C)M and C‘)M is
similar to that of 1@;& and @}4 5 only
”N\
the ri 1(»4 and
rlr/x\g: CQR,/M .
©R M are a trifle "closer" to the
. A
local rings (e.g. the canonical left ideals 16° C
c O] a 6° < Ba 4
an
Fl’»/M ./“l/“ R,/“\

are maximal).

To any topological space X we may assign the maximal
quasi -homeomorphic to it space irrX of "irreducible components”
(the points of irrX are all the irreducible closed subsets
of X) together with the canonical quasi-homeomorphism
X —irrX which sends every point x into its closure.
If X=SpecR, then irrX is homeomorphic to Spec R,and if
X = (Maxéuﬁ ) %), then irrX is homeomorphic to the sub-
space T SpecR of the prime _ spectrum formed by all the
prime - ideals which are intersections of the families of
ideals from Mafx'eug R,
The canonical arrow € Maxeug R—> ?Spec R
assigns to every ideal from Maxe(z"-j R its symme-
tric part, i.e. CCM) = Mg=uMN(M!IR) so that the
image of - C is the space of primitive
ideals of R.

Por any two-sided ideal of R the map /M e-—,»/,, N

determines isomorphism of preringed spaces:

P -\ ~ [u PaN
(T, e, * O \Ue ) = (Max, x| *Oy)

(U 0, (QR\(']e(o())/“\; (Maxc; T, @)
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(PU ), PO, "S’U(o()) > (PSpecx, TOx)

Here 1';6 ()= Max, IRNU &), PU @) =T )N PSpeck -, Po,
is the direct image of the presheaf é\p\ with respect
to the quasi-homeomorphism (Max:eg R, BY—> \’PSPec R.
Under the passage from Spec,R to Ma'xeo"ff R
the place of the left radical takes the "left extension of
the Jacobson radical" Je tn = ﬂ{/u !/AC"Max:‘f!R, n%/u},
The following fact takes place:
If M is a unitary R-module such that
Ann% D2 J, (Ann3) for any %€M,
then the canonical arrow M= (/7\ ;4_ "
is an isomorphism. In particular, R — I (Qa
is an isomorphism if R is a semisimple ring with unit.

In SS 8 we demonstrate the responsibility of the pre-~
order category Ig R for the good and vice aspects of the
left geometry and "left algebra"™ of R. The starting point
is the following simply established fact:

Let F be the radical filter of left ideals of
R. Any ideal from Max (L& R ~ F

(the maximality is understood in the sense of the pre-order — )

belongs to SpeceR.

This implies that F =(H35v. | me Spec,R~F}= T‘/e'(@’
if for every he€ T,R~F there  exists
an arrow n —> M where

M€ Max (IQ}R ~F) . The equality F =

= F\Q(G‘) implies that every ideal from TR~ F
is contained in an ideal from SPQC R~ T,

Ve find out when the above condition is satisfied for
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every radical filters and every radical symmetric filters of
bifinite type. As a result we distinguish a class

Ié" Rings of uniformly left Noetherian rings (briefly,
I{—Noetherian) formed by all the rings R for which I{'R
is Noetherian,and the corresponding class 565 Ri‘nﬁg
formed by the rings R such that

for every linearly ordered chain —[h: (exy
from Ié’ R there exists a left ideal m, such
that ni— m for all ¢ € T and
sup{ng |ieTy=mg,

There exists, however, a more convenient property of the

an eguality
rings which guaranté_eg\/?/\IRz'T%(?)nIk for every symmetric
radical filter of a bifinite type:

for every prime. ideal p of R the set of left ideals

{(p: ) l x € R~ p 73 possesses a maximal (with respect to
—> ) element.

To the class distinguished by this property (and denoted
by SlRings) belong,in particular, all the rings R such that
() the quotient - of R modulo any prime ideal is a left
Goldi ring.

Recall that a ring R 1is a left Goldi ring if it satisfies
the maximality condition for left annihilators, i.e. the ideals
of the form (o0:w), wc R , and does not contain
infinite direct sums of non-~zero left ideals,

The following facts hold:

1) If R is from R € 06 Sy Rings, then
SpecR = Bpec R= {_/43 {J‘AGSP,;C,QR?I

and for any two-sided ideal X , finitely generated as
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a left ideal, the filter YR““‘? ("‘? is the radical closure of{a})
coincide with '}'Vé o) NIR.
2) If R satisfies (a), then SPQCRC SP/e\ceQ,
3) If the quotient R modulo the lower Baire radical
is a PI-algebra (i.e. an algebra satisfying a polynomial
identi‘ty)’ then R satisfies (R).
Since any left Noetherian ring is, obviously, a left
Goldi ring’then left Noetherian rings satisfy (§g)
and’therefore,belong to SC Rtnﬂs . This and (1) implies
the coincidence of the base (topologicael) spaces of Van Oystaey-
en's and Vershoren's Affine schemes (geometrization of primr
spectrum c4 left Noetherian rings with unit; see the descrip-
tion of results of § 4) with the base spaces of left Affine
schemes of the corresponding rings; more exactly
S{E&, R=Spec R Sp/e\c_eR. ~ - fFor any R-module M the
canonical presheaves @M and W coincide, i§ RE ﬁs Rings.
The majority of the section (both in volume and in meanina)
is the extension onto mnon-commutative rings and modules over
them one of the most “"commutative" departments of the commuta~
tive algebra - the theory of associative ideals and primary
decomposition. The role of simple ideals is given to the elements
of the left spectrum: the set Ass(M. )= AssR(M)
of the ideals associated with a module M consists of all
PG SPQQQQ such that P R Ann'E for some
%e M . This ﬁotion gstarts to brc.;ak down when the locali-
zations enter; besides the relations of Ass(M) with the support
M (by definition Supp(M) consists of all PE€ SP“eR
such that fFPM + .M or equivalently
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G“}P M+ O ) are much less sturdy than in
the commutative case.

Thes ¢ gaps are filled in with the help of the
parametrized by the radical filters family “spectra"

Spee‘fﬁ and the extension Spec:;R of the left
gpectrum (here Specfk consists of all the left ideals

mé LR~ T such that m=mMmg >
where  m = {A€R (M) frmY, me={XeR|m: e F | ;
SpecR={m e TR | m e S&ceR' and [rem T =

= [ (m:x)P M—S.}.

If R is commutative7 then

Spec R=SpecR 3  in general case SP/;CCR\ Fc SPec"r
and  Spec*R = Us(aec R= U‘[SPec PR | Pe Spec,R T,
The sets Agg F(Mm) = Ass? (™M) and
Ags*(/\/ﬂ-AsS (M) are obviously defined. For us the subsets
of SpeceR connected with them:

Ass?(M)= { | p€ Ags?(Mﬂ Ass*(/vn) {p)Pe Ass* (M)}
are more important;namely their elements play the role of the
"gdditional™ associated ideals.

As a model for exposition we used [%_l, practically
all the however distinguished results of Chapter IV of this
book (and also some other ones) got here a left sided image.

To emphasize fhe similarity of formulations (but not proofs!)
still more’the place of the commutative Noetherian rings is
offered their natural heirs

the uniform left Noetherian rings. However everywhere (and also
in the commutative case) we may take the rings from a wider

class Rtntas @) formed by all the rings
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R such that:

for any pair of left ideals m, n of R the set of ideals
{(mixy]|xe R~ n FS' possesses a maximal (with respect
to preordering —> ) element,

Notice that if R is a ring from Rc"ngs (¢)> then
for any radical filter F of its left ideals we
have 9':“{?’0){965??0(&\?}‘

Studying the associated ideals and primary decompositions
of certain classes of modules we may sometimes considerably
weaken the requirements to the ring of scalars. Thus, if
for example, we confine our interest to modules of finite length)
then there is no need to impose any restrictions onto a ring.
If we consider submodules of products of families of projective
R-modules (and in particular the ring R itself as a left module
over itself) it suffices to assume that R is a semiprime
left Goldi ring as the following statement shows:

Let R be a semiprime IW, M

~~" AN NN
a non-zero submodule of the product of a family of projective

R-modules. Then Ass(MI#@ , Ass(M)cC Ass(R),

N NN

and every ideal from Ass (R) is isomorphic to a prime
L Ve (Ve e e W W e S [0 %0 Y e Wi e e U W N e
ideal; the set Ass (M) N Spee R is finite
N~ P N N e NN

and M possesses a primary decomposition.
N P e e el i e N e N N N N N W N

& 9 is devoted to the "social contacts" of the constructed
geometrizations. It begins with the investigation of the condi-
tions for the ring morphisms v R — R/ and radical
filters F c I,R and Yec T,R'

that guarantee the existence of the continuation of f to a

localization morphism §$ < - Gr,}_ R— G;ed R’
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One of the varianis of necessary and sufficient conditions is

the following one:

(b) for any me F the left ideal (R', f£(m))
of the ring R' generated by the image f(m) of an ideal m ,
belongs to L) and the R'-module ‘T'OPL(R', R/,,.J
coincides with its €) -torsion '
Tor, (R, R/ )= UTor, (R R/,

A M -semischeme morphism (R,T) — (R, T9
is a pair (§,¢), where 4 is a ring
morphism R— R' , (4 a functor (a function

monotonous with respect to inclusions) sending the intersections
of filters (which are nothing but the products in T )
into intersections and such that (F, s , wF)
satisfies (b) for any Fe T, |

We verify that to a Al -semischeme morphism
a morphism of the corresponding ringed '"topologies" corresponds,
and under a natural additional condition the map
(R,'T) > Spece (R,T)  canonically extends to a functor
from the category of J_J_—semischemes into the category
of ringed topological spaces.

In general case (unlike a commsutative one) far from
any ring morphism induces a morphism of the corresponding
left spectra. The harmony is recovered if we confine
oufselves to the morphisms C€ : R — R'

satisfying the following natural condition:

() [ P'G SPeceR', meTeR' and m—ep’l—"-‘?[tphr'n —-9‘(-'9']
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The property ( %) distinguished a subcategory in

i\-—
the category of rings which is denoted by R‘ngse
TN

. { . . .
}3 $w: R— R is a morphism froﬁ ngge ,
then the map p — (P‘iP determines maps
AN NN~ A Af\/\/\/\/\./\/\/\./\/\
®© » ”\
fe: Vele®r))— Spec, R and (P U (@(R)->Spec,R
continuous with respect to topologies ’5'0 and £Y .
NN\ NN N NN NN NN AN [~ N
An important subcategory of Ri'nase is the category
R‘hgse formed by all the ring morphisms ¢! R — R/
for which the map n — ({""‘n determines a functor
' & 1)
from Ie’ R’ into I, RS . The examples of the
arrows from Rtng‘ge are provided with a left normal
AN " W a We \e U N

morphisms which are by definition tk:z morphisms (! R— R’
such that  @(R) and /\/e((e):-&{? eR'l eorze (R ()
for any =x em R } generate 12'. Particular cases of the left
normal morphisms - the central extensions - are the arrows
?. R— R such that R’ = _‘PCR)Z (D and
Z(;ei:{ze R'| 2@ (x)=@G)Z for any x€ RY.
Notice that the centfal extensions induce continuous maps of
the prime spectra and behave functorially with respect to
some of the geometrizations of Van Oyestaeyen and Vershoren
An example of subcategory of R«"ﬂ\a'se which does not in gen-
eral belong to R:n%s{, is provided with a family of ring
morphisms ¢ ! R —R' satisfying the following candition
there exists a finite chain R, < R,c ... Ry,
of the subrings R such that Rg= (P(R) » Ry = R'
and R, is a two-sided ideal in Ri4q for O<i< k.
The search of invariant with respect to SP—Q—C R ring
morphisms leads to the subcategory R}T&;Z formed by all
the ring morphisms &t R — R( such that
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rad, (§n)C § 2ad,(RY  for any he T, R'

~ —
We establish that Riuasec Ei‘ng‘;e and for any morphism

PSR- R' from R.:_h-é_se the map P— (P"'P

determines a continuous map q’f: G(@(Rﬂ-% SF’e—c_( R

where U (@ (R)) is the subspace of SP—e‘ch

formed by all the P( [ Sf;;c R such

that (‘)(R) c# p’ (if (f) is a morphism

of rings with unit, then T7((p(m) = SF{C R' evicdentdy),
The morphisms from Ri/r\wése induce morphisms

of left spectra but do notlgenerally,extend to morphisms of
the structure (pre)sheaves, For such a continuation to take

place one should additionally require that

For any peE SPQCC R/ and any h € T‘P-ip
Ke,n
the kernel,of the canonical morphism R'en —> R'

coincides with its S:P -torsion: K e,n= 3-
The morphisms from gn%S satisfying this condition

form a subcategory m&s 9 and the map R —

— (S‘aec( R, @R ) extends to a functor from

%g‘- into the category of prer?hged s paces,

We similarly distinguish the subcategory Rtnagz
formed by the morphisms ¢! R — R’ from Rﬁgge
such that  %aol (n)c ¢t 2ady (Ann )
for any left ideal n of R and an arbitrary %Q K o,n
The map R — CSPec R @q D) extends to
a functor from - R|n3$€ into the category of left Affine

quasischemes.



- 29 -

The main text is appended with the following results.

Appendix 1 is devoted to proof of the following fact:

The torsion ’Zg\dc(‘Rﬁczas n{P | pe SpeceR}
coincides with the locally nilpotent radical QZ(R) for any
associative ring R. (Recall that an ideal m is called locally
nilpotent if any finite subset of elements of m generates a
nilpotent subring; a locally nilpotent radical or the Levitzky
radical of R is the maximal locally nilpotent ideal £ (R),
i.e. the sum o;rthe locally nilpotent ideals of R.)

Let us list several corollaries.

1) The left torsion 'zc/z\c/e(- D coincides with
the symmetrically determined right torsion '?ézlv,(' 0.

2) For any associative ring R the set gf)hec R
consists of all the prime  ideals p such that R/p has not

non-zero locally nilpotent ideals. It is clear from this

that the base space £§§ZE.R of a left Affine quasi-scheme
of R coincides with the base space Sp—zc', R of its

rith Affine quasi-scheme.

3) So important in the non-commutative algebraic geometry
&abQ-semiprim@ rings (see the description of results of $ 6
above) are exactly the rings without non-zero left locally
nilpotent ideals.

In Appendix 2 we study the connections between local and
global properties of the modules. The properties we discuss
are finiteness of type, projectiveness, coherentness, flatness,

local freedom.



III. Perspectives. At least three of the possible continua-
tions of this paper seem to be souhd

- constructing of non-commutative projective spectra
and, it goes without saying, their study;

- extension of results obtained here and the notions
onto the graded case;in particulag construction of a super-
noncomnutative geometry;

- geometrization of rings and modules with filtration
required by the means of

At the first glance all these three directions diverge.
But this is not so. The point is that the constructions and
statements of this paper are translated into the algebras and
modules in categories  with product.

(Recall that a category with product is a pair

(e, ™) where 8 is a category and T': @xg—
> @ a"multiplication functor. An algebra in
(e,™ is a pair (R, $) where R is
an object of G and §!T(R,R)-+R a morphism,
Given an "associativity", a runctor morphism a ! T¢,T(-,)) —
—> T (TC,-D, 1) we can determine modules as
the pairs (m $) , where M E 08 B
and % is a morphism T (R, M) —> M such

that the diagram
T(R,T (R, M) > T (T(R,R), M)

TP | 4 Tt
% 3
TR,M) LM «——T (R, M)

&
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comnutes. The usual rings and modules are the algebras and mo~

dules in the "classical" category with pnuitipitcaT€071
(Z-Maol, ®Z) and « the standard associativity
@ (y@2) (x@)®@2.)

The fact)that may look astounding ) is that we do not
require additivity for a category with multiplication. In other
words,the possibility of an algebra-geometric approach is
actually based on the multiplicative structure given by the
multiplication functor. tor example an algebraic geometry may

be constructed for monoids and their left actions.

The work is written so as to prepare the reader to the
non-commutative algebraic geometry in categories with multiplica~
tions. The specifics of certain constructions and proofs
is explained by this hidden aim. If for a category with mul-
tiplication we take the category of graded Z-modules with
graded tensor product we get via the same way the graded
Affine (quasi) schemes. From them,in turn we by analogy with
the commutative case construct projective spectra. Starting from
the category of Z-modules with filtration (of a fixed type)
and the corresponding tensor products we arrive to non-commutative
semischemes and (quasi)schemes’but now for the rings with

filtration.

IV. The main facts on Affine 1l -semischemes (in categories
with multiplication)were obtained in 80-81 and delivered
from time to time here and there starting from the summer school

on operator theory on Baikal in '81. The work was resumed



- 32 -

four years later thanks to a stimulating interest of L. A. Bo-
cut, to whom I am glad to express my sincere gratitude.

As a result, the contours of the other characters were outlined:
the left spectrom, filters 'FP , SEEE , affine (quasi)schemes
and related notions.

This text is due to the great extent by its appearance and
shape to D. Leites, whose advice I used as far as I could un-
derstand it . The main advice - +to0 write clearly and with de-
tails - enableime to get rid of a number of mistakes and vague
statements (I am afraid that not of all of them) and discover

a few new facts. This does not exhaust all the reasons for
my hartily thanks.

It is plea$ure also to express my acknowledgements to S.
Prishchepionok for useful comments.

Concluding this introduction (written mainly for those who
don't read anything except introductions; it is also one of
Leites' suggestions) I cannot but mention once more P. Gabriel
whose remarkable work [17] enabled the existence of this paper.

Grothendieck's name seldom appears in the text explicitly,
but implicitly it is present in practically every line.
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Recommendations to the reader

Sections 1, 4, 5 are the central ones. Section 2 contains
not only an sxposition of Gabriel's results, which deserve to
be read carefully, but, also, a number of "technical" statements
repeatedly used in what follows. Therefore we advice to read the
second half of this section not too assiduously, and return to
it in the sequel as needed. Section 3 is connected, as is shown
on the diagram below, only with Seotion 4 ( its results play
much more important role in continuations of this paper; in par-
tiocular, they are the source of [17]). Therefore the reader can
only brose the definitions, formulations, the statements and
examples, believing in the possibllity of transition to the asso-
ciated sheaves on exotic topologies of Seotion 4, unless he wants
to verify this direotly.

The paper is written almost self-contained (modulo prelimi-
nary data on rings and categories) and, as far as I could, ele-
mentary. Nevertheless, for a better understanding of the hints,
it is desirable to be acquainted with sheaves and schemes (say,
the second half of [15] suffices) and also with non-commutative
rings (here it is difficult to suggest anything nicer than [16]).
I also highly recommend to go through Exercises 17-25 to Ch.II
of [37], which refleot the important for this paper Gabriel's
results.
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Scheme of the logical dependence of Sections
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§1. Uniform, topologizing and radical

sets of ideals

1. Conventions and notations. Here R is an associative

ring’ IeR a family of left ideals of R. For an arbitrary
me.]'_eR and a subset x of elements of R denote,{(m:x) the
ideal consisting of all A such that A:x < m . Denote
by @ (R.) the family of the finitely generated Z-submodules
of R and‘f@(ﬂ):{Yé@(E)l YC_)’E for any ideal (or Z-sub-
module) Y of R.

On IeR) a natural category structure (with embeddings as
morphisms) will be assumed and the subsets of the set O IQR
will be identified with the corresponding full subcategories
of the category I, R . Similarly, the set QIQR of the
subsets of I¢R will be sometimes considered as a category
with inclusions as arrows.

2. Multiplication on ZICR . For any set 3‘ of
left ideals denote by fﬁﬂél'ep\‘rncn for some @ the

filter¥spanned by F . On QICR’

determine a multipli-
cation setting F oY= { n ‘ there exists m & %j such
that (A :x)€ T for any X € @(m)} for every pair ¥, Y
of sets of left ideals. Clearly/ To®y= U{'}'o{m'ﬁ lme %}.
Proposition. 1) Fo ¥ = m = Foy
for any {F,@Yy< 2TeR,
2)1£ ¥ anda @ are cofilters then so is Fo8),
5) For any {%,F,,% yc2® we nave tne inclusion
‘}10('3:2_0 $3)C($0F1)0£ which turns into_the identity if

¥, is_a_cofilter.



Proof. 1) is obvious.

2) Let Ny, N,  be ideals of Fo @4 ice.(hpix;)eF
for any x;E@(m;),m;e‘%,tsi,z . Since ¥ is a
cof‘ilter’there exists an ideal m in %4 belonging to
m, N m, . Clearly,
[‘}' is cofilter__] P o [ A with every pair of ideals _g_:
contains their intersection],
Therefore, (N,NN,.X) =N, IN(N,: x)eTF for any x e Pm),

3)(F, oF,) of V3= {n |(:20€ F63, for any xePony={ 1]
for any x € @()}ﬁ there exists MMy € (‘F;_ such that
(h:yx):—:((n:x); y)é T-}-(:; if y € @ QJ)} for an arbitrary
ideal v € I,R.

On the other hand,

[‘io(?zo{})})a n)y & [there exists a left ideal m such

—

that (m:x) & —'5'—1 for any X € T)(_u) and (n:2)¢e '}:
for any ze T2(m)]
in particular, (n:xx):y)=(n:1yx)e S"i for any x €

and y € P m:x). This implies that F,o(Fe{vi)c (FoF,)o{¥}.

1r  F, is a cofilter, then

[(“‘Y;’C:)eix, i=1,2 1= [ (N y %4 Y, %) = (Nty,2e )N iy, x )€ F, ]
for ne TeR and for any {x,,2,}cC 3)(1))'

‘/:":@(mxﬂ , ¢ =1.2,; This implies that (n:2)e '371

for any 2 € P(T MaX). Clearly, = mMxxX € F o{y],

xe PO xe )
3. Definitions. 1) A set F of left ideal$will be

called uniform if FcTFo { Rjy
A
2) A uniform set F will be called topologizing if

F  is a cofilter and radical if FF < T,
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Proposition. 1) If {'}',‘%}C Q_Iep\ and F is
uniform,then ‘ej o ’;' is uniform.
W e e S

2) If T is uniform and {n,mYc ?’, then hAm¢ FF.

Proof. 1) If F s uniform then by Proposition 2

YoF c Go(FolRY) = (4oTFT)o{RY,
2) (nAam:a)=(n:a)N(m:a)= (m:a) for any G€ ./p(n),
Therefore mnn ¢ FoF since (m:a) € ¥,

Corollary. 1) For any two topologizing sets 3—" , ‘fj the

—_— e — =Y

set Feo @Y is_topologizing.
2) Radical sets are topologizing.
grgo_F.The first statement follows from the first heading of ’
Proposition 3 and the first heading of Proposition 2; the
second statement follows from the second heading of Propositionds O
Ii{_einar_k; For rings with unit the above definitions of topo-
logizing and radical sets of ideals differ from conventional
ones (in the essence)not the form) only in the lack of the
condition " F is a filter", i.e. the condition F =-f. D

L. Examples.

m . .
4.1, Sets ?J and weakly regular ideals. With a left

ideal m one can assoclate the set MT T—{HGIeR‘ mch or
(m:xYC h for some X € @(R)} It is easy to verify that "'3'—'
is - minimal among uniform filters containing m.

A left ideal m will be called weakly regular if (mixdem
for some x € S)CR)

Clearly’ regular ideals are weakly regular. In fact,
by definition m is regular if x —xa €& m for some a & R
and any «« € R . Obviously’ [xem | &EE [(xaemT]

in this case, i.e. (mM:a) =m . If R contains a



right unit then all the left ideals of R are regular/hence

weakly regular.

Proposition. The following conditions are equivalent’

1) ™ T is a topologizing set;
2) m is two-sided and/or weakly regular ideal.

Proof. 1) a) If m is a two-sided ideal then me}—:
:{h,l MCH_,B is a cofilter.

b) If (Mm:xX)< m  for some X € TP(R) then
~g - {MICmiy)CH for some Y € fPCR)} . Therefore/ if
(mix))Ch.,T=1,2 then (Mm: X+ X2)=(Mix N (m:x,)c n,Nnn,.

2) Conversely, let '“3‘ be a cofilter. Then mn(m:,x)emg;-
for any X €& (P(R\I i.e. either mc mN(m:;x) for all xe :P(R)
or (m:iy)c mn(m;x) for some {x,ygcfp(m. In the first
case Mmc (m:x) for all Xx€ ?(R) and therefore m is a two-
sided ideal; in the second case (m:y)c m, Q

Denote by I:yp\ the set of all weakly regular left ideals
of R. Clearly Fo{R] ﬂIyR - ?}: for any sub-
set g of Ie R'.

4,2. Categories Tm and the left spectrum. For an

arbitrary left ideal m denote ey S'M the set complementary to
w X . — n
F in a natural sense: Tm — {hGIeRl m¢ ‘Ti
ie. Nt mp(nix) rfor all x € P (RE. clearty F, s the
/
maximal of uniform filters that do not contain m. The simplest

properties of the sets ?:“

a)[mem'I=[% < F, 1,
) TS Fn ad [Fy =Tl lmad s, ]
for any t€ (R)D

The first property is obvious. Let us verify the second
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o . .
one. Let l’L¢ j‘m; i.e. either N M or (n:xX)c mMm,

In the first case (r\:t)c(m:t),in the second one we have
(n:x)t)=(nitx) < (M :¢) . Both mean that ng T,
cc .
Ir (m:t)é ¥, then F, < (m: ¢y thanks to maxi-
mality of '}'(m,ﬂ among the uniform filters that do not

contain ( mm ¢ t ). Clearly, (mit)d¢ Srm, if ?m: ’S:(m't)'

As a rule, ?m is not a cofilter. If e.g. there exists

t)’

& of m' P#mand g(ﬂ‘% = m, then obviously, {«,pc ?m
and XN\ B é S-r_m . proper

?_rgpc_)’sij:igrn. The following conditions on a leftYideal m
are eguivalent:

1) m ¢ g:'m ° ?m ’

2) g_m is a radical filter;

3) [‘mé Yo ‘eg']-_gj}ne@d—U@’] for any two uniform sets

) ana @' . |

ll)[ Y'LGICR and (m:x)¢ m for any xe@(n)]———‘?

=[(n:y)cm for some yeS>(R) or hcm ],

E_’fo_of. 1) == 2). Since ?Mo'}‘m is a uniform filter/
then [M¢ ?Fmo'}’m] ‘:_‘7[3'"_.0 F.,. < F..1. The converse impli-
cation is obvious.

3) = 1). It suffices to set € = @}'= F.-

1) —> 4). The implication 4) can be rewritten in the
form f gmﬂ{nk >5m I=>[nédg ?mj

4y =—= 3). Let mMmE ‘%O{n’g for some N € (%',
i.e. (m:xV € ‘E—ﬁ for any IJCG@CH) . IfmMm ¢ (Ed—) then

(m:x‘)qi ™m for any JCG?(R). By (4) this means that

a pair of two-sided ideals (v7¢ and F, such that

either Nnc m or (nNiylc m for some y(-g)(R),
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Since 'ql is unlform then in either of these cases me¢ ‘ed D
The collection of left ideals of R satlsfy“'%he equi-
valent conditions 1) - 4) will be denoted by SPQCQ_R and
will be called the left spectrum of R.
Corollary. All the ideals of SpeceR  are weakly re-

ESPGCQR ()
Piayg.ln fact, if m,is such that (m:x)¢ m for any x € J (R),

then by 4) R < m , i.e.m=R , which is impossible. [0
/N
4,3, The sets ‘:FM and maximal left ideals. For an
A
arbitrary m € T,R  consider C‘;'m-: {h €T, R ‘

n¢_m'3 )the maximal filter not containing m, which is almost
always non-uniform. There is a statement on the relation of
m with * ' §mw%&t‘he first four headings -

- similar to the corresponding headings of Proposition
h.2:

ropen
Proposition. The following conditions on a 1eftYidea1 m
W

are_equivalent:

1) rn¢ ? 5.

2) qu - < Sfm,

3) [me %o‘% T=>[me YUY’ gor sy pair of
subsets 9, Y’ or T.R;

Hnlne IeR and (m:ox)d m  for any
xePMI1J=>Cneml;

5)  Fp= Ty ey forall t e PPRIND(m).

Proof. As it has been done in 14.2/we establish the vali-

dity of implications:

1) & 2
7Ny
3) &= )
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4) = 5). Let T& P(R) and (m:tXe F,,; i.e.
(m:tYE mP(m:ixt) for any XE ?(R) . This means
that (m:s)Y ¢ m for every SE¢€ @((R,-t)) , Where (R,t)
is the left ideal generated by t. By 4) this implies (R, t)em,
In particular, t€ Sj(m). By the property b) in 4.2 (m:t)e ?m
if and only if ?(m:t) % CFM .

5) = 4). Now let hGILR and (m:x)¢ m for any
X e ﬁ)(n) . This means that (m:x)e& '}'m and therefore
T # T for all X 65)0’!). By . * condition 5) this

(m:d M
implies T(n)c fp(m) which is obviously equivalent to he m. QO

" The set of ideals satisfying the equivalent conditions

/N
1)-5) will be denoted by Sraece R . The comparison of the
§.3
condition 3) of the just proved proposition/\with _ ~ condition

3) of Proposition 4.2 shows that Sp/;ceRC SpeceR .
In particular, all the ideals of Splécepx are weakly
regular. More impressive is_the fact that weakly regular inaxiﬂal
left ideals belong to Sp/e\ce R, i
Manc, R ﬂIeWR - SP/;ceR.
In fact, if n € Ie R and (m:x)¢ m ‘for any
x € @(n),then (m:x)¢d m for any x € @(nwh),

If moreover m € /Vlar)ceR and N ¢ m, then m+n=R and

therefore m is not weakly regular.

4.4, The sets FS‘- . Let S be a subset af ?(R)

Set FS —.:{neIeRl ?(n)ﬂ%#/@’ and (P((mx))ﬂs:f:ﬂ, for any
xXe ?(R)} It is not difficult to verify that |

S

is a uniform set xghich turns out to be a radical filter if S
¢
is a monoid, i.e.L{S,'tEc S implies ste€ S) or, more

generally, S satisfies [{s,t}c S =>[s'‘c st ror some $'€G].
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Let U be a subset of elements of R , ‘Ut the
set of Z-submodules of R generated by U . Clearly, the
multiplicativity of U implies the multiplicativity of ut

and the radical filter F‘U* coincidesdwith the mentioned

in Introduction idempotent topologizing

cal Gabriel's construction@tary R

4 5. Completely prime  spectrum. For an arbitrary left

he get
ideal m denote Gj M(R NP . clearly, '!r’ = FSM 9
since by definition {h ¢ TeR l PNS #/@' and
@((n:x))nsnfp/ for any x 6 (R)] . Denote CySPeceR the set

of ideals m such that Sm is multiplicative. Clearly’

et F‘M b} now classi-

A A
SpeeeR c Speee R . As a rule, SP/e\"-eR is considerably
poomr}han SPece R :ﬂl Regular maximal ideals must not necessari-
nN
ly belong to Spece R . Therefore’the difference between

A .
SPQCC R and SPeeeR is a source of a number of examples

of radical filters of the form FS , where S is a subset of
(P(R_) that does not satisfy the conditions of Example 4.4,
The two-sided ideals of SPec are exactly complete-
and

ly prim@  ideals of lee retain the same name for one-sided
ideals.

4,6, Radical filters of finite typey

CA set of left ideals CQ:S will be called a set of
R i,
finite type if it has a cofinal subset of ideals of finite type;

ji.e. every ideal w © contains a finite type ideal Sf(om‘eij,

form  Fg | wnere $ is & matiplicative subser or P(R)

satis§ying the {»ouowtnﬂ condition:

‘/\/\P/"
‘For any &€ \(P(R) and S € S there exists £ € S
;TN —~— N N —————

- 4
such_that ta < (R9) /
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Proof. 1) Clearly, the ideals of finite type are exactly
the ideals of the form (R,s) (i.e. generated by s), where
s € P(R) . The condition (%) means that (R,s) Dbelongs to
FTS for any se€S . It is also clear that the ideals (RB,s),
where s runs through S, constitute a cofinal subset in FS'

2) Now let &  be an uniform set of finite type. It is
not difficult to see that the set Sq of all se J°(R),
such that (R,s) belongs to F , satisfies (#). Besides, (R,st),
where {s, tY€ P(R), satisfies the following condition:

1f xe PUR,t) and y€ J°(R) are such that xc yt ,
then

((R,s): y)C (@R,st)t):y)=(R: st): yt)c((R:st):x) .
Therefore, if F 1is a radical filter, then the following im-
plication holds:

(@), ®seT]= [ @st)EF] ;
i.e. S?r- is multiplicative. O
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& .
5, Arrows of category le R . Recall that Ig' R 1is a pre-
order category, the objects of which are all the left ideals of

the ring R ; the existence of an arrow m — . means, that
either mc in or (m:x)ch for some o€ j)(R) (or, equiva-
lently, (m:x')c . for some finite subset ' of the elements
of the ring R ).

It is obvious, that if  is a two-sided jdeal and h -ar-
bitrary left ideal, them [ 9(—7 "N [« , In particu~
lar, the preorder of the category I g’ R induces the usual pre-~
order (morphisms being the inclusions) on the set I R of all
the two-Sided ideals of the ring R .

Many concepts and comstructions of the present paper acgire
especially convenient form if we use the language of arrows from
T,” R .+ It can be confirmed by the following reformulations,

which are going to be often used in the sequel.
The uniform filter J is a filter in the category I R ;

ice. [neF and nomiD[meF],
The uniform filters 'J and F. are "F={nCT,R|{m->n]};
Fm={ne€TRInH m],

The left spectrum Spee 0 R consists of all such pPC
€T,R, that [n€T,R and (p:3x)4>p for all xc P(n)]=>
=2 [(hopl.

Spi\cck consists of all such M€ I, R , that [c ¢ R
and (JM:&)+>JA3® [xe m]l .

The fact that the left ideal p belongs to the completely
prime  left spectrum Sfﬁe ¢ R is equivalent to the
implication: [x€ R  and (p:x)qf pl= [OCEP—S .

We leave to the reader the checking of the equivalence of
the new definitions to the old omes,
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Specc R and SFee . For each n ET,R denote €y
N the set {zeR|(n:)+ n} .It is clear, that for each
proper ideal i the set N contains h , amd Az2C h for
esch 2EN and A€ JP(R) . Nevertheless, it happens quite
seldom that for a given i € T,R the set 7. turns out to

be a left ideal,

propay
Denote It R +the collection of all the,left ideals of the

ring R enjoying the property:

if x,,*, are such elements of the ring R , that(n:x;-rr.
t=4 ,2 , then (h: {x,, 2, )= (Nioc,)N(N:2¢,) b n,

Propogition. I)For each N ¢ IC* R the set . is an ide-

NN lavAaVaVas MNAAANANNAAN
P
al from gpeccR U {R¥.
proper

Z)W W an ideal m are equivalent

(a) MGICR and m—>m (Wntly th\e/}/d\e}\l/g m and
a2 fsmomphle fn TR ).

®) me SPQQ .

3)The following properties of en ideal m € TR~ {R]

are eguivalent:
AN\

3

/\
(¢) M= _m 3
@ me Spe(’, .
Proof,I)Suppose h € IC R . For any pair ¢, y

from f\ the relations

(nix4y)o(n:xN:y) b n
hold; they show that the set /h\, is closed with respect to ad-
dition and is,therefore a left ideal in the ring R .
I_et;&ug e:h?: that N € SP’e\e R U{RY . According to the de-
fin\iﬂa'g?%o{ paragraph 5, the fact that n belongs to the
set SpeceRU{R} is equivalent to the implication
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(2eR, (R:2)YPRIDlzend,

Lemma. fet N €I R, w  Deeg finite subsetin R ,
N\
ama (R:w) ¢ in . men (n:wNE n .
Proof.Suppose, that (n:w ) C I + Then for any Q,, €

c(M:w)Nf  the relatioms hold

(nrawWI=(n:w):aw)c (niaw,)—hn
On the other hand, since a, w 1is a finite subset from ~
and NnELS th\e{\n:awW)-l-) R, This is the contradiction, O

Prom the lemms "j&xst proved and from the definition of ar-
rows of the category,the implications follow:

C(R:a) b n I3[Rt n amd (Rixz)g R for each
finite subset mc{l]ﬁf(n:z)gﬁ n and (h:’xz)¢ n
for each finite subset > < R\ [ (niz2) > h
i.e. 2 € ’ril .

This is what we had to prove.

2) (@) = (8), Por each 1 €I, R the implications
take place: [(m:x)¢m for each xx € JP()1=>[ hc m
(by definmition of m)J=> [ h — m ] , since M —>m by
the condition,

(6) =% (&), Any left ideal V¥ , such that F,, is
a topologising ﬁltor’bolongs to I:R : [{h,%z"‘gc‘ {)\ ](gl_?é
S[wzneF, , =121 @i{z,2)= ()N 2)e 5, 7,
In particular, SPQCQRCIé* R. , and, according to the first
statement the set /[5 turns out to be an ideal(from SF/Q\Qe R )
for each p¢€ SPeceR » Since PGIe*R , (p:)¢ P for
each x € P(P). Consequently, f —> p .

we

3)The equivalence of (c¢) and (d) was announced in the para-
graph 5; (d)=p(e) follows from definition of Spee,R
the implication (c) =y (cl) 1is obvious.n
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wr ~

Corollary 1. If n¢€ Ie*R NI;"R, then He Spec,R .

Indeed, if h EIE*R’ then, as it was already mentioned du-
ring the proof of the implication (b) = (a) of Proposition 6,
(n:x)¢ n  for any x€ JP(A) . On the other hand, 1f heTLMR,
then (n:y)cn for some Y € J’(R) . Therefore the equality
A=R is impossidble. O

Corollary 2. Any ideal from S’FeceR is isomorphic to

—_—— - = AN~ AANAANANANAAAANANANA
an ideal from SP’ECQR s this isomorphism is given by an in-
AONANANNANANNNNA NN ANNANANAN NV ANANNAANAAANAANAANA A
clusion.
[a V7 Ve e U

Note that for an aibitrary pair of left ideals n, m
their isomorphicy is equivalent to the equality F,.=7F,, .

7. Categories of topologizing and radical filters. Full

subcategories of the category ZIQQ formed by topologizing
and radical filters will be denoted by J,R anda TI,R res-
pectively. It is easy to verify that T{R and TI{R are
closed with respect to interseotions (products) of arbitrary
families of filters (objects).

For any pair of radical filters ¥, Y denote by FVY
their coproduct in T IoR . It is easy to see that F V ¥
colncides with the intersection of the set of all the radical
filters containing F and D .
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§2. Gabriel's functor and localizations

1. Functors Ft , Hg.‘ and GTQ,‘ .Let T bea

uniform set of left ideals of R. Then for any R-modules M

the set F M={=x GM‘Ann(x)e—'}:B is a submodule of M. Follow-

ing the tradition call the submodule M the F -torsion

of M. Clearly/ the correspondence M+ FM 1is functorial.
Denote !y?i/v\ the quotient of M modulo FAM . The

map M +— FIM éxtends up to a functor of R-mod into R-

mod and the set of "projections" <P,f: M—rg_LM, Me 0@ R—mocl,

turns out to be the morphism of functors (PEF: IdR-m:;r? Ti
f_r_op351t10n. 1) The map a551gn1n5 the colimit &*HOMR(M’M)

to M extends up to a functor H i R-mod —> R.—mocl,me?

The canonical morphisms f w): M-——)Hom (u M)Wa

the action Y@M — M W

Ty @ IO{R mod 4 H

2) If F is a cofilter, then Tgr presents in the
N . PF . ¥ ¥
form of the composition Io{R-mool > Fr=2 H'J-' , y_@e ;

is a monomorphism.
R e A — N e s

lirc_>_o‘f. 1) Let x be an arbitrary element of R and m a left
ideal. Multiplying (m: a¢) from the right by £: (m:x)— mMm
. . Ox, Bx,m,
induces a morphism of Z-modules HomR(‘m,M) HomR((m 2) M)
Since ‘37 is a uniform set and H,s_. = H—?— , then the
family of maps {_Gfx,m‘me'{} determines a morphism of Z-modules
}\xf H?FM —_— H?M , 1i.e. the action of x. It is not
difficult to verify that the family of maps {A. | xe R}
determines an R-module structure on H?M ‘

2) Now let F be a topologizing set of ideals.

Clearly the kernel of the canonical morphism M —-’?HOmR(m,M)
/
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consists of all ace M such that #n.x =0 . This and the
fact that F is codivected implies that the kernel of T
coincides with FM . Therefore there exists a monomorphism
}P";\: FiM ——%HgM uniquely determined by the identity
Tei Sae P O

The composition of functors S-'L and H}‘ is
Gabriel's functor G?:H?o?‘t and the composition of T,

F
R -mod 6[3:
e oo
2. Functors Hf_}- and C;;&,-. . Denote by HBc and

and Hg’:‘PS— is the morphism jg_. |

oo n Ty HY n+)
v H { H —Fh¥, | ( }
G[&,_ colimits of inductive systems F= 5

n JgGrg, , n The
and C;r G(,}-—"“”L’Cﬂg—} respectively. Llﬂorphlsms of functors
hz{

HH,—?&—Z H —-)C;rg_ induce the morphism <P3:‘ Hg_ —> 0(3:

Prop031t10n. For any topologizing set 3’ of left
i e i A\ —

— R

. F . . S
ideals of R the arrow <Pao is a functor isomorphism.
e N N T e e — e s

Sketch of the proof. We have the diagram

H
Hy —ZHF >
T koo o yp& (1)
i T T Hacrg
Definition of J? implies commutativity of its lower

triangle and that of the upper triangle is equivalent to the
ldentity W'C,}_ HSL_- Hs-'l‘s_- which holds in a more general situation
(see [lﬂ,Proposition II.l.l), The reader is invited
to verify it independently.

Diagram (1l)"extends" up to a family of evidently deter-
mined commuting diagrams

‘_\7_“ €™ H2n+t
_—
¥ (
}(n) W A6, T E(m:) (2)

2n~ Jw

CJTS-: ‘_"_"__”C)f;n



on (n‘) 2N+ nin-t ‘(n)
Since {H?-————# T } and {GTQ:"__'—”(JI'}'-S are final sub-
n>

systems of inductive systems He}— and G;g_. respectively,
then their colimits coincide with H;-o and G-D;- . The iso-
morphicy of CPz follows directly from the existence of
"diagonal arrows in (2).0

Concluding this section, list several properties of H-J;
and CI"}"-

1) HSF is 1léft exact. It is exact if F contains a
cofinal subset (subcategory) of projective ideals.

2) Obviously, H::F:H‘g:‘ and ng_- = CJI"j_—‘

3) The identity ‘('Cg__H3-= |-|3-'C3:, playing the key role in
the proof of isomorphicy of CPE: ’ implies similar identities
for F!  ana CJrg- 1 a) '_T‘Ltp?z ?3-‘:3:4..’

b Ggly =lyGeg.

4) Denote R—moo‘? the full subcategory of the category

R~mod of left R~modules formed by all the modules M such that
FM =0 (such modules are called F -torsion-free

or just ?-—/f\r/’gf). The same identity ‘C&.-Hg_-= H3~'C3. implies
the invariance of R-mod ¥ witn respect to Hrg_—, since

by Proposition 1 08 R-moolF consists exactly of the R-modules
M for which the canonical arrow t}:MiMAHS,M is a monomorphism.
Clearly/ the restriction of GI"}' onTto R- rrod & coincides
with Hg‘_lR—modg-\

5) Let F be a topologizing set of finite type.

Then H F and all its iterations (including w) commute
with colimits of inductive systems {Md MB}BWX where
all the arrows are monomorphisms. In particular, the functors

o0
H ¥ and Hf}' commute with colimits of modules.
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6) The following implications hold:

[H? transforms epimorphisms into epimorphisms]@ [H‘,}"
is exact] ﬂ

[CTg:' transforms epimorphisms to epimorphismsj(‘:-) L Gl'y
is exact]

[l"{(}:‘ transforms epimorphisms to epimorphisms]@? [ Hg_-
is exactl_—_—j; [Gr?= Hg-‘].

A1l the implications but the last are the corollaries of
the existence of the isomorphism H,;_o -~ 61‘; and the
following general fact: a left exact additive functor is exact
if and only if it sends epimorphismsito epimorphisms. The last
implication is the result of applying . the (exact) functor Hg_-
to the exact sequence

O—> TM—M —S5FiM—0

If ? contains a cofinal subset of projective ideals,
then H?. is exact.

7) Let F be a topologizing set of finite type. Then
[H; sends epimorphisms to epimorphisms]é:‘; [Ho,; commutes
with colimitsj f— [H‘; has a right-adjoint functoﬂ.

This follows from 5), 6) (the exactness of H;_o ) and
the following general facts:

- an additive functor commuting with coproducts and co-
kernels commutes with arbitrary colimits;

- a functor R-mod =>R-mod commuting with colimits
possesses a right-adjoint.

Denote::yR(“ the ring obtained of R by adjoining the
unit. Any functor F ! R-mod — R-mod possessing a

right adjoint is isomorphic to the functor FPL(D®R'
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This is proved as the similar statement in the unitary
case: a) first, note that FR(HSFR(D@RR(“; b) for every
R-module M the canonical morphism M ———)HomR(R(”, M)
is a bijection; c¢) for any R-module M b) implies the existence

of the exact sequence 11 Rc“——)_u_ R(;——% M—0
weO—( Yer

where R(n R.m R,(n for all (x,y)e Ot x (C ; d) applying
F and F'PJ”@R- to the exact sequence of c) we get the
desired isomorphism FM<= FR('\’@RM which can be obtained
however, as a corollary of the cOrresponding statement for
the category of uritary modules making use of the existence
of the canonical isomorphism of the category R-modules ¢nto
the category of unitary Rm-modules.

Therefore, if T is of finite type and H;__o sends

’
therefore H;"Rm is a flat R-module.

epimorphismsgto epimorphisms,then H;-o—’l’- H;R_@)®R— and

If a topologizing set rar is of finite type and con-
tains a cofinal subset of projectw@ ideals, then H:_F:"Gig:
1s an exact functor with right adjoint, the same as H$ "’CT,_ .
The non-obvious in the above properties the reader mag
consider as a simple exercises,

3. _}_—_I_S-R -action on H‘(@JM

Proposition. Let F, F' and Y be topologizing
sels of left ideals of R. For an arbitrary R-module M the
. . 3“%
caponical morphism  HyROHeM — Heyoz M
WS
R @M <M,y >M H:‘FIR®H?R®HQJM I Hg—!R@Hgo;M
th@ MJ, 32 IQO?,M
3 H M
H?P\@H%M———»H%?M Yo (30T

v
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commute. Here F,.:ReM-—>M is the R-module structure on M.
Proof, 1) Let wm and W~ be left ideals of R and

u eHomR(n, R) .Ifr meTFe Q_ICR and ¥ is uniform

then the preimage u”'(m) of m in belongs to
Tof{ny,
In fact, for every subset x of W we have

(U'tm): x )= (m: ulx)),
2) Since the bifunctor (%) of tensor product commutes
with colimits with respect to each argument, then the canonical

arrow

&m ‘ecm h. ® Hom (m M)-————)H R@H M
neT “me Yy ¥ @

(here n'R=H°mR(n:R)) is an isomorphism, Therefore it suffices
to determine for any ne& F and me % the morphism

S:A,MZ n*é'@HomR(m’ M)-} H‘%og:'M functorially depending

on n and m,

To UE YL; the map am: HomR(m, M)—*‘rHomR(U-'(m),M)
corresponds that assigns to a morphism %! m —> M the composi-
tion ot § and 'Uri‘(m Since U '(m)e (ej {n}c ‘ej 9—‘
it is possible to co;suier the composition ‘M of Mm
with the coprojection Hom (u“'(‘m) M)— H‘Qjo’}' M

The family of morphisms {u l ueE n> } determinel as is not

difficult to see the action 3 X ®Hom (m M)—)H%o? M; the

morphisms {}M mlnnge‘(’dB uniquely deter'mlne the morphism

s
}3%\F&R®H%M—)H‘QJ}: ;88 noted above. The verification

of commutativity of the diagrams is straightforward. (J
g'ogollar_'yi.Let F be the radical set of left ideals o

é ? ‘les' ?3‘_
— (R

57 = }T? determine a ring structure on Hg R  and

Hu
R. Then H = H and, morphisms and
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the structure of a left H_R-module on He M for any R-module
P e e N N o N 3‘ I e Y g W) [ e N N Y

M. m Hs_Rz(H?R’%?) is associative and unitary, and the

[ Vi Ve Vi Vi Ve Wi WENUER Wia W2e W U e R N ~ A e

I S N N

caw 1':3_ RYR—= HgR sends each right unit
P [ % e W W N NP

’
(if any) info the unit of Wy R. The HgR-module HgM 1ig
unitary for evdry M € 08 R-mod.
ANNNANNANNANNAA AL

Proof. The fact that }?‘-:— }ir? is the structure of an as-

. F_ FTF ,

soclative ring, and }M—}N: is the structure of an Hs_R-mo-
module is expressed by the commutativity of the diagram (1) in the
particular case: F'=Y=F |, FoF=F .

Let e denotes the image of idR under the canonical mor-
phism Hom,(R.R)—>H o R . Clearly, for each neI,R the

~A R F (4
action (id), ~on Hem (n,M) is identical (see the definition
7~

of the maps & in the second paragraph of the proof of Propo-

n

sition 3). This means that e_ acts on H?M identically. In

¥
particular, (since the R-module M is arbitrary in these constructi-

ons) € is a left unit of H.}.R . On the other hand, for any

F
left ideal m and any morphism u € Hom(m, R) we have u'j‘(R)=
R

= m, and the map ‘aR: HomR(R,M)-aHomR(m,R) is nothing else
than the composition of morphisms: ¥ > § o u . It follows
that QR(IdRhu for each U € HomRQn,R) and m€TI,R ; there-
fore eq 1s a right unit of Hg R . The arrow T,}-’ p R— H?R
may be viewed as a composition of the map R — H°MR(R’ RY ,
which assigns to each element xe R the operator Y,  of mul-
tiplication by x <from the right, and the coprojection
HomR(R,R7———>’H3~ R . If e’ is a right unit of R, then
ro.=1dp; therefore T'J“,R(e'): €q. 0

Corollary 2. For each radical filter F  the functor Hg_-

- == - NANANNNANNNANANANN N

VY S Ve e e

uniquely determines the functor “Hq- from R-mod into the cate-
A AN N N NN NN ~~NA [0 S S L L

gory HeR-¥mool of the unitary . R -modules.

AN
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4. FLR -action on Y*M . First of all notice that
)’

there exists a commuting diagram
‘P,f@ Im
-_— 5

R &M FiReoM
l' F l 5
P
M > Fim

. . F
for any R-module M and topologizing set F where EM
1

is uniquely determined thanks to epimorphicy of 3—®i .
RS "M

In fact, if xe FR then xye FM
for any ye M . Further for a pair of topologizing sets
3: and (&J "we have a commuting diagram
i 1
REM — F'R@ Y'M— 3 HFR® HyM
1
F,Y
! )
L \‘/ :?M ;96? __}z’%
1 )
M 5> B-FT)M = He.7M
where ;3;’\% exists and is uniquely determined thanks
to monomorphicy of }‘%o}' As a result we have got
a pair of arrows functorially depending on F 9 @q and M:
F

F, @ ,
Qo TIM M TR @ Yipm —29M, T1eipm,

5. Compositions Fto ‘ejl and He o H ) Morphisms
T |

occupying the last line of the above subsection are equi-
valent as the first of the following statements shows:

Proposition. Let F and @  be topologizing sets
of left ideals of R.

1) There exi isomorphism of functors

XS-‘,Q: gi@d‘:.;((q,?)" and t?he diagram
Yad

Freytm — =~ 5 (Y-F )M

-%ZLM\ /;,i'“’ ()

TR @ YM
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commutes.
2) There exists a canonical morphism Y ¥ ?t Hy 2 HypoHey

such that the following diagram commutes:
W’W

T @oF Y @3 (2)

Td g -mod 7 L';‘QGO(F/? He oH“d
E—
4 Hey 25"
3) If M is F -torsion free and @4 -torsion free
R-padulegthen /5y oM —HL HgM s an iso-
morphism.

Sketch of the proof. 1) Let M be an R-module, X €
GKUL‘P,Z.MO ‘P;? . This means that wnu. ?&(x): 0 for an
ideal ne€ F or equivalently nNn.:x € Ym,
Clearly [hn.xe YMIE[ 1xe YM for any e Pn)le

@[for every A € ?(n) there exists m € ©4 such that
M 2 =0]<&> [Ann(xe) € Yo{nc Yo F =[x € ke'acp,cg"&_].

Conversely, if Ann(xdeE Yo{ny ror some n € F,

then, clearly, Ann @;?(oc)) on, he F and therefore
¢;M(¢;?(ﬂt)):0. Since (P;M () ¢:i“4 'and q)M °F

are epimorphisms, the coincidence of their kernels implies
the existence of the isomorphism X:{q ?“Q"M&(‘%o?)‘M ,

The verification of the commutativity of 1) 1is left to
the reader.

2) Let, as earlier, M be an R-module; x € H‘%o:-FMS n
an ideal of o F such that ax is the image of some
X € HomR(n,M) with respect to the coprojection
HomR(n,M)__—>, H‘%o}'M' By definition of R-action on

. Nne«x . . .
deog:/v\ the morphism n-—--—>H‘,d°3.M of multiplication
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of n by x factors through 'C‘pdo}-,M- M — H‘QO?M
Let N€ Yo {m] , where M €& I . Then Ax 1is the
image of a Z-submodule 2y of finite type of the Z-module
HomR((n:;{),M) for any A€ U)(m) . Since (n:X)e (éd, there
exists a coprojection HomR((h:A),M) _— H‘E:l_ M =H«¢JM
which easily implies that the multiplication of x by m factors
through H%M — H‘ejof;}' M

m. X

m‘.‘f\ >7H<p<‘,3:M
/ \\32 “\ (3)

A ¢
A Bt
Hom o ((n:2),M) ———=> Hey M

Denote % the image of X,,€ HomR(Vn, H‘%M) with respect to
the coprojection HomR(m,HQdM)—-)Hg-H(%M. It 1s not
difficult to see that X does not depend on the arbitrariness
in the choice of N€ YeoF ana me T . Therefore

?3%1 . . .

M ‘H‘%o?M—;Hg‘HQM is well defined. It remains to
verify that LVN{‘Q is an R-module morphism and prove
the commutativity of (2). This is left to the reader.

3) Now let M be an ¥ -torsion free and 4 -torsion

free module or, equivalently, the canonical arrows and

-tF,m
e . " " Tr,m
’E‘q m are injective. Then the through map M —/—— HS:M-—P
)

H?r‘t’d,M, HS-'H‘QM is also a monoarrow since HG- sends
monomorphisms into monomorphisms.

Let XE€ |——l,\-¥H¢¢4 M;m be an ideal of F such that x
is the image of some XC, € Homém,H%M)with respect to the co-
projection HomR(m,H%M)—A H?HQJM . For any A€ fp(m)

there exists N,€ ©4 such that the restriction X, of X

m

onto A factors through Homn R(nA’M> — H‘%M‘

r @)

Denote by . The commutativity of

T. ]
‘ I{,HQJM %, M
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. . (2)_ P . . _
(2) implies T "’Hﬂ’rﬁ,l"\r!{M and, in particular, the mono

morphicy of T . Let be the full subcategory of I,R

o
formed by the ideals n such that n.oc factors through
TG, i.e. NxXx =TM@o

(1) S'x contains all the ideals (Nn:A)A , AE fP(m).
In fact, there exists a commutative diagram

(M)A ——sp (ni WA AR, gy M

T (u)

>H%M

where q/) is a morphism "adjoint" to the morphism 8’\
of diagram (3). The dotted line exists thanks to monomor-
phicy of T (2),

. ~

(ii) If {ni’n?_"lsc s o s TheEn n1+n7_:SuP(n,,h23€‘E,x.
This is clear from the diagram

nAln, Ani > Ana o
//7
L -7 "C(Q") (57

’(/h.+n e
n,+n, 2 H?H%M

which is also commutative and in Wthh the dotted lineMas
A

in (U)&@wthe{ﬁks to the monomorphlcy of T(z)

(iii) Clearly, together with any ascending family of
ideals {n; lie }3 the category Ex contains its upper
bound Sup{hzlfe J—}.

It follows from (ii) and (iii) that S'x possesses
a final object M . Thanks to (i) m,  belongs to
Yo{myc Yo F,

Let My + X =I(2)o §. - Notice that thanks to mono-
..C(a)

morphicy of the morphism :ﬁ',x is uniquely deter-

mined,
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Assign to an element > € R  the image X  of the mor-

phism -S"ac under the canonical mapping H""‘R("’u ,1\1) —_
-—?}4q3°?1% . A direct verification shows that the map

¢: x—> X is inverse to the map Ys-',‘q constructed
M

in the preceding step of the proof. O
Corollary 1. Let F and % are radical filters of left
- - Ia¥av ~NN AANNNANAN ANAANNA AN AN A

ideals of R.
ANNANANAANNN

1) There exists a unique ring structure on F*R such that
ANNANNANAN S A

AN NN NN NN

¥F, It . -
Pp: R—7 F*R 1z 2 ring morphien; and for any R-module M
there exists a unique F 1R -module structure on F*M_  such that
NN NN NANANNANANAANAANANNANNANNAN AN
the diagram
¢ @
Rem @M, FireTM
s
| o
M > F*'M

commutes.
ANNNANNANAN

2) There exists a canonical isomorphism C*“BO?'::?

NAANANANANNANNNNAAASNANANANN AN
~ ch that the following dlagram commutes:
— Gr‘:; ° Cx‘ej su ~ VW\E\/\/W\/\/\/%/\/\E\/\J\/\/W\/\'
Id N s
R‘MOC(\) /Cﬂly&?o G’(%
J‘CJ CTceﬁ ‘S?C:K%
Moreover, Grgp Jq 18 2n Lsomorpniem and Crgly = Iz .

Proof. The first statement follows from heading 1) of Propo-
sition 5, the second one from headings 2),3) and from the impli-

cations
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[t(ej M t.-f M are monomorphismsl@?

s {Hy 9, g TM is a monomorphism.) f e [the module
Mis ®)eF -torsion free] ’

which also follow from Proposition 5.

The isomorphicy of Grif j@  and the equality Gr}.jg_-=
=j?.6;,}. follow straightforwardly from the commutativity of
the diagram in heading 2) in partiocular case F = ¥ . O

Corollary 2. Let F be a radical filter of the left

- == - ~N AN AN AN N
idN\ggls of R. Then there exists a uniquely determined structure

N N ANANNANN NN TN NN NN A A AN AN AN AN
of a ring on G__R and uniquely determined structure of
A A~ F AANANANANAANANAN NN A AN
G‘SR -module on Gy M  for any R-module M such that the
AANNNAINS NANNANL

NNAAS NAAAANANNAN. NN

diagram i @]
INAAA\
GgR@ C"FMM R M

T

Cre M < M

oommates. The ring GreR - has a unit, and the CrypR-module

f\/\/\/\,\.\,

GoM turn out to be unitary for any R-module M. The cano-

aleal arron g piR 7 GgR 192 ring morphisn which
sends the right units of R (if any) into the unit of the ring
LAV Ve Ve Vo e NN NN NN N
CrgR .

Proof. The statement follows directly from the first hea-
ding of Corollary 1 and from Corollary 1 of Proposition 3.0

So, the map M I—-—)GrS_M extends uniquely to a functor
from the category of R-modules into the category of the unitary
CX?P\ -modules, if F is a radical filter (see Corollary 2
of Proposition 3). Denote this functor by uGr.}» .
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6. Localizations. For an arbitrary subset of T,R

consider the full subcategory R-mod% of R-mod formed by all
the modules M such that the canonical maps ¢, (m): M —
—rHom (m, M)  are isomorphisms for all mée ¢4 .

A % -localization of R-module M is an R-module ‘3™ *pM

e e N

from R-—mod%3 such that there exists a universal arrow

M —> ©¢4"*M ; i.e. any morphism ™M —> M’ | where

M'e 08 2~moo(‘€d s uniquely represents as the composition

M — @ tpm — M

Proposition. 1) For an arbitrary subset Y of TeR

and any left R-module M there exists a @) -localization Y M.

MNNANANNAANANN NNAAANAN NAAANNANNANAN ANAANNAANA

The map M +—> ‘%"M uniquely extends up to a funotor

NN AN AN AN AN

Y *: R-mod — R“"‘Odqd , which is left adjoint to the
[0 Vi e g Nite o704 NNANNANAAN NN

NN

embedding j(‘d : R—mod%C——a R-mod .
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2) Let F be a topologizing set of left ideals Qf

R. Then
-
A) For an R-module M the followin it re equi-
P S e e N
valent:
o~

(1) TgpmtM—=HeM  is isomorphism;
(ii)t;’M‘.M'—)H;M is isomorphism;
(iii) M ¢ R—moo‘g_

B) F % is isomorphic to the functor Gfé:— lR-moo($
N
where F is _the minimal of radical filters containing F
TN oS S e 2 QG o vmlB P ba s

and tl\ \l‘rc' am/MG 08 R- moo‘ m theunlversal arrow. .

L&)
C) Lf' 9‘ is ﬁ/flnlte typegsthen the restrictions of
oo F
and (}r" onto the subcategor ~maoad of g-

We R-modules are isomorphic., If besides, H;
L S S

sends epimorphisms epimorphi then Hcg; is exact,
ossesses a right-adjoint and is isomorphic to CT §' .

Sketch of the proof. 1) Since the functors Hom (m,-)
commute with inverse limits, then R - VY\OO((% contalns the
limit of any diagram D:0D—R- mod with values in R- moo(@d,
i.e. the embedding 3}% R- moo‘@j-’k mool commutes with l1m.
Since ‘Y Mz ecm (M\j% res R~moo(¢%) , the domain of
the map M +— @J"M coincides with the set of M for
which a morphism M —> A/ with A e R- moo/(%
exists. Since the zero module belongs to ‘R~m00/c% ,
then ‘¢4~ is determined on the whole 0@ R -modl,

It is easy to verify that there exists a unique extension
of the map M +— @~'M up to a functor
-l R—mool——»R-moo’«,{1 such that the family of universal

arrows ae% :{Se(M)I M2 'm "] is a morphism Id i—

"MOC
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-1
*—%was °Qd . Clearly there exists an isomorphism (’/ ‘fﬂ o]’q
— STd R-modlg, and (ae%.,ky%) are unit ahd counit iy
adjunctton €47' 4 T‘Qj .
2) Let ’3—’ be a topologizing set of left ideals of

A) If 3-‘/ is a uniform subset of I,R and M a gL
torsion free R-module,then for any m € f—}'/ and an arbitrary
ideal n containing m the "restriction" morphism
nn,m: Homk(h,M)ﬁHompSm,M)is injective.

In fact, let $:n— M be an R-module morphism
such that $|, =0 . Then (m:a)§(@ =§(m:a)a)=0
for any A € N . Since by hypothesis {(m:q)laen}c _'}—:'
and M is (}h/—tor’sion free then f@)=0 for all a€e n,

(i) = (i) TFne H:-F -invariance of R-mod fryields
the following implications: [’Cg_. M is monomorphism—_\(':b
& [tEF HhM is monomorphism for all e 2 036'7 ['C

is monomorphlsml < Ethe canonical arrow HkM ——)H”M

k
(equal to Hg__ 3_ M

Clearly, [’L‘g_. M is 1somorphlsmj = C'Z'g- M is

) is monomorphism for all O—_]

1somorph1sm] 7 ['Cg_ H M is eplmorphlsna But as has been

just noted 'C is monomorphism. Therefore

¥F, Hg-
T,'?- Hg—M is 1somor~phlsm and ,. hence,‘ so is
= P
Ty m= (T HyM) cTE M

(o) =70, Clearly F,M is isomorphism if ME R-mools_— 3
since all the arrows yM(m) M-—-?HomR(M,M), meg 3‘—,
are isomorphisms. Conversely, let t? M be an isomorphism.

It is not difficult to see (if one looks at the factoriza-

(m)
tion of T into the composition M -—‘84"——-——) HomR(m,M)—>

F,M
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F
~——"—\—9H3_- M) that this implies the monomorphicy of all

?'(m)/ i.e. the fact that M is ’;r ~-torsion-free, and the
epimorphicy of all the co-projections 7\‘,?:: HomR(m,M)——) H3-'M'
On the other hand, the coprojections 71"3:: are monomorphic
as follows from the statement that appeared at the beginning
of the proof of n. A). Therefore all 7\'?: and hence allPM(m)
are isomorphisms. ”

B) Let T be a topologizing set, M€ 08 R—modg:,‘_‘;?_M
the full subcategory of the category UéR of topologizing
sets consisting of all ‘€ Jp, R such that F < @

and "C(q m: M—)'H@JM is isomorphism. Proposition 5
implies that [‘QES?_ ERN j‘—"?[ ©Jo ‘edég)— _]

since H% %'M_"HQ'HQJ . In particular, Q‘M is
an divected category,s,lnce‘j“’-d c Yo ¢’ .

Therefore the union of all the sets of QM also belongs
to Q/"\ . This union (we will denote itAj(M)) is,obviousiy’ Q
a finite object of Q and at the same time (‘.F(M) (M)C

Therefore F. (M) 3‘2,\4) Clearly, R- moolg = R- moo"""

(M)
where ?:: ﬂ{g-(M)\MEOQE-mooIS—} is a radical filter

containing F and therefore F,

P

Since F is a radical set, then T§C4'§ =‘j§_ G,&
is isomorphismLJ(‘nY'Ml_arjy 5. It follows from A) that
< R-mod e.nd{ P are uni salaN(ows.
m CT? T 2 JI}',M‘S a iversalaviows
c) et F be a topologizing set of finite type.
a) Since H‘}‘ commutes with colimits of inductive
systems all the arrows of which are monomorphisms, then,
in particular, the canonical morphism HXZM= lim Hb“M——)
— H‘:_FH; is isomorphism for any F -torsion free R-
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module M. A) implies the universality of the arrow
oc
. 0
bv) If Hf; transforms epimorphisms into epimorphisms,
then it is exact and commutes with arbitrary colimits (see
section 2, properties 5), 6)) and, in particular, the canoni-
oo - D k 0o\ « .
cal arrow H M—%'QH?—(H?M)—')(HT)M is an isomorphism.
It remains again to refer to A). Q0
Corollary. Let ¥ be a topologizing set of left ideals
_—_ e [0 S Vo W We M T Vo W NV e We W Ve W e I W g Wat
of R.
laY
1) T*R possesses a canonical ring structure, and for any
AANNNNANANNANANNANNANANNNANNNANNNNNANANANAANNAL
R-module M there is a canonical T -'p-module structure on F-‘M
ANANANN NANAANANNANNNNNNANNAN ANANNNANNANNANANANANNAN
such that the diagram
ANNANACANNNANNNANANN

R@M —> T*'RRF M

| |

M ———> F'M

commutes. Thus, the natural embedding R-mod p<— F*R-mod
OANANNN AN,

NN NN NN NN AN NN

Ls yelldefined.
2) It T 1is a set of finite type and H sends epi-
AN AN T NNAANANANANAAN

2 V0 Ve U e e e WL e Wite Wike Wre =)

morphisms into epimorphisms, then F-! is isomorphic to
ANANAANANNANAAAVUNNANNNNNANANSANANAN Ve S S W N N N ]

‘}"‘R(“% - . This takes place when the subset of projective
AN (970 Ve Vg Vg Ve Vg W Ve e U U Ve VA Y Va Ve Ve UaVe Ve Va e

ideals 1s cofinal in F .

ANNAN NN NANNANANANAA

) fhe natural arrow Crg —>Hz  1s an isomorhian.

) G isleft exact and ¥ is exact.

Proof. 1) follows from Corollary of Proposition 5 and
the isomorphism '}"ic:CT?__ ‘R‘m"d? 5 2) follows from hea-
ding C) of Proposition and the property 7) in subsection 2.

3) Let M be an arbitrary R-module. Since H ¢ 1is left

exact, it transforms the exact sequence

0 ~—>FM — M—> ?“M—éo(
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into the exact sequence H §

Pal

o—> Hgﬁ/\f\———a HgM-—?—L—?HﬁT‘M=G§:M (1)
The exactness of (1) and the equality Hé—‘ ‘?M:o imply mo-~
nomorphiey of the canonical arrow Hg.-CP?: H@M———)(}rg_. M .
Thus, all the arrows of the commutative diagram

Heg M —————>/Gr§M
\a’*m (2
are monomorphisms and, thanks to the same left exactness of
H(}‘. , 80 are the arrows of the diagram
Hy M ——He Gg M=Gg M
AN )
HETM=Cra M FUHM
By Proposition 6 CT?S?,M is an isomorphism; hence the
monoarrow H@M ———90.%_/\4 is an epimorphism and, the-
refore, an isomorphism. The isomorphiey of two arrows in (3)
implies that of third ome -- Grg M —> HQ?M .

4) The left exactness of H’gt- and the just established
isomorphism Grg = H} imply the left exactness o2 G g
and, hence, of '}"1—.-(};? ‘R‘MOO‘? . On the other hand, F~*
possesses a right adjoint functor; in particular, F % is
right exact. O

Remark. If the conditions of heading 2) of Cprollary are
satisfied and R is the ring with a right unit e, then the re-
striction of F~% onto the full subcategory R-"mod of R-mod
formed by unitary modules (i.e. the modules on which e acts
identically; it is easy to see that the unitarity of a module
does not depend of the choice of right unit) is isomorphic to
the restriction of T iR @R- onto R-“mod. This implies the
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equivalence of R—umodg__= R—mods- and the category of uni-
tary F1R-modules. O

7. Ideals of F 'R . Let, as earlier, F be a topolo-
gizing set of ideals of R, ? the minimal radical filter

"spanned” by F . Since G'? is left exact, we can (and will)
identify the module (qqih  with an ideal of Grs:R for any
left ideal m of R.
filter F there are implications.
ANNANS /W\/\/\’/:/\/W\M/WW\

[rne T 1= [Gghnr=GzR].

Proof. Let N€T,R,x€ R and J,? R(x)e(}r n . Then

j? (mx)C ‘}'in for some rn€3T . This, in turn, means that
7

for any A€ P(m) there exists m,€ F  such that mAsxcn ;

therefore (nix)e¢ ‘:’J\-'o{m"g C ? . Thus, if CTé\:h =G§R , then

re Fo{R¥=F .

Conversely, let né€ F . Then (n: x),? Mok 33 R«" x)x)cc,,?
for any x€ R . Since (n:x)e 3-‘ , this implies that Jg.RCx)e
eG;@.n. . Therefore Jg,R(R)CGr,g: n . Since Ca.-:_F is
left exact, then the following condition holds:

A2~ 1is an R-submodule of CGrg M, then
G4 (i3 M) is canonically identified with Gegn .

i N e N N N i i

£ m
Indeed, by definition, the square

N — G g M
l (R
F.M
P § ?
IF N —— M
is Cartesian and C>r§;‘ transforms Cartesian squares into
Cartesian squares. Therefore the fact that the image of R
belongs to Gr@ n implies the equality G,-@ h=Gr§- R.a
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Corollary 1 Let? be a topologising set of ideals

—_—— - — = AN S NN AN /\/\/\/\/\/\

of the ring R. If R- moqy < R moc}‘:’r for some , then

NN NN N~ A NN NN NN
P

F'c F. (radical §i E‘(‘e

Proof. From the universality of localisations it follows

that [R-mod c R mod?/]$£6§:@§°c"iy]. If e T,R~F

then G1§':‘n is a proper ideal of the ring G‘{?h , as

]

it was just shown. At the same time G? VLCCJ}?(G(?HI)
and, consequently, Gfg‘lh is a proper ideal of GTEF'R
it follows that n ¢ F'. 0

(

A full subcategory C of a category (€ 1is called a
Giiraud category if the inclusion Clecy @ has a faithfull
PN AN

left-adjoint functor.
Corollary 2. The maps F — Q-modg and

C— r}e_,__? -(MGICQ| }»he\/\c/anonical arrow M—-)HomR(m,M)
N\ ANANANNANANANNN
is a bijection for any M¢ 067@}
B VAV Ve Ve Ve ValbaVe Ve Ve Ve V)

NN

induce inverse to each other 1somorphlsms of the category
ANNNNANNANNANANANCA NN UL L L Y T WAL SN

TTeR P(a ositelo  the _category of radi @Ij‘tﬂyv)and the
W/VWW\/V
category 'ed(R-wmcl) of all @iraud sub-catgories of the

category of R-modules (with inclusions as morphisms).
N N\eNANANANANT AN AN NN L e AN AL S

Proof. The fact that R—modg_e‘e:;(ﬁ—mod) for every radical

filtter F (the exactness of the localisation functor F~%)
0§ Propositien

is stated in Coroilary/\t’: The injectivity of the map Fio Q-modsr

follows from the previous corollary.:Thus it remains to show

that for every Cxlraud‘-/rcgaxtegory @ of the category

of R -modules the set ? is a radical filter and C =

= R'mool:;c . Let Tg be the functor R‘MOOI —C , left

adjoint to the emb:dding Ccs R - mod ; the kernel of Ta

Ker Tg, is the full subcategory of R-mod, formed by all the

modules N such that 'T‘QN‘ =0 . Let '3:0 be the set
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of all the left 1ideals of R which annihilate some elements
of modules from V\eiﬂq—é . It is known {see C 27,
Chapter 16, or [ #], Chapter 6, §5) that ch

filter and the subcatgory C consists exactly of the modules

is a radical

M for which the canonical map j?
C»o
phism. This and Proposition 6 impl.  that ¥, e Fc

M:M—)C’I:}-QM is an isomor-

On the other hand, since M— Homa(h,M),yl—)(x_&,x.‘y),

is injective for any M from G' and # € '}_0’ it
ot N/

follows that the submodule G_G/V" of g:C_ tor'sion/\belongs

to KR)LSGE,A/ for every module N. Since KMJN&'C,A/ eKe]ﬂZ

(: K@z&g: ) for all the modules N the definition of 9:
c ) C

implies the inverse inclusion ?Oc $(’_ . Thus, TC: ?C a
Corollary 3. Let F be a radical filter of finite
——————— [a VeV [0 S e N e e e B U W e U e g

type. Then every ideal from I(R\'J' is contained in some

AN ANANANNANANAANAANAA A A AN

ANANANNCANAA
ideal from Maac (TeR~ F D,
NANAANANANAAAN

Proof. Let {n: (:(-:3?] be an increasing (with respect

to inclusion) family of ideals from I(Q\T . Then {613_-*‘7;‘
(€ 3} is- 'an increasing family of proper left ideals Q}(}[?R‘
The supremum o any increasing Samily of the pPreper ledt iclea bs

of g R . is a proper ideal,since G,J,R is a unitary

ring. In particular, M. = SuP Gy n . is proper.

I ted ¥
Since F is of finite type, the functor 67'3: commutes

g.a
with the colimits of the inductive systems {M‘. —-‘—JaMJ} in

which all the arrows X;J are monomorphisms (see 2.5).

o~ ~

= - = S« ~ = .
Therefore, Grg_h 3= G’gs?f) GT?”Z‘ K P 61? r)‘ nJ 5
hence G[S_-h 3 is proper. According to Proposition 7

-
the properness of 61??1- J means that ij J E l“e R~ 3\
o«—‘»\-
)

the equalit n.= (f.h ; see the proof
{we use q y GT? 3 613:‘53: N ; p
of Proposition 7) and, consequently, Sup h{ € IeR\?,
Vo~ €]
since Su?hz CJ h . It remains to apply the Zorn's
(el F J
lemma. ™M\
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Corollary 4. Suppose that R is left noetherian. Then

------- AN ANAAANNAANANTNNNN T A
LAY PESpecgR I QIS AT LU LRBet
b thetnglusien) Adesl Mo ameng the left ldeals m
such nat pe moognd P _mo in the category LR,

Proof. Recall that (f IC*R = 08 TR and the arrows
{or the order) are defined as follows: m-— n , if
me 'd'-n (see an equivalent definition in Introduction).
This makes it clear, that any ideal from Ma')c("[zk\%)’ that
contains P , can be taken as \/“0 . Its exis-
tence is guaranteed by Corollary 3. O

8. Filters of bifinite type and the primg spectrum.

We say that a set of left ideals 9- is of bifinite type
P SV T TV a Voo e
it FNIR has a cofindl subset of finitely generated

twosided ideals. Obviously, any filter of finite type is a
filter of bifinite type.
P iti . Let b fami i
ropositions kef T bea ey ol LHters Kf

N~

e ddeals o B 2t = T= U{F [FeT}

1). If the set 2T NILR is closed under the multiplica-
ANANANANANNS AN ANANNANANANANLN AN AL VS

tion of ideals, then the set Max(IQ\EJ')of‘ maximal (with res-
A A VA O U UV VAYA YV UL e W YV Y VN AN Vo Ve W WP

t to inclus§ion elements of ~ b 1
pesf\/\/\/\/\,nc " # NANNANANA IR ET S1ones to the

AVA VA VA VI VA Y i e e W e e,
rim spectrum
?\/W?. r\p/\/\/\/\/\
2). If the filter is of bifinite type, then
ideal from TR ~=J is contained in an ideal from
I VI YAV VI Ve Va V8 Ve VI Uiy Ul V7 Wg Vg
Max(IR~=T).

Proof. 1) Let m€Max(IR~ET) and o, B
be twosided ideals such, that O(F:; C\/“ . Suppose that

neither « ¢j“ nor ‘3¢Ju - The maximality of M implles the inclu.
,J\Hp'g,cZT., By the multiplicativity condition opn ST NIR we have
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VA’+¢)9‘A+%)€ =9 . But then M E‘fo', since 2J is a filter and
()“*)(/“*P)Cﬂ . Contradiction.

2) Let {ntl.‘e’f& be an increasing family of twosided ideals.
If Supih;(ie I‘kezﬂ‘, then by the hypothesis (on bifiniteness)

there exists a finitely generated twosided ideal pg& =T

_ hence Y n; sor some (€7,
which belongs to Suf){h[ |Ce 'J’S‘, Y. Therefore, we have

[{VI;IZE]\‘(CIR\ZU;];‘:?[?‘;PW;dZﬂ. The proof terminates by one
more standard application of Zorn's lemma. O

Corollary. Let T be a family of filters of the left
AANANNNANNNNANNANCAAANANANANANNNANANA A~

——— e -~

deale oLhe By such that for any {F, e T the fiiter Fo o

AN A

%m\fe 2T . }"\Y)gg Max (TR~=T)c SpecR.

In _particular, Max (IR~F)C SPQCR for every radical
~ M CAANANANANN
filter ¥

Proof. If F  oand Y are subsets of To R,
ne€ &F and m€ % , then hm ¢ Fo{mycFoY Therefore

the set of ideals =T (and, consequently, its subset
ITRONZT ) are multiplicative. O

-
2.9. Localizations, categories Ie i , the left

spectrum. Let R and B be associative rings. Fix an (R,B)-
bimodule M and denote by I:M the preorder category,
whose objects are all the R-submodules of M. The arrows are
defined as follows: N = N . if either N c A/
or for some @€ fP(B) the R-submodule (/V.’g)‘i_lg{'gepl’
} 6 c Af‘& belongs to N'. Th%notation Te M will
s”t-:and for the preorder of R—sugmodules of M with respect
to inclusion; it is a subcategory of the category Ie"M‘

If M is the (R,R) bimodule R, the category I;M cg‘\ncides
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with the category 'I€$Q,
Any functor F:R-mod —>» R' -mod uniquely defines the
Bp

functor from the category (R,B) -bi of (R,B) -bimodules

into (RY , B) -bi. In particular, to the functor G{S_.

the functor BG,S__: (R,B)-hj wwme——>(R,B)-bi for Tc‘jé R

corresponds.

Proposition. Let F be a radical filter of left
- T == ANAANNANNANNANANNNANANN
ideals of R, M an (R,B)-bimodule,
N NNNNNS VaYa VW NN

Ne 06T M .
‘)(:Tg(/\/:a)=(cvg-/\/:§) for any gc (e,
?) P Grg detenrines s funcier Tgm — I Pag,

Proof. 1). let be B be an arbitary element of B, V‘G

-~

the b-action on M. Since the square

N— M

1 1 v
wViere——sm

is Cartesian and &3‘ is left—,exac'l‘, then 673: (A/:é’)=
':(G;?N‘.Q) . Now let gE CP( B) and {e?}?él‘ be a finite
set of generators of Z -module b. Because of the same
left-faithfulness of CZ? we have
Grg (M6 = C’Tg'( N w: 8:N=N GI?(N': ;) =
T (€T

= ‘(mI(G[gN: Q;): CG-(?N: e )

2) The first statement and.from the definition of the

L oS . . .
arrows in Ie M make it is clear that [/V-, M']#[G}A/_)C?/Vfl
for any pair of R ~submodules N,N' of (R,B) -

bimodule M. IO

~
RemarE. Let GTEF be a functor from R-mod into the ca-

- Gr+ R-modufes
tegory C,,?R~umOol of the unitary 3 \" °  cor-

responding to a radical filter 9' (see the concluding
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lines of subsect 5) -- the composition of the localization fun-
ctor F ™! and of the embedding R-rnocl?-c_)cx,}-k- Y mod .
N\
Obviously, for any (R,B)-bimodule M the functor Grg-_- induces
/\
the funoctor Ie%M—‘-’Ie% BG?M .

Corollary 1. (a) For every radical filter F of the left

- - - = - AAANANANANAANAAANANANNANANANANAANN ANANAANANNAA
Adeals of R the map mi—>Crgm , ME TeGgR -, 152 fun-

> &
ster from Iy GrgR imte Iy CrgR  (here Gym is identified
with ap ideal of GgR , as it was done earlier in similar cases).

(®) e map hi—Grgh » RETR , determines a functer

Corollary 2. Let F be a radical filter in I,R.

- - 2% ANNNANANNANANANANNANNANNA
Temap n3Ggh , nE€LeR , gends the ideals from
Spece® ~ T (SpeceR ~ F ) into the ideals fzom
SpecyGrgR ( Sfec GrgR  zespectively).

Proof. Let M€ Spee,R ~F, ne IQGr?R , and (cn?ﬂ:x),t
¢ ng-ﬁ for any xx€ J’(n) . In particular, acocording to

. NDrs-4
Proposition 9, (Jg.y)cf:Ju for any ye J (Jg__ n) . Since
_/\AE Spec(R, there exists an arrow jé}n——a /"‘ . The equali-
) B D i
ty G,?h_G—?(Jg__n) and Corollary 1 imply that hc Cvrg_.n-)
—> Gr?;ﬂ . Therefore C’rg_-/ﬂé Spec€ Grs_.R.

I _ME S‘:’c\zceﬁ\ F , then the following implications
hold: [ (m:y) ¢ m for every y€ ?(j,;nﬂ=7[j:;n =Ml
= . a

> (nc Grgnc C’{g./zl]

The following lemma provides us with one more trait on

Specy OrgR . »
~ ~ oL «c={ir~

Lemna. Lot B SpecoCigR 2nd P=ipp¢
Ther p=Ggp -

Proof. Suppose that ('(5' x) c p for some XE€ ?(6,3. p).
Then there exists an ideal me ¥  sueh that j?(m)ax CJ:}—(P)C
<= ® . since p ¢ F , the set j?(m)\ P is non-empty;
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and for any Y€ js.(m)\'ﬁ the ideals P and (p:y) are
isomorphic, since ﬁe Sp’e\ee(}r?R . In particular, Gra:(’p';j)4:
#GgR and, therefore, Cr g (P :yxc)+ Crg R thanks to the
inclusion (P :yx)dc (F‘.y) « But yxc E and, hence,
(P:yo¢) coincides with GrqR . We have come to a contradic-
tion with the initial supposition. So, ({; ‘x)q‘. E for any

x € T(G?P) . Since Se SP/ECCC”G'R and 'fi’c G;s-p R
this means that the ideals P and Gr_p  coincide. D

Example. Let F be a radical filter of left ideals of R,
p a left ideal of R such that &?P is a completely prime
left ideal of C’Tg-p‘ . Then the ideal pP.= =5 ."‘1(6;3_.9) turn
out to be a completely prime ideal of R.

Indeed, if Yy € R ~ P? and xe& R , then

lyxe Pyl @Cchy) ig0eGaplé [ Ipxde Ggp
(since G[3TP € Spec Grg_- and J?(y)¢ C"?P )]= [xe Pgl -

In particular, if the ring R is commutative, then for any
radical filter F the map _mi—3 Grgmu  determines a
bijection of the set Spec R~F  onto the set of the prime
ideals '[3' of Gr}-R such that J;§¢ F .0

In general situation we cannot maintain that

- (‘,‘?P is completely prime for any completely prime ide-
al P of R;

- the ideal p_= J{;‘(C"gp) belongs to S‘Dec R , if
Gspe Spec G R .

However, the last statement is true under condition:

"p is a maximal element (in I'e\"R) of the set

{pspitx)| x € R, (prax)d¢F].
In faoct, by hypothesis, (p:x)E€F for any xe R such
that (p:x)+ p . This means that pe TR (see 1.6);
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deh o
hence F:ﬁ{ze RiCp: ) —I—rp'}e ScheR (Proposition 1.6).
On the other hand, ’P\ ={zeR l(prd € T} , and the last set,
oA
as the reader can easily verify, coinoides with Pg= 3,3_(013__[3).

10. gq-proper and q-improper ideals. A left ideal m of R

will be called q-improper, if the canonical map R —

HHomR(R,R) is a bijection, and q-proper otherwise.

— et o —a —

(a) R is a ring with ripht unit
NN
[yerR,Ry=01 => [y=0) ;
(b) R is a q-improper ideal of R;
AN ONANNANNANANANNNANY
(¢) R is a ring with unit.
AANANANNANAANANANNANANAANNA
2) Let ¥ be a radical filter of left ideals of R.
A" [ Sl Yl Vi Ve Wia W W Vo Ve Y V20 ¥ Vo N Y T U a Ve Ve VA Ve Ve WA N Va Ve Ve Ve o
If m iz 2 a-proper ideal of GrgR , fBen g0 is Crgm
T
Proof. 1) (a) —» (b). If R is a ring with right unit e,
then for every R-module M the canonical map yM: M —
—> HOmR(R, M) is surjective, since every morphism of
R-modules f:R—> M coincides with the "right multiplication"
by the image f(e) of the right unit. Clearly, em is injeotive
if and only i1f Ann} # R for any (€ M~ {0} .
(b) => (o). The map ¢, is a ring morphism of R into
the unitary ring R*:HomR(R,R)" , opposite to the
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endomorphism ring of the left R-module R. Therefore the bijec-
tivity of yR means that R is isomorphic to a ring with
unit.

(c)=>%(a) 1is obvious.

2) Now let F be a radical filter of left ideals of
R. For every left idealimof the ring G;R and an arbitrary

R -module M there is a commutative diagram
Hom , (m, GTg:M)Q’——-————-Ham (G,?m Gig M)
3] T
Homcn?k(‘m,(}r-;M)é————- H"'“C,.?R(("EF'" , GrgM)
in which the arrow ?‘:HomR(J?r',mviCﬂsM)

(1),

is bijective due to the universality of J.T' m ;s the
arrow ?' (the natural ambedding) is bijective, since
any morphism of the category R—mods. is a morphism

. i ; . .
of 6[3R -modules. Since '2 o(f is surJectlve’ then

so (and hence the bijective) is the embedding ';’,' Hams'gk(m,()yg_.m).i
—_ [-(mm (m,)Gfg.M) . Finally, bijectivity of three arrows
implies the bijectivity of the fourth onet- h= Hopb' ( 1
R J?m’ ")
2) follows from the bijectivity of the map
-1 .=l
- . _ m
VZE and Proposition 7, since G-(arm = G’ST'(J? >, 0

11. Flat localisations.

Proposition. The following properties of the radical
—————— [0 S I N I 0 Y i N N S U W ¥ e N e

filter ¥ of the left ideals of R are equivalent:

NN i VIR S WA V. Y V. Ve Ul Win W W M V0V Vo Wi N W N W

a for ever roper ideal of i

(a) NNWVu\/\‘)/W m /V\/Em Gr? R
the ideal Grao m is also propder;

{b) m = m for ever lef‘t ideal m .

(c) if mEMax,CrR, 1;2/@3/“=G3-/M.

(d} The functor G’g’ ksx exact
d \/\/\/\/

V2 TR Ve Ve
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Proof. The implications (a)&= (b)=p»(c) are trivial.

The implication (d)} =3 (b) follows from the implication

. . ~ (€N ~
E:he functor C"Z-Fl is exact ]“——?[ng:— G(?R @R 1
(see sect. 2, property 7).

(c) = (a). Every proper ideal meIeG;$R is con-
tained inan ldeal me Max,Cry R, since Gy R is a
ring with unit. The inclusion C"tg,-mc G'S:j“ and the equa-
lity‘/la:(}xs-ﬂ imply that Gy? m is a proper ideal.

(a) == (d). Let Cg.. be the image of the functor

N\
~

GT:.;': R-mod — C’[S.Q-umod, and F  the collection of
all the left ideals 1% of G’?R such that for every
module M from Q? the natural map M- HomGGR(V,M)
is bijective. From the second step of the proof of Proposi-
tion 10 {(concerning the bijectiv’ity of arrows in diagram (1))
and Corollary 2 of Proposition 7 it follows that

[ the natural map M—éHomR(jz.v,M) is bijective for every

M rrom R-modg (S [j3'veTF IS [Gigv =Cigljz»)=

GV?R} Hence, if (a) is satis-
fied, then g consists of the one ideal C*rS:R . We

leave to the readev verification of the implications

[F={GsRrYIS[Cg= GigR-*mod ]&=>

= (‘fhe functor 01,3_ is exact] . a
Corollary Let 3' be a r'adlcal filter of left ideals
————— N LN N N N N N N N N N T W N
of R. If the functor Gr induces the surjection of
N NN T ? I VL e U N We Wa Ve Ve Ve
th t ont
the set Spec R ~ F onto  Spec GrgR

The sulseguent
(see Corm of Proposition 9 and emark..) or if the
AN\ AN NN NN AV a Ve We We Vel

map V¥V > j ! sends the ideals from & 9: G R

WL LD SpeR~ F  or.at Jeast
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into the ideals from Ie R -~ F , then 6'3—‘
A YNV Vo VW ala Ve NDa e W We 4 NN
is exact

Proof. Since C:(a- R is a ring with unit, all

its maximal left ideals are points of the left spectrum.
Hence,if‘ any of the conditions of the corollary is satisfied,
then M= Cr.—s;/u for every € Max( Gr&_ R
The statement follows, therefore, from the equivalence of
the conditions (c) and (d) 1in Proposition II. QO

Note that in general there are very few radical fil-
ters T such that 613. is exact .

12. The inductive limits of localisations. Let

(‘:FJ:'(?I lte 3"5 be a directed with respect to inclusion set

of radical filters, such that ‘3-’=‘U G-i' is a radical
€T
filter. Then there are canonical morphisms

e a s . e i 4 ¢ s .
Proposition 1) VJ’ C_:m “TI - F and (P QL'-QHa‘?HJ'

are isomorphisms,
[V Ve W e e e W e W

2 t iy Gie — is a monomorphism; -
) Py Py Gy 7 G lea monenorphisn; the ar

[ % Ve Vol

5
row by is an isomorphis h
R R UMY i Grg M3 ig M Wvg Lsmathe matural

i
arrow N —_— is epimorphism for
A H? ‘}-‘o M ? &3? /\/V\E)f\/\/\/p\/wv
some (. € . In artlcular' 1s isomor-
~ to J /\./\.p\/\,\/\./\ ’ ?J (m ) NN
phism, if the directed with respect to inclusion set of torsion
N - [ IV U e e N T T i N U W i N N N N e ¥ e N NN LV N N O

submodules { F:m | t e 31‘ st‘abiii%i\s'.

e e

3). The following properties of‘ne'[.(R are equ1va1ent
A NN NN NN
(i) =n ¢ '&"

(ii) €imn Gy n is a proper ideal of the ring
—_).. 3_: i i T Ve Vi U e e U N e W P N NN
G‘? R .

-
[ Y

o
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Proof. 1) (a) The formulas for Hg-_. immediately
imply that €im H?( — Hg_- is an isomorphism,
. 1 1 s . .
{b) Clearly, Civn 3'[ — F is an epimorphism
e
since so are 3} —> 3'_1' and the diagrams
N 1
;"qcm 3_2 )q;_:
¥ Ft
3
commutate by definition of \V'J. and since
q is an epimorphism if so is go§ for some ¥

On the other hand, since in the commutative diagram

Cim Wy, "> Hg

! |
QST?—&")?L

the arrows T ' are the monomorphisms, then VJ is
a monomorphism (since 3 is a monomorphism, if so is f‘os
for some f). Therefore, iV:I is an isomorphism.
2) (c) The functor {%’_’,‘)C’rg:: R-mod —» R-mod,
being the inductive limit of left-exact functors, is
left-exact. In particular, it assigns to an exact sequence
0>FM—>M—> Ftm—>o0
The exact sequence ¢3(M) \ |
o = Ling 613:[?/‘4 —> ing Gy M — Ciny Grg FM=Gym
It is subject to direct verification that Qr_'; 613.("3‘-/‘1:0)-
consequently, Pz (Mm): é_r-; 613:/\4 — G'g-'M
is a monomorphism.
(d) Let the canonical map Hg; ?;M —_ 013,-/‘4
o

be an epimorphism for some ice J . Then in the com-
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mutative diagram

b Hy, BiM = b Crg

i

Hg Tz M —> GgM
The arrow ‘P:]' (M) is an epimorphism. On the other hand,
as it was just established, CP;)- (M) is a monomorphism
for all the modules M. Therefore, CPJ(M) is an isomor-
phism.

(e) The stabilization of the torsion submodules .{J;Ml

(€35 is equivalent to that of the quotient-modules F'M=
e - { 4
=I’M/§- M»>¢€J ; this means that FrMmM— F'M
< Co
is an isomorphism for some IOEJ , but then

1 . o~
HeFiM < Gg M,
. i) " .
3) (i) —=» (ii). If GIeR\ ¥, then according
to Proposition T Gng__n is a proper ideal of G,} R.
Since QJ(R): ‘ecim Q—$:R——> G,s: R is a (mono)morphism
of unitary rings, then it is clear from the commutative diag-

ram

g}’V:C"T‘__R_ ’G?R

1 1
iy Gipn ———>Gigh

that Lim 613}\'1 is also a proper ideal.

(ii)=»(i). Let neIpR and sz n be a proper
e 4 C"G’;
ideal of the ring &y GT?;R . Then Gr:?(\ n
is a proper ideal of the ring 613:.‘ R for every
(
(€3] . By Proposition 7 h ¢ F. for any

[3

363) hence h¢ %)633_2:37'51

Corollary 1. Let M be either a noetherian R-module
—————— e 12V YAV o W W I W N AN



= (@i Gig Vi,

or a¥-forsion free R-module. Then -(in; Gr:FM: 673:,{4.
[ 4

P Vel 78 SV Ve N NP D ) VA Y "2 Ve W UV Ve Val

Proof. In the first case the directed set of submodules

-——— -

{?-M lie 7Y stabilises. In the second case G’:F M=
<

=H~M and 613—_/‘42‘43_—/-4 for all ¢€7J, 0 .
¥ ¢ ¢ eb

Corollary 2. Let R be a left noethian ring.

....... ~ L e e N W P M S W NS

Then & : is isomorphism.

Ve CP‘.!' e____lVV;C’(S-;"—) G’ g: 4'\/\/\/\/\/p\/\/—\,
Proof 1) ' ¢ Lo Y is isomor-
iy @]‘(M) 3 G(g_—tM_'?’ GIS:M

phism,if‘ M is of finite type.
Indeed, every module of finite type over a left noethe-

rian ring is noetherian. Hence Proposition follows from Co-

rollary 1.
2) Any R-module M is a colimit (a union) of the directed
set {M,(‘O(EO(} of its finitely generated submodules.Since

all the filters {'3_ 37.. |T€ 3—71 are of finite type, then
’..‘.’ V:"-Y; e_i(r_;\&?‘.Md— e( G‘f Mo(-—— C"lg_— ‘elmMo(‘Glg,-M.D

Corollary 3. The square of the functor birn Gy
AN NNANNNNN NN —_ 3’_'\

— e = ——

is isomorphic to the functor C’rc}-'.

O S e N N N e N W e NP7 P Wi N g

Proof. Since by Proposition 12 (PJ(M) is

a monomorphism for any R-module M, then *(im(_'n M is an
— ' ¥F;

1}

- i - (\ = p('
3_ torsion-free module. Therefore G‘!g_- (m Cng___‘\M H: 13_\'61;
[N
The injectivity of (,p:,_ (M) implies injectivity of
C”‘I(Ps(m) . On theother hand, the bijectivity
of G‘SJ?,M implies the surjectivity of ()13.(]’](/‘4)

as is clear from the commutative diagram

Cr N (M)
(q? e\mG1 ¥l G]%M

Cn\ /S'J?M

. a
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Corollar'y l+ 1) For every R- W\u/le N of‘ Zun (23:/‘4,

_____ NN NN

uhere M is arn avbitrary Rmedik, the inclusion Nc e__>,mg, XEPD

N N e NN

holds. Mor'e exactly NC -&mG‘[ N._em(,, (J N) &GNOP«*’»G(;M

V4 P W T Y " e Ule e e

Here 1 m MWM*&M&?M;AQ
the preimage of /\/ with respect to the coprojection
Vet Ve Vo e Ve W VI % Ll Y Vi Ui e WA W T N S Y V7 W e Ve g

[}

013‘&,,M% 'ec:m Gf?"i
2) Let B be a ring, M an (R,B) -bimodule, S T, M,
N VS e W NN NN I P e

Te P 190 ) :
fray CEPB) e pave (oge subeeclyy)
Ciry Gig (N8 =(limy Crg #/: B).

D The functer iy Gig,  sends SpeceR T

and SpeceRF  inko Specelim Giz R 204 Spec, limy Grg R
respectively.
AN NN A

Proof. 1) The statement follows directly from the equa-

lities Grg- M‘ (N) 613- /\/ (see the end of
the proof of Prop031tlon 7)
2) Proposition 9 implies
- .f‘ _ - . o~ _ . . o~
biny Crg (Vi 8) = &my (Gg Vi ) =(bip Gy V2 ).
3) Let p€ sPeceR and n be an arbitrary
left ideal of the rin Cinn R
e Lim C”:}';
Consider the possible alternatives:
-~
(a) Jk(h)"’_?P . Then (p,oc)cp for some

"'(n)) From the second statement (applied to the

(R,R) -bimodule R) we obtain
(i G ¢ §C3) = iy Gy Cpi )< my G p
{b) j”‘i(h\ —3 P . Then either j;(n3c P
or (Je(mixdcp for some ace P(R),

In the first case according to the first statement of the

corollary nc Cim 013—("'(nﬂc Ling (n? P.
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in the second case
(n: JR('J())CeaM(Gl?(J () : JR('I))- «‘mGrg.-.(J (n) x)C(«mep
Similarly, if p€ SPQQQR ne Iee«\mGz R
and JR(h)q: P, then (pix)c ) f‘or some
x € ‘an(nﬂ , and, consequently,({i_r_v;Grgrzpigk(x))cQgcv\?:\P;

whereas if j‘: (nd>c P , then

hc %a?:(§;cny)c g;,_g(}.?(p . Q
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3. PRECOSITI AND (W~ SHEAVES

1. Definitions. For an arbitrary category A denote by

IA the collection of all the sets of arrows from HomA with
the common origin and by PA the collection of the sets of ar-
rows from HomA with the common end.

A pair (A, A), where A is a category, A a subset of 44,

(v}ill be called a precosiilg;}‘satisfying the following conditions

d — .
(1) (X S x)e & for every X€O0€ A,
(2) if {'Jc-%ri"(zéfz , then for any (i, j)EJI x3J there

exists a fiber coproduct 2¢¢llxy , A

A precositus (A, A) is called a cositus, if (2) is re-
placed by "invariance under the base change™:

(2') if { x —-)mi} €A , then for every arrow x —> y

ied

there exist fiber coproducts ocg.lo_lc_y and the set of copro-

jections fly excny}.ejbelongs to A ;Eand, besides, the "com-
o t

%N.

—>xX~-F. € for each
‘J}J €J. A

position" property holds.

(3) i {'x-ﬁ)'xﬂk*eaex and {x;

fea , then {x Wy |ie3, eI e R,

Under the dualisation (the arrows change directions and
the fiber coproducts become the fiber products) the precositi
turn into the formations that will be called presiti. It is
easy to see that the dualisation of the cositi are siti (alter-
natively called the Grothendieck topologies).

A morphism of a precositus A = (A, A) into a precositus
B = (B, B) is a triple (A, F, B), where F is a fiber copro-
ducts - preserving functor B —» A such that for every set

{x—’i—‘:}x:'hej from B its image {Fxf'}i’FXC}tej

belongs to A. The composition is naturally defined :
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(B, G, C)e(4, F, B) = (A, FoG, C). Therefore the collection of
the precositi (4, A) with HomA and A belonging to some
fixed universum form a category, which will be denoted Cov .

In a dual way the presiti category Cov is defined. Denote by

CaS
G Top and G Jop the full subcategories of
Cév and Cov formed by the cositi and by the - siti respec-
tively.

2. Examples.

2.1. Let X be a topological space, X the category of
the closed subsets of X (the inclusions are morphisms); CE(
consists of all the sets {VesV:|leT] such that
V=N{V; (€T} . Clearly, X = (X, fX) is a cositus. Its
dual situs is identified naturally with the situs of the open
sets of the space X .

A continuous map of the topological spaces f : X -—)Y
gives a functor °f : cfY—y € X , which obviously defines a mor-
phiem *§: X — Y of the corresponding cositi. Clearly, ()(—%Y)l—)
—%s = (X J§,Y) is a functor from Jop into G'J';\F . Note
that this functor is not &uyt¢d¢ ; i.e., there exist a morphisms
(even isomorphisms) of the cositi of the closed sets, that does
not originate from any continuous map. Let, for instance X =
Spec R , where R 1is & commutetive ring with unit, IX|= Max R
the subspace of X consisting of the maximal ideals (with the
induced topology). If R is a finitely generated algebra over
a field or & , then by Hibert's Wullstellensatz for every
closed subset W of X the subset \K‘(\W is dense in W,
This means that the inclusion |X|c» X induces an isomorphism

of the cositi X5 __)S_ . The inverse isomorphism only ih exeeptional

gituations,
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turns out to be the image of a continuous map.

2.2, Let R Dbe an arbitrary associative ring, T a fami-
ly of radical filters of the left ideals of R such that for
any pair {F ¢Yc T the intersection of all the filters
from J containing F U ¢ , belongs to T . This con-
dition is equivalent to the following one: the category U (the
inclusions are morphisms) is closed under the finite coproducts.
As T take the collection of all the sets {Ye> Y,y such
that n{‘ed;l?el’lj:'ed . We see that the precositus T =
= (tT, T) has%few common features with the cositi of the clos-
ed sets of the topological spaces. For instance, the category
3’ is also a preorder (any pair of objects is connected by no
more than one arrow) and the "composition" property is satisfi-
ed. The most essential difference is the following one:

as a rule, J is not a cositus; i.e., the inclusion

n<es. > - - :
(:e] UTF :QJ(‘Q‘_L[_‘EF) , where {:Q-fd‘ &, Y; 1§eTie T,
usgueally is a proper one . O3
Remark. The example 2.2, is principal for this paper. It
bbby \twva,rahu. heyre o
was this example that had caused Y pre(co)siti and is responsible

for the preference paid to the (pre)cositi as compared with

the (pre)eiti7contrary to the existing tradition. Note, that
the precositi appear in numerous context, for instance, in con-
structing a geometry, connected with the recursive functions
(91 .n

The following two examples are not so directly related to
the events that will happen on our stage, but hopefully they may
turn to be useful to the reader. The first of them is the "clas-

gical" example of a nontrivial Grothendieck topology.
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2.3. Let G be a group; G-£ns the category whose ob-
jects are the left G-sets (X, GxX i‘7)[), morphisms (X, }) —>

(X', 3') the maps f : X —> X' such thet the diagram

(,:xxf_d_’i_f.,(‘xxx’

[
X ¥ >3L('

commutates. For "coverings" take all the families {(xC;,%;) %

¢

--—;(X,%)[IEJ} of morphisms of G-sets, for which (U 5.(X:)H)=X.
CET
It is easy to verify that the situs Gr-Ens=(Gi-€ns, Gr-€ns)

is thus defined. The category of the "open sets® Gi-Ens
is not a preorder anymore. Instead it has a finite object (the
one-point G-set), which may be considered aé an analogue of a
topological space.

To a group morphism (? t G—>»G' the functor of the "base
change" ,..(f-x-‘ G'-Ens —» G-Etns corresponds which clearly de-
fines a morphism of siti G-E&ns—> G'-Ens .

e

2.4, Let R be an associative ring, I, R the col=-
lection of all the sets {mg—; m|t€TYy of morphisms from
the category T, R (the inclusions of ideals) such that
M =sup{m;|teJ}. The category I,R is a preorder with
products (as is readily seen, the product of a family of ideals
coincides with their intersection) and therefore ]_:_QP:=(I¢R,:‘[;TI)
is a presitus. With a ring morphism ¢ ! R — R' the
functor (f’“ . IeR =T, R‘, m — (R @ (m)Y) is associ=-
ated which obviously defines a presiti morphism IL’}“"_}IQR .

Note as an . aside that the functor (p‘*

is left-adjoint to
the functor @, : N (p”' n which, in general is not a pre-
siti morphism. |

The presitus structure on ICR induces the structure of
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the presitus IR = (IR, IR) on the category IR of the two-
sided ideals R. The map that assigns to an ideal X &€ TR
the open set U(d)ik{peSpecR[oqu P} of the prime spectrum
Spec R is a surjective functor from IR into the category
Op Spec R of the open sets of Spec R, The equality
U(-p)y=UEINU(p)  and the inclusion &.pc KNP

for any {«,pYc IR imply U(«np)=UENVE); i.e.,
the functor U commutes with finite products. The equality
U‘(staé%o(i):ig):[t}‘(d:) true for an arbitrary family {o;[{€J}cTIR
implies that U defines a morphism from the situs TSpec R
of the open sets of the Spec R into the presi-
tus IR.

3. Presheaves and sheaves, The presheaves on a precosi-

tus A = (A, A) with the values in a category C are arbitra-
ry functors from A into C; by definition the category of the
presheaves Fo(!;., C) coincides with the category of the
functors from A into C — F (A ,G)—-:C’A.

A presheaf G : A ~» C will be called a sheaf (respecti=-
vely an (W-sheaf), if for every {'x}—:-» o, lt€Te A
(where T is a finite set) the cone

\_:“'/t> F-)C; \) (1)
Fac F(gc:%*xj)
%foj/ ,i)€eIx3
ig initial, If C 1is a category with products, then to a cone
(1) the diagram

Fao —»TT Foe, =3 TT Faepatxy) (2)
€3 (0,30€3IxJ
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is naturally assigned and (1) is initial if end only if (2) is
exact,.

The full subcategory of the category of presheaves
F;(_A_ ,€) formed by (¢-)sheaves will be denoted by F(A, C)
(respectively, by F_(A ,G) R

Remarks. 1) Obviously, the category of (pre)sheaves on a
cositus with values in a category C coincides with the cate-
gory of (pre)sheaves on the dual situs understood tn usual way.

2) As for the topological spaces, many problems of sheaves
on precositi with values in an arbitrary category C can be
reduced to the corresponding problems of the sheaves of sets
thanks to the following criterion that is directly veryfied:

A presheaf F : A —>»C on the precositus A = (A, 1) is
a sheaf if and only if the presheaf of sets C(y,F-)
is a sheaf for every yé¢& Ob C .

—

Let A = (A, A) be a precositus. Denote by A the

W
collection of all the {x —>oc;[ieIY€E A such that

for each finite subset JoC T  there exists a finite

subset Jy < T  such that

(8) {x—x;|j€T, € A;

(b) if (€ Jo~ J, , then 2 sget of the coprojections
{xg@x;l;-leje ]L} belongs to A.

The following properties of this construction are obvious,
more or less:

1) A= (A, A,) is a precositus.

2) Let {x— x;|¢eJY€ A and any finite subset Jo< J be
contained in a finite subset J, € J  such that

{x—x;(je3, Y€ A. Then {x —ax:ltez e A-



- 89 -

3) Suppose that if {x— xt(tel}ez and Cazdl(3)<eoo,
then for any arrow x —>»y the family {xay,x—ax:}&;elongs
to A. Then,as follows from 2), A, consists of all {x—>nc-|
ieIlc A such that {x —x;(i€ T, ¥€ A for
a finite subset J,c 7T .

4) If A is the cositus of the closed subsets of a topo-
logical space or the precosite of the radical filters of the
left ideals of a ring, then A has a property stronger than 3):
the collection of arrows {x—>X;|j€J|  belongs to Aw

if and only if {x—>x;|le3,YC A for some J;cJ,
5) If A  is a cositus,then A, also consists if
all {x—>x;|lieT} such that {qujljejo'}el\_

for a finite subset J <7 .

i C h t f w-
o arbitrary category C the category of w-gheaves F(A,0)
coincides with the category F (A w0 (",) of sheaves on
WNWWW —_ 2 AN AN
fiu)z:(¥\1 /\ua) *
It suffices to prove the opposite inclusion for C = £€ng (see
Remark 2)). Therefore hereafter we will deal with the (O -shea-
ves of sets.

(ii) To every presheaf G : A —>Efn¢ we assign the func-

. tion G on the collection Ay of all the sets of arrows of
ot whith the $i6re coproducts Xell X exist

the form {x—2x; (€3 , whose value in o={x— X1 ieTY
is a kernel of the canonical pair 1T Cvracz P 4 [T Gr(x:_u_"rj)
_ (EJ (i,5)E3x7J x °
For every > ={x — ;| (€TY there exists a canonical ar-
A
row (map) €z Goe -GX , and for any J,c T the
morphism /Gr x —5 11 G x (the composition of the

Ie3°
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embedding ki: Gi —»T[C’!'x‘\ and of the projection) uniquely
JeT

factors through k C.‘:x »—)Tl'(nab , where xJ —-{oc--‘)x | i€
€ 3,4+ In particular, 1f SD- G(x .___)(,,gp_:‘, is an iso-
A
morphism,then there exists a coretractlon ‘VI ¢ Gix— Grac
(-]

which is uniquely defined from the commutativity of the diagram

o,
ave interested in L€ 3o
An examplel: G is an w=-sheaf on A, card(J,)< o and
— (NS4
x5 € A,

[}
(i1i) Now let G be an ¢J-sheaf on A ; X ={x o x,|ieT}

a family from ' w 3 Jo€1 an arbitrary finite subset,

s - = (o) s
J,©T & finite subset, such that X  and X 0=
={x;— % AL, 13€ 3. % belong to A for all {€J,~J, .

Denote J,U J, byJ , fix ¢ € Jo~73 and consider the

4 )

diagram

P
G, — 2,0 % — T Gileldx ) =3 T T ~

€ca
- ? 1
g | o7 7 IR /! (3)
T 7w _»G g,
- i
I €J4q

Here h is an arrTow, uniquely defined by the commutativity

of the subdiagram @ s 'qf:ri is a coretraction mentioned in (ii),

the other arrows are obvious. The subdiagram distinguished by

the solid arrows is commutative. Hence so is (3), since
igm®P= °‘°Jx°‘}73 =jzw o (&% o¥T,)

and, therefore, P;= ‘;t O‘{-"ji , since j .. ()

is a monomorphism. Of the above, it is important that the pro-

o S — . .
jection p,: (‘,‘occ—é Gix; is the composition of qui and
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of the natural map Glm-a»(};cr:. From this and from the arbit-
rariness of L€ I~ T, the injectiveness of Y3,  fol-
lows. Hence WI;L is an isomorphis:l:

(iv) It is easy to see, that (3 (X) is isomorphic to the
inverse limit O-Sa('fr), where I' runs the finite subsets
of I, The result of the previous subsection may be presented
ag follows: for any finite subset Jo,C T there exists a finite
subset T<J such that J,c I and the canonical arrow (Gyx —
—-’7@1 'J.EI is an isomorphism. This implies that Croc — é\,i‘-.:
:&w& X, is an isomorphism. O3

CatlB)<
Example (1), Let R be a ring, J a family of the radi-

cal filters, satisfying the conditions of Example 2.2.;
_‘J_' = ('J', —'j:) an agsociated precositus. For every R -module
M themap F +—> &?M extends to the presheaf Mg on
_'.]_' — the "structural" presheaf of the module M . In the
next section one of the key results of the present paper will
be proved:

The presheaf M T turns out to be an  w-sheaf
iff the following condition is satisfied:

(b) for every {3»', Yy T the canonical mor-
phism FfYyitm — (FLUL)IM is an isomorphism,

According to Proposition 3 every module M, satisfying

the condition (b), defines a sheaf on _ﬂ_—w=CT, Tk As was

already pointed out (the statements 3) and 4) concerning A,),

n—

T, consists of all {F<» F; (e T such that
{FesF lje ke T for a finite subset

Jc I . Therefore, if for every family {?r', ?}[fefi of the
radical filters from J , such that F= ﬂ{?‘([{e I} there
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exist a finite subset Jc T for which 3‘:0{3—3 (je:}, then
the following properties of M are equivalent:

(i) the structural presheaf ﬁ4?.is a sheaf;

(ii) M satisfies the condition (b)), O

5%9%;5. All the constructions appearing here as well as
the statements about them are readily dualised. In particular,
the notation A = (A, ;;) does not require any explanation
when A = (4, K) is a presitus and referring to Proposition 3
we mean, when needed, its dual formulation, O
of Example 2.4. Obviously, ItR enjoyes the dual qf the proper-
ty, mentioned in the statement 4) concerning 7&10~ o Therefore
ﬁ_“w consists of all the "coverings" {mfc.?:"m Yeer
such that {m;c, mY e T is a covering for sonie finite
subgset Jc I . In particular, if m is a finltely generated
left ideal then any covering {m;csm7Y;. r belongs to
IeRu,. Therefore, Proposition 3 implies that if R is a leftw
noetherian ring, the category of the -sheaveﬁvﬁ’in01des
with the category of the sheaves. Ol

§x§§§}g£}2. The state of affairs is similarly in the case
of the presite IR (see the second half of Examplé 2.4). B.g.,
if an ideal m € T R is finitely generated (as a two-
sided ideal), then every its covering belongs to ii&ca- In par-
ticular, if the ring R is (symmetrically) noetherian then
IR = I P~ and therefore every () -sheaf on IR is
a sheaf, O

4. The "direct image" functors. If F = (A, F, A') is

a morphism of the pre(co)siti,then, ag is easy to verify, the
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functor F, = ek F(A,C)— K (A',e), G GieF,
sends (w-) sheaves into ((o-) sheaves; i.e., it induces the
functors of the "“direct image"™

Fu: F(ALCY—>FPA,e)  and Fyot Ful(a,0)— E (AC).

Examples. 1) The direct image functor corresponding to
the morphism U : T Spec R —> IR of Example 2.4, realizes the
complete embedding (thanks to the surjectivity of U) of the
category of (Vw—)-sheaves on Spec R into the category of
(w-)-sheaves on 1IR.

2) Let R be a commutative unitary ring; the category T~
consist of all the radical folters of the form F&)'—'{nel‘kft"en
for some k > L"s,tE R.

Exercise. The following facts are true:

(1) T is a category with finite coproducts and Feeydd FQ):
=F(st) for any (5,t)ER*R,

(ii) The sete V(¢), t€ R, constitute a subcategory
B c el S'ch_k closed under the (finite) coproducts, and

VEYUVRI=V{(5t). We have V(3)= FB)”SPQCR and the map

F(ﬂ¥—) V() defines a precositus morphism P= (B B3) >

~—

—»T= (T ,5") where the structure 95 is induced by the em-
bedding Jb =»> £ SpecR $rom Spec R.

(iii) For any t€ R the radical filter F(y con-
sists of all mE€ TR , such that V(im) c VV (¢)
that
It followé'Y:t/he map V (t)v+>» F ) is the functor, inverse

to F > SpecRNTF,
Therefore the precositus J is isomorphic to the cosi=-
tus 5_)3 , and, therefore, is a cositus itself, In particu-

lar, the categories of the presheaves and sheaves on I are
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isomorphic to the corresponding categories on 73 . Since

—

Vit)= ﬂ V(t Yy implies V(+)={) Vv (¢;) for a finite subset
J7c I, then J} = 2%0 o Theretfeo::'e, the categories of the shea-
ves and of the «w -sheaves on 55 (and hence on J ) coin-
cide. The equalitis F(s,_Ll F(t) €ty F(s) @) for eny 4,t)eER xR
and F'4*=(YoF)L true for any radical filters, imply (b) for
any R-module M (see Example 3.1), and, consequently, the
presheaf MT is a sheaf, With the direct image functor we get
the known (in somewhat different form) fact:

For every R-module M the map Vv ({-)H(f)‘iM natu-
rally extends to a sheaf on the cositus T3 .

—

5. Quasifiniteness, bases, full quasicompactness.

We shall discuss the concepts that serve as a bridge bet-
ween the sheaves and the <O -sheaves.

Definitions. Let A = (A, A) be a precositus.

1) Call oc€ 08 A a quasifinite object of A, if any
NS NN N NN
foc— x; (163} from A belongs to Ay

A precositus A will be called a quas:.flnlte if all its
AL LN AYIA
objects are quasifinite; i.e., A = Ay.
2) A precogitus A will be called quasicompact if the
AN WA
category A has an initial object, which is a quasifinite ob-
ject of A.

3) By a basis of a precositus A mean a full subcatego-
ry B of A, which is closed under the fiber coproducts and
such thaet for every x & OB A there exists {5¢— x:lieIye A
with {x lieTtyc B .

4) A precositus A will be called fully quasicompact, if

P 2 s W Wie U, T VA o0 CI 0 WL WA T

it has a basis, all the objects of which are quasifinite.
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5) A topological space will ge caned\w, if the
cositus X of its closed sets is fully quasicompact. DO

qug;g. The notions of the quasgifiniteness of the basgis
and (full) quasicompactness are automatically dualised. In what
follows they will be also applied to the presiti. O

??EPB%?E' 1) A topological space X is quasicompact if
and only if the cositus X (or equivalently the situs of the
open sets of X ) is quasicompact.

2) Let R Dbe a commutative ring with unit. It is wellm
known that Spec R is quasicompact. Begides, the subcategory

Py, formed by the sets V(t ),teR, is a quasifinite base of
the cositus Spec R (see Example 4.2) and therefore Spec R
is a fully quasicompact space.

‘ reason

3) Fu€ly quasicompact spaces (andwithmoreY pre(co)siti)
may be not quasicompact. An example}— any non-quasicompact
scheme: the collection of open affine subsets is a quagifinite
basis of the situs of open sets of the topological space of a
scheme.,

The term "locally fully quasicompact" (pre(co)siti or spa-
ces) would have been more to the point? But it is too cumber-
sonme,

4) The presiti EE? and IR are fully quasicompact. A
quagifinite basis of I R 1s formed by the subcategory I R
of all the finitely generated left ideals, and that of IR by
the subcategory IR of all the finitely generated twosided
ideals.

If R is a finitely generated left module (e.g., if R

is a ring with right unit), and only in this case, the presi-
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tus IQR is quasicompact. Similarly, IR is quasicompact if
as
and only if R is a finitely generated/\twosided ideal,

6. Extensions of the sheaves. Let A = (A, A) be a pre-

cositus; G : A' —>» A a f;\'étor,v preserving the fiber copro-
ducts and reflecting them;thé fast means that the existence of

eré;‘; G2 implies that ef o iiz,

Y ey ;
. . 2! =L 3 .
Then G induces a precositus structure A f{x——»x;}i_erl{(,gﬂse

on A' and defines a universal,in an obvious sense morphism
A— A 2."*: (A’ A'(,,) . In particular, the embedding of a
basis Jp i B <y A induces a precositus structure B =

(B, B) and a morphism Jpt A—> B . To Jp

1}

the direct image functor Jpau ° F(A ,C)— F(B ,G)
corresponds, the restriction onto the basis. On the other hand,
it is possible to try to extend the sheaves from a basis onto
A,

For any functor F : B —» C denote by & :TBRF the
full subcategory of A formed by all xe O8A for which
there exists J;Fxﬁ Q({_r_n‘(ac\g-* B-F—-?C). The map oct—-)Jng

R
uniquely extends (after the values of TBFY,)XQ_ ()nggF ,are

chosen) to the functor JgF ¢ SJEF —> C , which

is called the right Can extension of F.

R To investigate the properties of the functors ‘TB"' and of the
right Can extensions of sheaves -
it is convenient to start with turning the set of "cocoverings"

-— . —
A into a category. A morphism from X = {'x:—ﬁa»x;l((—el into y-=
w; Samy

=y =% yi}jqie @ trinle (5,6,{% ) where 3 — I, fe Alx,y),
. and ;¢ Iéu)‘> yj are arrows from A such that for

every je€ 3 the diagram



_ {5;° e
commutes;  the composition is (%,6,{5;%)e(g ,'t,{gc'k):(sog,tc"j;‘y D)

Proposition. Let B be a basis of the precositus A =
- - T = o~ P O N N N N N N e W -

(4, &).
1) If for every sheaf G : B —>C on B JRG; is a

AN WA AN NN ~ VN

sheaf on A then J' 1s an equivalence of the categorles
A~ % NN\ N 2 S eV WUre Ve Ve Ve e S T W e N \/«,/\_/\/‘

and its quasiinverse sends every sheaf G into its right Can
extengion Jp Cr -

2) Suppose that for every X € O@A we ave

(1) for every finite subset {x RV Y }a C O& x’\B

[0 V7 V7 Ve e Wia Vi Ve N T W e B

there exist 3 ={x— V5 XJGIE A ﬂO@x\B and morphisms
[ e Vo N N N ] ANAANANAA
}‘ (510 )t X — 8= (6! --—'ae'k)'eeK where 8°‘C B €T,

Thon the funsier Tpu!FAC)IFCB,0) Totlives on ot

valence of F(4, C) with the full subcategory F(B, 4, C) of

[ 20 VI VI RN, Ul NANANANNANNNNANANANAANANCN ns
F(B, C), formed by all the sheaves G for which JR Gr is a
- AN AN AN AN B e

sheaf on the precositus A.
A NN NN N

3) Suppose that for every o :{x-}@z’}ZEIEE(\Og:‘C\B
AANANANA AN A

and for an arbitrary arrow } tx—6, 6’6 08 B,
A ANANANNANANNANNNNN-

there exists a "cocovering"” and an
extension of the morphism % to the morphlsm S:x—>8 .
Then for every sheaf G & F(B, C) the right Can extens:.on
VAV 4 AV AV T N e W i e Y B N e N N N e N N N ~
3; Gy it existy is a sheaf on A,
NN
Sketch of the proof. (i) Demote by &I & the

full subcategory of C~ = Fo(g, C), formed by all the preshea-
ves G for which JgG; ig defined on the whole A,

For any presheaf G from ) JBR there exists a cano-
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nical morphism EG;' 35# JB G—> G , which turns out to be
an isomorphism since B is full,
This fact is verified by the direct application of the

formula defining 'J%G. It is, however, well known (see, e.g.

bal). SIE

(ii) For every presheaf G : B —> C erd any ye 06 €
there exists (since C(y,-) ccmmutes with ﬁ:_":' ) a natural iso-
morphism

TeCly,a-)=CGL, TR G)
Therefore we can (and will) assume that C =&ns .
(iii) Thus,let G Dbe a sheaf of sets on A; i.e. for

each = {’x-)-x:_'s..e A the cenonical diagram

Goe—>TT G, =3 [T G laxy) (2)
L€I (t,j)erﬂ:[
is exact., Since B is a bas:Ls there exist {x— 8; ?StGIEA

and a collection { 8; .LL@ ——)@ t‘tegtﬂxe A for each pair ¢,j
such that {ét,ezﬁlg,ﬁc:[,tegl }EB Since (2) is exact for
i:{x—)@pleI} andca@ .LL@ )—?T_T Cveut

te Fog
is injective for each pair (i, j)€ 'Ix"_[ then the diagram

(;,xﬁT—rGTQ .—ZT‘- (71'8"“ (3)

cET t,_))EIxI té}
is exact. This,clearly, implies the ex1stence of a unique mor-
. - « TR s
phism Wx * TB JaguCrx —> Grx such that the

diagram

gc’lx '——9TFGrQ

\ ‘er (4)

is commutative. Since (3) is exact, the standard arguments

yield —({fi o KG;CX): 16{?( , where 3’61 (x) is a

canonical arrow.
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Al
(iv) Consider the function G : A —~Y&ns (see part (ii)
of the proof of Proposition 3) assigning to a collection of ar-

rows {x—a'xt'h(_j, the kernel of the pair
x: ::3TT Gr (c;1x2)
i IUG' n.-),l )YE :fxtf ¢ 4

The functon G naturally extends to a functor ofp A_u(and,
therefore, on its full subcategory A4).

The verification is straightforward.

Now it is possible to start the demonstration of the pwe-
poattions. Statements,

1) If G is a sheaf of sets such that 3 JauCr 1s also
a sheaf then the canonical arrow K‘C'r : J‘g je“G._a Gr
is an isomorphism,.

Indeed, since ~»E:reuc7 is an isomorphism (see (i)),
38,(35 Tga G()':JB,GI. On the other hand, since (3) is exact for
an arbitrary G, then JB‘*G"QIB“ e for some sheaves
G', G" on A implies that G' < G-,

Therefore, if JR is a sheaf for each sheaf F, then
ole A,C
(a) the functor J'R &jR\F( ) is right=
F(B&,e>

adjoint to the direct 1mage functor JB* with the adjointing

morphisms £B={EC," ¥ , 3/8 ={ ¥or § 5

(b) the functor EB* is an equivalence of categories
since both 3 and a/e’ are isomorphisms.

2) Suppose that the condition (4) is satisfied and show
that for any C;,GO@F(A €ns) the presheaf JR ]B“ Gr 1is a sheaf.

Let {'x Q¢ IteJ} be an arbitrary finite subset of 0@1\8
X={x>V e, € =-{_6 _.;ek}kgkand ‘;i =(%,8;,) are the

cocoverings and the morphisms of the cocoverings from (). To

them the diagram

9
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()
Hl

> (,18

\’ & (5)
/ AR
T , G é
. . = &y () - .
corresponds, in which X'= {x_)'z,‘ﬁj—"x—)g‘[aejj\,ej[& (cfe (3)
from the proof of Proposition 3); ('u' is the morphism from

over
(4). The further discussion run‘fEfe lines of the proof of

Proposition 3:

”\
- Since (5) commutes, the arrow Gx —»GX' is an isomor-

phism.

- This and diagram (3) implies that the "projections"
jg ‘J-BgGT X —> G 6; factor through the coretraction
of the canonical morphism XG; &) . Since the set
of arrows { x —» 82 Q & €] here is arbitrary, Y'c’((:() nust

be an isomorphism,

Thus,the functor -IB'* takes values in the subcategory

B8.A C
F(B, A, C). The fact that the corestriction 15*‘(:(“’—’ )

is an equivalence of categories with quasiinverse
‘ (A,C)

F(B,A,C)
3) TNow (et the condltlon of the third heading of the propo-

sition held  and G € O8F(p €ns) . Since
IRG1 G & > G @

T. EASEN L

functor , is actually proved in 1).

- G
T‘éG‘I L Gré
commutes and ¥ ! %¢ —> € is arbitrary, then
- /\ ~—
3‘;& x—> JTRG x is en isomorphism. The szareé

to complete the proof is left to the reader. 3

Remark., The following condition, which is quite suffici-
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ent for us, is a particular case of (}):
(4 ) for any finite subset {x%@}}#je C)@x\B
there exists a collection of arrows {x-2&» Ui dier® AN0ZNB
such that if ‘gdt (-t {'ZZ, e 1’3 , then there-
set of coprojections {¢¢.— g&_lo%v::.} teT that . exists,
belongs to A, 00

Corollary. UEEEI’ the conditions of heading 3) of the pro-

e i N N N PN NN NN RN

position the functor :IB* realizegs an equivalence of the cate-

P T N N T e A U U NN v e TN N TN N
gories F(A,QC) and F(jb_,e) ’
P N F(A’C)

the functor TN ‘ ‘ being quasiinverse.
Fa e SN GPL N B F (& ’C ) NN N TN T
If f-_ is a cositus then the conditions of heading 3) hold
for any B and we get a known (for siti and "nice" categories C)
statement: Jp * is equivalence of categories.
Ixamples. 1) Let T  be the category of the radical fil-
T . arvin
ters of the left ideals of YR satisfying the conditions of
Example 2.2; T =(7, T) is the associated precositus.
Clearly, the condition (1&’. ) (see Remark above) is satisfied
for an arbitrary B, since adding to {F<» Fi|leThe T an

arbitrary family of an arrows,with F as the origin9 does not

9
lead out of ﬁ; . As for the condition of heading 3) of pro-
position 6, a basis satisfies it if and only if the precosi-
tus B, associated with it is a cositus.

2) Let R be a commutative ring with unit; 7% the
standard quagifinite basis of the cositus Spec R (see Examples
4.2 and 5.2). According to the corollary of Proposition 6, for
any category C with inverse limits, the functor 1155 "of the

restrictions onto the basis 73 " is an equivalence of

F (SPQQ R, c) and F (7> , C) with the quasiinverse
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functor, which assigns to every sheaf G its right Can

. R . ). - )
extension 3’36[ LW enﬂ‘(c;'t(V'({-))lWCV(t)J teR 1

In particular, to each R-module M a "structural" sheaf

@‘}\4 corresponds, which is the unique extension of the
sheaf M D onto SpecR (see example 5.2). It sends

a closed set W into the module

Gp W)= Gim {) ' M[we V), teR}, o
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%ll. Affine semischemes

In this section we fix an associative ring R.

1. Main theorem. Let {fﬂ Ii‘e 3} be a family of topo-

logizing filters; F= 0{3";\5&3} . To the diagram
'?{S‘ZC [}iof}—. D';}',‘(i,j)e Jx J} the diagram
{GD}- _’Ofgr 3.-. Q-S: _S and cones

Grg,

oF. M
\’GFS: 3—3: 2

where M€0€R moc‘ correspond. It seems to me that

the main step in the elucidation of the other side of the
phencmenon we are interested in --globalization -- 1is the
following statement:

Theorem. Let {F [i€J§ be a family of radical filters,
M aw R-module.

1) The canonical R—W Grg—/"l *-‘*JJUGrg_—:M

2) If J  1is finite,then the cone (1) is terminal
or equivalently,K the diagram

GI;M—’_[T CTG-‘~M jﬁ .(’Tg-“.o?.M,
ceJ ¢ telJs) N
corresponding to the cone (1) is exact.

Proof. 1) Let X € ﬂ{ijg.“M | te 3'} . This
means that for any (€ J there exists n; € 3:‘-
such that mM,x = 0; 1i.e. AhnC17eQ3322$
But C;{FM is F-torsion-free and therefore X =O.

2) Let U+ E G's- M, ieJ, be elements such that
‘C..(u W_TM(U :) for any ({,j)€ J x J; here T.~. are
the natural morphlsms C’TS‘Z —> G GF 03.— C-,r&_ °C7r3__

¢
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Fix L€ J . Let m.€F, be an ideal such that there

exists a commuting diagram

m;eeu;

M

\ ’ o

-

L

m .
¢

For any X € g)(mz) there exists an ideal V., € ‘J-'t

for a uniquely determined R-module morphism U

such that the multiplication M (:)c) by V'x factors
through cpg'_c M__)‘37£1M7- i.e. for any A€ d OCUQC) there
M
exists a Z-module morphism M/\ x FA® o — 5 M
p)

such that the diagram

2®x~i___\,m .____,c,r?M

\\3}\1 ut

me 3)
\V/
M ————%?r’ M
commutes. Here 2( . is the morphism of multiplying
PN by x. The identity z‘..(u) (74) yields the
existence of VYlCJ- e G—L such that mcj-((;l.ac).uj)=

=m, (Jg_— M ;'x) Since by hypothesis J is finite,
then ﬂ{m‘e leedy = YYI c 3:' and we can write

. (R Uy ) = (M- ul ), €T
STt Ye —JS:E”M ¢ A,x 7> €J, (L‘)

Furtherl we stick to the scenario of the proof of
Proposition 2.5. Denote by ?«e;/ where U = (U, Jie T,
the full subcategory of Ie R formed by the ideals
such that the morphism V.U of multiplication by V

factors through M —

—

[T M
= tel G‘-S:e
a) The category e contains all the ideals

of the form rr;'\i')\:)c .T[It suffices to look at the commuting
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diagram

m . @R&m———-—»m}{x-————)ﬂ C?r

| €y
: / (s)

The dotted line here appears thanks to epimorphicy of (

>)m

and monomorphicy of 5{9’21] = (J?},M )ee‘J ¢
b) If {h“h?_"ﬁc g-e"‘, then h,+Nn, € e

as is clear from the commuting diagram

M — =11 GgM

= . e
%nlx %nﬂl T \\\\ T
nlln, —— N, +n,

where the existence of the dotted arrow is justified by the
same reasons.

c¢) Finally, together with every ascending family of
ideals {ho(ldG QL% the category 'J-E u contains
the union U{h¢|?l€o(]3 of its elements.

As in the‘proof‘ 2.5, the last two statements allow one
to deduce the existence of a final object na in the
category 9’6{: . Thanks to (a) vrv\\": Ax na.

Since x € (.P('m) and A€ G)(Ux) are arbitrary and
{m”r’;\", ’x‘l'x(—d( belongs to ?‘- ) then nr‘— belongs
to T 3: 3: . '.e. hae 3:-; since ?: is a radical

3

filter. Since (€ J is arbitrary, then n“eﬂ}". =F
cey

as required. [

2. Auxiliary facts. We need several prerequisites to

pass from Theorem A4 to "geometric" corollaries.
Proposition. Lef F, @ be radical sets. M an R-

module. The following conditions are equivalent:
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a) the canonical morphism (9:_0 YPM o (FVLYM
is isomorphism.

b) (Fe YYM— (S‘"o@da?)iM is isomorphism.

Proof. Clearly, a) —» b).

b) —> a). Let QZ be a full subcategory of the

category ﬂ"e R of topologizing sets formed by all
the filters 9" such that Srlc S':'\/(% and the
natural morphism (Fo )M — (Fo9yF ' )iIM is an

isomorphism. Notice that [{F F IcQ I1=>[F-FeQ],
In ract it {F,F"§c S, then ”

(Fo@)' M (Fo T VPM= T (FoY)'M) 5

=5 F(Fe Yo F M) (FoelF = F'YM.

Clearly, G2 possesses a final object ?: U{s”lS"’eQ}.

Since F o ?eQ/ then &  is radical. Tt is not dif-

ficult to see that Fo®@ & Q0 | since, thanks to b),

all the arrows in the chain

(Foe MM = (Fo@e @41 M 5 €4 ((FeY)iM)—
= QL((Fe@oFIM)—> (Fo@o (Foe)'M

O~
are isomorphisms. Therefore ?O(QJC- ?' and hence

~ ~
Y5 F ' or, equivalently, F=FVvY . Clearly/
?
Fo@o (FVY)= TVY,

Corollary. Let JF , ©4 be radical sets, M an R-module
such_that (Foey)tm and (YeF )M are iso-
morphic. Then (Fogy)im — (?V‘%YM is an iso~-
L i e P
morphism.
~———

{3 ‘ﬂ (iro::(_m In fact'

(Fo@o TIMFH(Fo@)!M)=TFH(YoTF)M)=
= (@oTFVM=(.FVM=(Fo@)M,
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3. Affine semischemes. A pair (R , T ) , where R is

—_— -

an associative ring, T a full subcategory of the ca-

and
tegory TI of radical sets with finite coproductsl\\..}k #.
pre per iy %r‘ff a«f ] =>[FTNY &T ]

will be called a (left) affine _LL -semischeme. If

"
~

is a V-category, then we will skip the signAof coproducts.
Let (R,J ) bea 11 -semischeme. For every R-module
M the map F +—> C"'g'M determines the presheaf Mo
on the precositus J = (7, Gﬁ:‘) (see 3.272) with values in
the category R-mod.
Proposition. Let (r,T) be an affine 11 -semi-

scheme, M an R-module, Consider the following conditions:
— e~ N —— W,W

a) Mg is a w -sheaf on J ;

b) for any 9') o ) 76 g the natural
morphism Frteytm — (T M is monomorphism,

¢) for any F o ey € T the modules

Fltetm and YGYrTim are isomorphic.
Then the following implications hold: a)&=3 b) — c).
/W\MM/W

1f (R ,97) is_a semischemegthen c) =3 b).
Proof. b) = a). Let {Fe F (eI} be a finite co-

covering in T . Consider the diagram

‘eI T ieJoe 3".!13}
-

Clearly the monomorphicy of all the ar —>
y phicy e arrows (}rg.eo,?eﬁ/l
— implies that of their product |1 M —>
L7, (c32¢ T 0T,
—T1 Cr M . Now it 1s clear that the exactness of the
diagram Xog—™ Xi — X.Z and monomorphicy of

x?. — Y yields the exactness of Xg=—> X, -3 Y.
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It remains to make use of Theorem 1.

a) —> b). By hypothesis [{F,@4Yc 3’3_%7[?‘[\‘045'3"]'

Therefore the exactness of the diagram

implies the monomorphicy of the arrow % : (Fe (&3)1/\4 —_—
— (FLLe)M, since C’Fg‘a%M _—%CJT’EF.LL‘QM
is monomorphism. Since F ¥ c ?.\l‘ed/ then (Fo@))YM-(FLLY)'M
is epimorphism, therefore the monomorphicy of ¥ is
equivalent to its isomorphicy.

We have also proved the implication b) = c).

1f (R ,7T) 1is a semischeme (i.e. L =\ ), then

it follows from corollary 2 that c) =3 b).

Corollary 4. Let an R-module M be F -torsion-free
(i.e. FM=0 ) for any Fe J . Then My is a

W -sheaf. In particular, if R satisfies the condition
D e e P U i
[(xeR,meFeT and mx=0]= [ =07 then Rg is
a W -sheaf.

Corollary 2. Let (R ,J7) be a semischeme. Then for any

irreducible R-module M the presheaf /‘40-— is a w-
sheaf.
AAN~—

In fact, for any topologizing set F either FM=0
or F M = M .| This immediately implies the isomorphicy
1
of ("%0'}—)1/"\ and (Fo€4 ) M,

I, Topologizing sets and ideals. The main aim of this

and the subsequent sectionl is to make the conditions of
Proposition 3 a trifle more constructive.

Let Qﬂ be an arbitrary topologizing filter’) 25 a
left ideal of R. Denote {A€R|(n:d)e Y} by N, -
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Proposition. Let ¢4 , F be topologizing filters, n and
—————— [aYaS [ e Ve e W P T S Tl e g X -
m left ideals of R,
[ Y VaVWe Uy We VO Yal
1) ne 1is a left ideal of R oontaining n.
ONANANNNANANANNNNAN [ Y Y W W NN
2) D is a final object of the full subcategory EQJ of

[ S0 V2 V2 R, Ut Vle A Y gl Wl U Wie Wk Wita Wia NP Uiie (%

I,R formed by the ideals m such that né& Yo{my.
AN\ VY A N

3) (ned :x)=(n:x)ed for any ne I;R and x€ PR).

4) fhe map (m,W)—> ney depends cunm and Y funoto-
rially: A2 nem and Y < F , then ngc mg . Moreover,
;13 n— m, % Ne — My -

5) (an m)q = n%ﬂm%
and for any family {F;1t€eIl of topologizing filters the

NANANNANANNNANA NAAANANANNANAANAANNANANNNNNNN
equality holds:
ANNANANACANINAN

"N{F;ltery N{ng lte1}

) myoq=(le)z Inperiicnler 1.
is a radical filter.
NN\

Proof. 1) Since % ika cofilter, then
[{x,,22 e ng Y =LY (iadN(niad= (niag+a)1,
Thanks to the uniformity of
[ Ae ng , t.e. (MVEYTSL(n:aDd=nia)e Y
for any ac R, i.e. ad € Ngyl.
2) Statement 2) follows immediatly from the definition

of ne; a strightforward verification of 5) and 6) is left to
the reader.

3) Let xe P(R); A€(ng:); L-e. ((n:2):d)=(n:22)e @

for any 7€ . Therefore A eﬁ(nzz)@‘S and (n:z)q:—_
ZEX 2€EXC

:(Qegc“fﬂ)‘ed=(”=°€)wd thanks to 5). Conversely, if )e(n:x)wj,

then (n:Ax)=(NXNQA)e Y ; 1.e. Axxc he. O
4) It is easy to verify that h"’d S My if ncm and
Y F .Let now n— m; i.e. ncm or (n:ix)cm £for some

L 43 ,(P(R). In the first case n"dc m, as has been Jjust mentioned;

Y
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in the second one
(m%:x)z (n:x)edc P
according to the statement 3). O

5. J -symmetric and J -admissible ideals. Let T
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be a set of topologizing filters. An ideal is T-
symmetric if [hg-é eyl [h% € FI for any {F,e4%c T
Denote Sym T the set of J -symmetric ideals. Clearly,
Sym T consists of all NE€T,R such that neFoyl=>
ﬁfne%o:}'_j for any {F, @UYc T (see the end of the

preceding subsection).

Now let (R ,T) bea 1l -semischeme. A left ideal
n will be called J -admissible if [ he FU Y=
= [h?G 7| for any {3:‘@41362']— . It is clear from
the implications Ehg— EYlS [(neF- Y\ [(ne FLLY]
that any J -admissible ideal is J -symmetric. Now
we can reformulate Proposition 3 as follows:

Proposition. Let (R,’T) %g_gﬁq\e 1l -semischeme
e;\rig M an R-module.

1) The followin conditionWt:

a) Mg ine W -sheaf on J';
b) the annihilator of any element of M is T ~admis-
B I - ————
sible.

2) If (R,T) 1is a semischeme,then Mg  is a -

sheaf if and only if the annihilator of a lement of M

ie. T -symmetric.
6. Examples. 1) Let (R ,TJ ) be a semischeme and
T=1{ F,S"\ Secmc 2®CR)} . The T~ -symmetricity
for any {S,S'}C Nt . By definition of FS and FS',

of n reads as follows: [n:’t,s‘e Fsll—_e;[h

the fact that hFSG FS' means that there exists 4°'€ S’

and for any x € ?(R) there exists 4,26 SI such that

(h:g)- (n:slx)g FS ;
)
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i.e. there exist 4 4 € $ 3 S, and for any YE€ ‘J)('R)
)
. - ! / ]
there ex1st‘tﬁ.yes ‘ such that {45 5 ’51‘511,’5),)’3: tyysgx}cT(n),
Therefore the implication ChF‘s‘G FSJ:)[V)F,S"G F'S{j
is equivalent to the following :

Let for any {x,y}cﬁ)(ﬂ) there exist {6m,fy}c S

/ / ‘
and €, € $ such that £,5_ x. \fyysgcxcw
/ L / ]
and fSy ys 7 c w for some {6,5y}cs,,"€ g
Then for any {x,y}c'_p(R) there exist {&2 ,tylc S’
and Ss”,ce S such that g;chx; < t; y?x xcpn

and g,g) v ‘5;¥gcﬂfor some % & S,{@',S:y }c S./
T -symmetricity of N means the fulfilment of
this condition for all {&,S'lc M.

2) Now let (R , T) be a semischeme and J  con-
sist of radical filters of finite type (see 1.4.6). Such
semischemes will be called f_‘ww.

By Proposition 1.4.6 T consists of radical filters

Fg , SG ™m , Where each 8 is a multiplicative subset
of TP(R) such that

) (For any X € PR and &€ S there exists ( )
‘&)S such that toce € (R,5)= Rs+5, #

If S satisfies (#), then [me F 1S [PmNS#HL]
which easily implies that [hFSE F. ,1<__—_—_>[55/C n
for some éég ,%'€E SI] for any { S,ﬁ’}c ML . Therefore
a left ideal n is J -symmetric if [ ss'cn
for some 6€ S s'c S'] E— [t'tcn, for some t€GS, t'e S,J
for any {S,S'BC m. o

Remark. If under the conditions of example 1) all the 7e$t

- -

ideals of R ’ are weakly regular (e.g.
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R contains a right unit)’ then the condition for T -sym-
metricity of n takes a more compact form:

If for any {x,y%c @(RJ there exist (s, 5 )e S x S’
such_that #sys‘xc n, then for any {2,y §C TCRr)
there exists®,t')e BxS’ sucn that tlytx < n,

7. Extensions of presheaves and fully quasicompact semi-

schemes. Let (R ,'J") be an affine g —semischeme’ ng-

a full subcategory of TIQR. formed by the various in-
tersections of the filters Srewm y . It is not difficult
to verify that niT is a category with finite coproducts .
8rd the embedding i:fa.i T ﬂg—» commutes with the co- |
products‘ih;herefore’ determines a precositi morphism

n_ﬂ_— _— g_— . To each presheaf F ! T— @ with
values in @ one can assign the presheaf ':: . nT——)
—_ (@ Yepresenting the functor G"T( (=, F)

("the right inverse image" of the presheaf F). This presheaf

is described by the formulas
. R .
Y i, F(@)= &m (F(&)]| 9c g'c T)
2}
for any filter %J of T that show that the

. . AR .
canonical arrow bty F —> F is an

isomorphism for any presheaf F,
. . hd . n
Proposition. The functor (,.: [F( -g_,@) ———)[F(I’@)
is an equivalence of categories., Its quasiinverse is the

functor IF("U‘ o
!R -R =2 “R
Ly — L * F l#F,

®¥lF(T,0) °

It is left for the reader to either prove this statement

or to regard it as a corollary of the general facts presented

in &%,
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An affine 1| -semischeme is called quasifinite
(fully quasicompact) if the precositus g_z ((T', 6:') is
quasifinite (fully quasicompact).

Clearly, quasifiniteness of the 1] -semischeme
(R’ﬂ') implies the full quasicompactness of the
semischeme ( R , ﬁg—).

Proposition 5 and the above proposition imply

Corollary. If R . 9J is a quasifinite -semi-
- -~ e .- o~ 2 J — A—e—
~ dey

schemesthen for an arbitrary R-module M the presheaf Mg =
__.R. . N . | o . .
=t Mg" ‘@H&m(g M "chg'eJ )-the right-extension of MT

onto " - is a sheaf if and only if the anninilator of
an M ,1«3_ T - admissible ( J -symmetric if
(R,T) iz a semischeme).

Example. Suppose that every filterfrom T is closed
under the arbitrary intersections of ideals (or equivalently,
every filter fvom T contains & minimal ideal). Then,
as is not difficult to verify’ any f-ilter of finit’e type of T

win
is quasifinite. In particular, if R is, left artirk ring, then

A
any affine‘ﬂ:se‘mischeme (R, is quasifinite: since
R is an ﬂrtinkring, then the intersection of an arbitrary set
of left ideals equals ' the intersection of ideals of an
appropriate finite subset; since R is left Nederian, then

all the cofilters of left ideals are of finite type.(d

8. Spectra of affine semischemes. Let (R,'J") be an

affine 1l -semischeme.
A left ideal  p of ‘R is called J-pfime

it [peFUYI[pe FUY]  rorany {F,9}cT,
The family of J- 'Dri.mg left ideals of R

is denoted by Spec, (R, T7).
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Obviously, any J- Pum ideal P is J-
admissible., In particular, if an R-module M is such that
the annihilator of any its element is g_-r‘u}w&, y
then Mq- is a w-sheaf,

On SPece(R,U')) determine a topology taking all the
ofes F nSPec (R T) for a

basis of closed sets. It is clear from the definition that

subsets of the form Vg_—

¥ — Vé__ is a functor commuting with coproducts
and therefore determining a morphism of the cositus

SPCCq(R,T) into the precositus J .,

———

Proposition. Let (R_ ,T) bea 1l -semischeme.
The spectra of 1l -semischemes (R ,T) and (R,"T)
coincide as topological spaces.

Proof. Since the embedding Je——s No- commutes

with finite coproducts then -
Spec (R T)CSPece(R T) Now suppose {97 %SC ”g’,
i.e. :} ﬂ g‘ and (Qj n ‘eﬂ for some {‘(F;,%ki
i€y, kechT, and pe spec (R TNFUG
Then PE Spec, (R,IN(F,; LLY,) for any ({,k)E Tx (K.
1r p¢ ®, for some k then p€ F; for all (€ J
and therefore P € n{?‘- |[e ]‘}, 0

Let (R 'J') be a }l- semischeme. To any closed
subset Wc SP?CQ(R T) assign the filter 6:\,\/ R the
de}’U{S-'eO‘lVG.— cwi,

Let Ty  be the category comlgfmg of allHy_JW,

"radical closure™ of the set T

n
W € o£ SPQCQ(R ,T) . Then % is a cositus isomorphic

to M . Clearly'the spectra of (R ,T)

and (R , n%) coincide (see the just proved proposition&).
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In general case T¢ is not a V-category even if
is a V-category.

9. Spectra of semischemes and the left spectrum. Concern-

ing "richness" of SF“Q(RoT) for an arbitrary gt -
semischeme we can only say that this spectrum contains the
set T_L-: IER\U{'}' | Fe T} . The going is much better
when T is a V-category.

Proposition. Let (R U') be a semischeme. Then

SPQQQRCSPQ (R, qT) . In particular, SFe(’e(R T

de
contains the set Max ¥ R= Manx RﬂI of all the

maximal left weakly regular ideals.

Proof. Let us show that SPQCQ RNF= SPQC{ RN 3".\‘
for an arbitrary topologizing filter SF) where Cj}
is the radical closure of .

For this consider the family Qg: of topologizing
filters (Q{S such that ﬂ Spece (@ nSPec R.
Clearly [{@4“‘%7_‘@@ :\@ [Qd ‘?d GQ ]
since SPece RN Qd (%z—speceﬂﬂ (9,0UY,) for any

topologizing filters %1 and Cedz . Clearlb; the
~
union F of all the filters4vom Q F belongs to
~ ~ ~
Q, together with F o SC' . Thé&yg , SZ'
37 4 ~
radical filter containing F and thurbore Fe Q,;
If 3 and @4 are topologizing f’ilters’ then

'?V‘QI:\):(??%) and the just above implies
SpeceRN (FV &) = Spec,RN (Foep) = SpecsR N Fo @)=
= (Spec,RNTF YU (Spec,RN @) = (Spe,RNF I (Spec,RNE),
Therefore Spece R c Spece (R , TIe R) Obviously,
SPQCQCR,'J'I@R)(:S'P%(R’U') for any semischeme (R,T). ]
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II. The symmetric spectrum and the prime - ideals.

Let (R,'J') be a 1l - semischeme. We endow the set Spec(R '.T)d‘5

'—'-IRﬂSPeC((R,'f) with the topology induced from SPQQ ¢(R,T), and
call both the set and the space of this Spec the symmetric
spectrum of the 1l - semischeme (R,O’).
Proposgition. Let (R,T) be & | -semischeme such that
ONAANA AN NN

the precositus ‘T has a basis P , consisting of the filters
A" Vo Ve W Vg e Ve ANANNANANN NN AN AN N

of Rifindte tyge. Thom every deel from Spec(R,T)
is contained in some ideal from Spec RNSpec(R,T).
AN NN

A 2 A Vg

means literally that (R, T) is a 1l - semischeme,
Rc T and Jc< PO (i.e. every ra-
dical filter from J is the intersection of some filters from
3 ). From this we get SPecC (Q,'Pgn)c SP?Ce(R:T)CSP?Q(R,B).
By proposition 8 SpecefQ,B)z ,S'Pece (p 0
and, therefore, Spece(R,T): SPQCe(R,'J:’)) . Hence, chang-
ing 7 by P , we may consider J = consisting of the fil-
ters of bifinite type. For every pE SPQC (R T) let
T, ‘us{ ?GT}P¢ T} Since ZT U{?I’TGT} is & filter
of bifinite type, then by Proposntwn 2.8 every ideal from
IR\ZTP , including p , is contained in an ideal from
Max (TR~ ZTp) . as FoYc FUYCSST,
for any {T,QAECT , then by Corollary of onposi'tton 2.8
Max (TR 2T« SPQCR a

(_J_o_x_‘glla_x:;:. IMOndltlons of the propog/litons

i Sl Vg UL WL U W Vg Bl B Ve s U '

1) Por every closed subset W of Spec (R, T ) the sub-
ANNNANANANAANANNNNNNN a4 AANAANAANAAA

get wWiNSpeeR is demse in W.
2) If SpeeRC Spec(R,T), then

[FNTR = SNIRTES [vi NSpec R=V,NSpecR 1S [V NTR= Ve nIR)
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Corollary. Let M be an R-module such that the annihilator

—— o~

of any element of M belongs to SPece R . Then for any

semischeme (R, J) the presheaf M is a -
———— T —— —— T —— T g— TN
sheaf.

This corollary (following from 7 -admissibility of

Spece (R,‘T) ) can be considered as a generalization of
Corollary 3.2. In fact, the annihilators of the elements of
irreducible R-modules are regular maximal left ideals that’ aswe
know,  belong to Sche R.no

10. "Quasicoherent" sheaves on spectra. To a canonical

morphism of precositi "Tq/: SPece(R,’J‘) — __O: the "direct
image" ‘functors TC[/# : [FO(SPece(R,U'),G)—-) [}Z(G:,@) and
Tq/* . ’F‘(SPQ%CR,T),Q)__, F(T,@) correspond. To them
we can assign "left inverse image" functors, i.e. to find
presheaves and sheaves copresenting functors
F(7,0)(x,79,-) ana F(T C)NX,79,-)
respectively.

For an arbitrary R-module M denote 1I':/V] T
the left inverse image of the presheaf MJ’ and by
“Mg- the sheaf associated with ="t/\/l,\]-—.

The stabk of #M;_ at a pointrof the spectrum

is isomorphic to the colimit of R-modules ?"M:Gf&__/\/l’

i.e. TF -localizations of M, with respect to the inductive
T

subcategory . of formed by all F € T that

P

do not contain P
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II. The symmetric spectrum and the prime - ideals.

Let (R,'J') be a 1l - semischeme. We endow the set Spec(R '.T‘)d‘5

=IRnSPeQ£(R’T) with the topology induced from SPQQ ¢(R,T), and
call both the set and the space of this Spec the symmetric
spectrum of the 1l - semischeme (R,O’).
Proposgition. Let (R,T) be & | -semischeme such that
ONAANA AN NN

the precositus ‘T has a basis P , consisting of the filters
A" Vo Ve W Vg e Ve ANANNANANN NN AN AN N

of Rifindte tyge. Thom every deel from Spec(R,T)
is contained in some ideal from Spec RNSpec(R,T).
AN NN

A 2 A Vg

means literally that (R, T) is a 1l - semischeme,
Rc T and Jc< PO (i.e. every ra-
dical filter from J is the intersection of some filters from
3 ). From this we get SPecc (Q,'Pgn)c SPece(R;T)CSP?Q(R,B).
By proposition 8 Spece(Q,B)z ,S'Pece (p 0
and, therefore, Spece(R,T): SPQCe(R,'J:’)) . Hence, chang-
ing 7 by P , we may consider J = consisting of the fil-
ters of bifinite type. For every pE SPQC (R T) let
T, ‘u&{ ?GT}P¢ T} Since ZT U{?I’TGT} is & filter
of bifinite type, then by Proposntwn 2.8 every ideal from
IR\ZTP , including p , is contained in an ideal from
Max (TR~ ZTp) . as FoYc FUYCSST,
for any {T,QAECT , then by Corollary of onposi'tton 2.8
Max (TR 2T« SPQCR a

(_J_o_x_‘glla_x:;:. IMOndltlons of the propo%ns

NN NN

1) Por every closed subset W of Spec (R, T ) the sub-
ANNNANANANAANANNNNNNN a4 AANAANAANAAA

get wWiNSpeeR is demse in W.
2) If SpeeRC Spec(R,T), then

[FNTR = SNIRTES [vi NSpec R=V,NSpecR 1S [V NTR= Ve nIR)
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for any F, BE T,
PP

Proof. 1) The first statement is equivalent to the state~
ment of Proposition 11, whose "topological" formulation is as
follows: the closure of every point p€ Spec (R,T) contains
a prime ideal. ,

2) Now let {4;\teI} be a family of the radical filters
of bifinite type, Y =(\{®.{{€I}. Then for every filter FcI,R
[TﬂSpecRanSPecR‘i%(:TnIRC YNIR] (1)

Indeed, let € F(\IR and x¢ %, . By Corollary 2.8,
K p for some pg€ Magc(IR\“?:(‘é), and Maa (IR ~'gYc SpecR .
So, if ?ﬂSpeeRC “’dﬂSPecR , then FNIR< YNIR .

The inverse implication is trivial.

Since, by hypothesis, we have SPecRC SPQQ(R,‘J’) , and,
according to the first heading of the corollary

[ V30 SpecR=VigNSpecRTI= [V N1R =VgNIR],
the desired statement follows from (1). O

In what follows we will find out the conditions under
which all the prime ideals belong to the spectrum of the || -
semischeme (R, 7).

12. The prime spectrum and the category Sle.

A set Y of left ideals will be ocalled symmetric if ‘Y NIR
AANANANAAANA

is a cofinal subset of ‘Y . A full subcategory of T, R formed

by symmetric filters will be denoted by SymtR.

Let SppR be a full subcategory of T,R consisting of
all the filters JF such that Spec Rﬂ?oX=SpecRn(3’Uf€')
for any set X of left ideals.

Proposition. Sp!R possesses the following properties:

ANANANANNNNNNANANANNNNANNNANAANAASSNANANNANNANAN
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1) SPeR is closed with respect to o and_the

union of dtrdcted with respect to inclusion families of
JV\AJW‘V\_/WA e e

filters (inductive colimits);

2) Sym,R < SPQ R

3) SPC R goitains together with every filter T

Proof. 1) The closedness of SPe R with respect to the

Muetipe;cat[on follows directly from the associativity of the

multiplication in Y, R: . For every {F, F,}c SPe R we hav
SPec RN (?L0T27o (?d = Spec RN 3:40(3‘;" YY) =
=Spec RN (FL,UF,o9Y)=,...

Let {3—“ lo(EO{} be an directed with respect to in-

clusion family of filters of SpeR, m a left ideal,
a prime ideal of U Fuloe{m . Assume that
P a pri (U Sdeimy - 4
md p i.e. there exists an element (Such that \x € m
x q(-: P . By hypothesis (p:x)€ Fg for
some o« € O« . But then (p:y)e€ 9;( for any
Yy € m((R,'x», since F, is uniform;i.e.P€ 9:;( o{(R,x)},
Since (R,')C)¢ p and ?;(GSPCR) then p € 3:(.
2) et F be a symmetric set of ideals , m
an arbitrary left ideal , P € SPec R . If pe Fofmi,
then for any X € m there exists an ideal n, € FNTR
such that N,x < P . Either m c P or x ¢ P
for some € M » But then n < p and therefore
pe F
3) Let FE SPe R and 5P3- R be a full sub,—
category of SPe R formed by all the filters F Svem
S ‘= F
SP@ R such that Spec RNF pec RNTF,
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The first heading yields the existence in SPTR of a
~

finite object F=U{¥[YeSpRY uhich thanks to the closed-
ness of S R with respect to o is a radical
frilter. It follows, ¥ € SpgyR.O

Let us that SPQ R can be in general con-
siderably wider than Syme R : e.g. the radical closure
of a symmetric filter should not be necessarily symmetric.

13, Symmetric filters of finite type. The situation

gets milder when dealing with filters of finite type.
froposition. 1) Let ¥,%) Dbe _ . sets of left ideals,
where F  is symmetric and ¢ Me.
Then the family of ideals of the form mmn,

where me TNIR , e‘%) W Fo &y,

2) For any symmetric set F  of finite type its
7~

ragical closure F  coincides with FVLE() FE
24 ?
vhere TW=F, FEO_g@, 7
Proof. 1) Clearly) mn € Fo ¥y for any

{F,a9tc 27¢R ney ana me T

Now, let F be symmetric and Y € Fo € . Then @
is of finite type' heng vV € Foq h}) where N = CR,I)
is the ideal generated by sem % ¢ JJ (R D) . By hypo-
thesis there exists an ideal wm € FNITR  such that
mx C vV « But then mn = m(R,x)c y.

2) The just proved fact implies for {F, ey c 2_I¢ R;

a) [3-' and ¢ are symmetric and ¢ is of
finite type | = [?o @ is symmetric];

b) CG" @y are sets of finite type and F is
symmetric | = r Fo©y is of finite type] .
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In fact, in the first case the set of ideals {mn |
meFNIR, he GNTRY is cofinal in Fo @& . In
the second case such is the set of ideals of the form
v(R,t), where V€ F NIR , t€P(RI, (REDE Y,
Clearly, ¥ (R,t) =Yt and by hypothesis there exists

se P(RY such that V= (R,s)€ T  and therefore
vt 2 (Rsnt=R,st)e Fo @,

Thusxo' L it F is a symmetric subset of I, R
of finite type,then so are allde F €  and therefore
‘T(“)Zeg/i F (@) | 1et us show that T, FC 9-_(“)

Let, nedF <o F T i.e. N¢ g-""o)o{‘m"; ,
where m € ?(k) for some k. Since f}'——(e) isa£ finite
type’ we can and will assume that m=(R 5) &t pe 42
for some 4 € (P(P\) . The ideal (n:4) belongs to
FT® tor some £ >1 and therefore so do all the ideals

(h:y7 , where Y runs {P((R;sﬂ) . Hence
h e g_—(e)o .—3_—(10 - v;—(co)

Clearly’ all the symmetric sets of left ideals are
uniform. Therefore T(W) is a radical filter. O

Eegagk_. In addition to the promised in the formulation
of Proposition we have established the invariance of the
family (subcategory) of symmetric subsets of finite type
of IQ R with respect to o and the radical

closure. O

o
14, Examples. 1) Consider the filters" §:={heIeR |

s n}) where o€ TR . It is not difficult to
see that “F e PT = XBF for any {«,BYyC TR . 1In
particular, “37 (w)—_— U“T(C\ is a symmetric topo-

¢>1
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logizing filter. Notice that [ &g is a filter of
finite type ] <> [the two-sided ideal is a

finitely generated left ideal],

2) For an arbitrary left ideal n of R denote g
the ideal n N (n: R) - the maximal two-sided ideal
contained in N . Let m E— TR -—{l’l €I,R | mC('B (ng),

where ﬁ Crne) = n{PGSPecR |h3C P'ﬁ is the Baire
radical of h-s . It is not difficult to see that oCm

coincides with the union of all the symmetric sets F’
/
such that Spec RN F'= Spec Rﬂ£m={pespeck [mcp},

m .
In particular, ‘3'(“’ )C .,C_ m . Now suppose that

the filter ™F 1is of bifinite type (if R satisfies

the ascending chain condition for two-sided idealé then

all the Y c Ie R are of bifinite type). Then
'-__——_ ~
£ -(IRﬂ "‘S—") . In partlcular 40", = m and
£m if and only if m?' is symmetric.
—~
In fact, let <€ TR~"F . By Proposition 2.3
P
A < p for some P € Spec R~ "F, . Since
" ¢P1'”\!m o(é ,C and therefore IRﬂoC'm <
S —————
LR and = (IRN L, )cmgr

Conversely, since SPQC ROA™ ’}' SPQCR(\ meF
thanks to Proposition ’12 then "‘9—'[\’[‘ R < ,C NIR
(see Corollary 11).

3y FProposition 13 if a two—-sided ideal ™m is

tdeal
6 A left| finitely generated then MFed o m 9—' and therefore
""}’ o& {hGIQR‘YY\C B(ns)},ﬂ
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15. Symmetric semischemes. A ]l-semischeme (R,7 ) will be

called symmetric, if J oconsists of symmetric filters.

ptadhul ghdndendh ol g

Then  Specy(R, T7={nerea \ny€ Spec(R, TV},
and for any closed subset W of Spec(R,T) M WNIR =

15 Y2 Vo U A A VEVE W e 0l

=WNSpec(R,T) 48 deuse in W.
2) ,]3\ (R, T) memischeme and T c SPCR , 1;\1}9/11\

AV Ve Ve VA A Y " a Y

SpecRc Spec (R, T) .
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3) Let (r ’TT) be a symmetric semischeme such that the
[ AAAANAAANNANANANNNNANNNNAANNANANANNN

precositus T has a basis consisting of filters of bifi-
Pa e A a Ve Va e — ANNANNNANNAANANANNAANANANANANANAANAAANANA AN N
nite fypee Toen FoBpecRNF  fegginiscionfran T
into the preorder of the subsets of Spec R. In particular, T
NN NN NN A NN AN AN NN NN -—

is a cositus,.
NN N

Proof. 1) Let ne I, R, nge Spece(R,T)3 m
{F,935c T |
Then  [heFlUY [ [neFl Yl [nie FUY IS
S [heTUYT; [meeFlYle [meFlLYlS
S ImeFlUYlas[me FUWYT,

2) Proposition 12 implies that ( R, SPCQ D is
a semischeme and SPQC Rc S’oec (R ,,S’Pe R) . Obviously,
if g is a V -subcategory of the V-category

SpeR » then Spec(R,Sp,RDC Spec(R,T)

3) Follows directly from Corollary o$ Preposition 411 .0

16. When is the Embedding SPQCRC—) Spec (R, ) con-

tinuous? For any pair of twosided ideals oK

> B the
o P ol . . o = XPA

equalities “FoPBPF=XRBq implies "F VP F="PF

Hence an arbitrary set Q of twosided ideals, closed with

respect to multiplication (m,n)i— mn generates a V -

pas
category (‘TS?.: {'M{;‘ ( MGQ} . Since g;-z. c SPeR ,
then V

Proposition 1) For an arbitrary multiplicative (i.e.
———————— AANANAAANANANAANANANNANANANANNNC Y A

cloged with respect to the multiplication of ideals) set GP. os
AN NNANNANNNANAANNANNNNAANNNANNANAN NN A

tuogided 1deals of R the inclusion SpecR <y Spec(R,Tg )

ig continuous (the topology on Spec R is defined, as usual,
ANANANNNANNNS  NANANNANNNCNNNN NNNANNAANAANANNANNN

by the closed subsets V() :-.{peSPQCR ‘o{cp’ﬁ , X ETR ).
ANANANANNANANNAANNNNAN
2) If (R,T) is a symmetric semischeme and J has a
ns ? NANNANACNNNNANN AN N
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basis, consisting of filters of bifinite type, then the embed-
a2 %aN NN A a O e g Wa Ve \STe W INNNANNAN

NN

ding Spec R = Spec (R, T) is continuous if$ J=Tg for
_lfrggf. 1) The continuity of the embedding Spec R<_»
<sSpec (R,T) follows from the definition of the topology on
Spec R and Spec (R, T ) : we have m?ﬂSpech V(im) —,
a closed subset of Spec R- for any m € TR
2) Wow let (R, T ) be a symmetric semischeme satisfying
the conditions of heading 2); the embedding Spec R = Spec(R,7T )

is a continuous map., The latter means litera-1ly that for every

Fec T there exists a twosided ideal such that
SpecRng::VCd)ﬁ&{ peSpecR | ¢ pY . If 0(¢ T,

then by Proposition 2,8 <RC (I/ for some q from Spec R\¥

contradicting the assumption. So, K € F and together

with the filter & contains “é—'\ = {/o(\'9 , the

redical closure of {o} . Since Speckn“? =Specﬂn F .,
then by Corollary 0% Proposition L1 IRn’}'zIk{\f’§ and, consequently,
9:2(%—5) - 9(,‘3\7 . Therefore, ?:“é"\ . Note
that since ¥ is symmetric, F=4{ne IL,R| Vinc FNSpecR =
=V (@)Y (see Example 14.2). O

Corollary. Under the conditions of heading 2) of Proposi-
a0 Y e va Ve S T Vo W W e e e W e e N e N e e

- — — —

tion 16 T is a fully quasicompact cositus.
NN

Proof. Let T3 be a basis of the cositus J (see Pro-
position 15) consisting of the filters of bifinite type. Show
that all the elements of To are quagifinite,

Let {F,F, |t €T} vea family of filters from J
such that F = ﬂ{'}}lie’f}. By proposition 16 there exist twosided
ideals {of ,;|i€ T} such thet F={nel,R|c fk(n)T,



- 127 -

Foz{n la et} snd F=N{F: |reT} i$s ,,:,(Supoo) =fe @) .
If % is a filter of bifinite type, then [supcx eF] 7[:« q/J.(
€ ¥ for some finite subset I I] Therefore M{supo( ItGI.}),_.

",#((o«) hence n{G' llGqu] F.o

17. Structural presheaves on the primo gpectrum. For
ek
T {h eI}R)V(ni)cW} Clear-

ly, w? is & symmetric topologizing filter and for every

every subset Wc Spec R 1let

me TR the filter wm)‘}‘ coincides with °Cm
in the notations of Example 14.2. The arguments of Example 14.2

)
imply that the correspondence W = v, F , where
denotes as before the radical closure, is inverse to the map
F Spec RNTF when ‘W runs
the set ¢! SPQCR of closed subsets of the prime

(o mal “A

spectrum, and J runs the set of filters JIRZ{ CFIO(EIR}.

P
In other words, the map WH.WT is an isomorphism of the cosi-

ti JTp — Spec R, which (via the direct image functor)

induces the isomorphism of the corresponding categories of pre-

sheaves and sheaves. This isomorphism sends the canonical pre-

sheaves Mg , where M G 04 R—inoa{) into the pre-
Yo d

sheaves M , which send & closed subset W' into

Grg m .

w
For an arbitrary multiplicative set of twosided ideals
S2 the collection of sets -{'V'(o() | € Q} formsa co-

situs, which is isomorphic to the cositus .T_Q_ and is

a basis of the topology whose closed sets are o=

"-(V(S“P‘X )f]] , where {d;|¢€T"y runs the subsets of
Q The restrictions of the presheaves M on the topology

~
tZ.Q. will be denoted by MT& .
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Proposition, Let R be a ring with right unit. Then for

——— NN AN N e e e A [ g e e W
LY Roee b L Het My, dean wisheaf the co-
LT (RYM = rM, S lenerie

( r'/Vl is an R-module of the global sections of M’C , as-
soclated with the presheaf sz ).

Proof. 1) If there is a right unit in R, then {R} is &
radical filter of finite type. According to Proposition 2.8
(see alsc;*fs_orollary . ) every ideal from IR\{R'} is contain-
ed in an ideal from Masc (IRx{R'B3:°‘:‘:§ Max R ,
and all the maximal twosided ideals of R are prime . In par-
ticular,

[<€TR, V)= J&S [ =RT, (1)

r {o;|ieTyc IR and ré IV(o(;):V(qu(‘-)zﬂ’then,
as follows from (1), sup{o; (teIy =R . Then (due to the
exigtence of right unit in R) Sup{q(jljej ’5——- R for a
finite subset J < I; consequently, ﬁ{V(o(J-)lje J’} :,@’,
Therefore, the existence of right unit in R implies the qua-
sicompactness of Spec R,

2) If R is & ring with right unit e, then every
morphism §'R —> M of left R -modules is the right multipli-
cation by f(e); i.e. the canonical morphism M I—)HOmR(R,M)
is an epimorphism of the R-modules with the kernel {R} M. From
this (and from the radicality of the trivial filter {R7) it
follows that the canonical morphism {RY'M— {RTY™ M =G {Rl,
= HOmRCR,I{R‘ﬁM) is an isomorphism,

3) Let F' be an o -sheaf over a topological space X and

F? the associated sheaf., Then for every quasifinite closed

gset W (i.e. WE oeX such that the complement to it
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is quasifinite) the natural arrow F(W) —»F*(W) is an iso-

morphism, In particular, if X 1is a quasicompact space then

F(}Z‘/) ————)F‘q(ﬁ’)d}—‘—g e is an isomorphism.

4) Let M ©be an R-module such that MT.& is an €O -~
sheaf. Elfen MT_Q ig also an ) -gheaf. Since the map W1
— W F induces an isomorphism of the category of
the closed sets of the space (Spec R, T, D)
with the category ‘T_SQ , the sheaf ;\\4’.(- is an (¢p-sheaf.

ieacling Q

According t0)3) of the proof, for every quasifinite closed
set W from €, the natural morphism of R-modules GIWC’T;-‘ M—
—> /r\jll,?h(w) is an isomorphism. In particular, since
(Spec R, T, ) is quasicompact (Spec R is quasicompact accord-
ing to step 1) of the proof) ﬁ—cﬂw)= G({R'IIM"') Fﬁa
is an isomorphism. As we f(i;.‘ld out in step 2),
GrigaM = {RY™M. O
Example. Let G2 = T ‘R be the set of all
twosided ideals of R finitely generated as left ideals. It
is easy to verify that the set TC¢R is multiplicative.
Tndeed, let {¢,tYCPR) and the left ideals menerated
by s end t , say X= (R,s)gsR$+S, B= CR,'t), are
twosided. Clearly, Ql,st)c o( '3 . On the other hand,

x p =(Rs+s)(Rt+t)=(Rs RIt +GR)t + Rst+st
c(Re+9)t + (Re+8)t +Rst4+st = Rat+st 5 (R ,st),
Every filter °<§:\ , XE TR , 1s symmetric and is

of finite type (see Proposition |3 and Examples |4 ). The
0% Proposition

proof of Corollary|16 implies the quasifiniteness of the cosi-

tus ‘J_IQR , and, therefore, the full quasicompactness of

the space (SPQQR , 'Z’IeR) . Therefore for
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every w-sheaf F on (Spec R, Trep ) and for any V—(o())O(GI(R,
the canonical arrow F‘(V@())—)F'QCV'(&)) is an isomorphism, and
for an arbitrary closed subset W of (SpecR, Trep)  we
have FA(W)x é’ln{F‘(V(oONWcV(«),o( eI®R} (see Propositions
7, 3.6 and Example 3.6.1). In particular, if M is an R-
module such that AMye, is an ¢ -sheaf, then ﬁg_ . (V‘(o())’.:'G,d,\M
for every XK€ T¢p  and M {-"Ie R(W)“—' ¢im (G«§.~IM 'wWe Vi),
o€ IR) for any W e CTrep -

Note that (Spec R, Tp¢p) = Spec R, if R is commutative
or left noetherian., In general, the set IQR (and, con-
sequently, T pegp ) may be rather meagre.

18. Semiprime = rings and modules. Denote by I'ER the
(4

gset of all the proper ideals h e T,R such that n, is a se-

miprime ideal; i.e. N4 coincides with its lower Baire
radical _F.(nj)z N{p| P €V (ng)t . Denote by R-.«Emod'
the full s;bcategory of the category ‘R-mod , formed
by all the modules M such that Ann§€ j["etﬁ R for
every $€ M~{0% . The modules from R—Emool will be

called semiprime .

family of ideals their intersection.

2) The category R~ fF..moc[ contains together
ANANANNAAAA ’ ANNAAANANACANN
with any family of modules 1ts" - product and all the submodu-
ANNANAN T UNNNNNANNNNAN AAANANANANNANANNANAN NN NN
les of every module.
[0 50 Y Ve Wa W W Ve Ve Ve v Yo
3) The following properties of a twosided ideal h are
NN NN NN e N U N A
equivalent:
e e g N
(a) n is semiprime:
NN J

) (nRY=nNn and (n:x) € Isz
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for every x ¢ R H
AN
(¢) (n:RY= N and the left module R/h

NANANANNNANANNANY
belongs to R—‘mmoo(,
NNNANNNN . A
Proof. 1) (i) (N{mi ljeﬂ) N{ ;‘l 37 for
every family of left ideals {mi|j€T§ .

Indeed, (((\{miuej}): R) = N{Cmi:R)Ij€ Ty
consequently,

M _md=(0 =N mi)iR)= ncm nemd: ) = n m:‘;.

(11) Clearly, ﬂ m; c";(ﬂ my )C n J'k(md)
Therefore, since ml __J_I;(MS) for all je7J,

then n"\mé [j€I} is semiprime

2) et {M; TeT] be a family of R-modules and
§= (¥, )G'TT M. . If Ann% GT"PR for every €€ T
then Ann% n Ann‘g GI'FR due to 1).

The semlprlme/'ness of the submodules of a semiprime mo-
dule is obvious,.

3) (a)=>(b). It is clear that V(n') = V((ni R)) for
every n'e TR . Therefore h =(.tcC(h: R)) and, con-
sequently, (h:R)=n , if .‘h—:(k_(n) .

Let ne IR and x & R ; set U(1)${P€SpetR!x¢p},

It is easy to see that V(n)ﬂU(’x):W(Nl(R,x)))ﬂU(x ; con-
sequently,

V()= (VOONUENU WV NVE)=h: R DN TENwmWe) ( 1)

For any W C SPQQR let 2(w)= n{P [pewW?
o _ It follows from (1) that
s cny= 2(VIn. RN T 6 ) 0 2(VIn) V() (2)

Now note that (n:(rR,x))=(n: %), and

HlnixINC LV DNV ), R,x)c? (VnNV (),
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This and (2) imply thet K ((nix),) (R,x)<

cfelnd . This means, that if h =Jf(n) |
then Je{(nixi)C (ni(R,xX))=(n:x), :
i.ee (r\:oc)& is a semiprime  ideal.

(W)=>(a). If (nix)E Ifk for every x € R,

then (wn R)‘—'ﬂ{(h:oc)lxe R'HCIEFR , as claimed in 1).
The implications (b)€&=y (c¢) follow from the definition of
R ®

mod , O

Corollary. The left R-module R is semiprime if and
e " e W g W e e AN CANANCA A

only if the ring R is semiprime. (i.e. when O is a semipri-
L S S o e e Y% L T e S G LN

me ideal).

Proof Pollows from heading 3) of Proposition 18.0

19. Semiprime ideals and w-sheaves,

Lows. gt (R,T) ‘hea il-gomlscheme; Geof T
the set of all the T ~admissible left ideals;
ANANANANAANANANNNNN AANAN AN NN AN AN

AT E N{F|FeTT,
Then OCAT o AT O(o/T
ilrgog. Let Y€ BT o fmY , where m & NT
Then [y € FUY = Rv:x)e?ll‘eo for any X € T(m')]'r?
? 0)eFeY for any x € TCm) ; ieee, YV E FoYo{myC Feo'@y
, since AT < ¢ , and, therefore

YoAT=¥T], o

Proposition. Let G2 be a multiplicative set of twosided
e INAANANAAANAANAANANANANNNATNNN NN

v— o e mm ———

ideals of R guch that (R, Tg) 1s & symetric se-
NANANANANNANSNN
igcheme, Then all the ideals from IJ-R are
I Ve Yo VoV, Uy e Ve Ve Ve We e We e W
admissible,
NNANANNANN-

Proof. Let o« and F be twosided ideals such that the

~ -

P
radical filter P T , generated by OB, is symmetric.



- 133 -

R ~ P
Then for every veIeR we have [VG“TVPgr:“ﬁg'J@
A
<=>[74€“P?]<=7[mpc({x(v5)]. Ir veIfR , lees U =fe v,
then these implications may be extended:
I\ ”~

E[Ve*PF=*FoPF]=>[ve*F-PF 1. O

Corollary 1. Under the conditions of the proposition 19

—————— NNANANANANNANANNANANANANANS VNN AN NN
all the ideals from I‘f’R UIéFR o/\’_]}z_
aze  Tq -admissidle

This fact follows directly from the proposition and from

the lemma. O

Corollary 2. Suppose that the conditions of Proposition
ANANNNANNAANANANNAANANANNNNNANNANNASNN~

19 are satisfied,
f\/\/\/\/\/\/\/\/\

If M is an R-module, such that Ahn‘;E I’#RUI Ro/\‘]'s.l_
PN

Vavs

fov every fe€M~DY, then M Tq is an @ -sheaf, In particular,
AN MNANNANANANANANAN ANNANNNNAN-

M ¢ is an w-sheaf\ if M is a semiprime module,
J'L AN ANANAAN AN AN AANAANAN-
and Rt' is an (W-sheaf when R 1is a semiprime ©ring.
NN~ NNANNNAANANANL AN NANNANANANANN VAN
The statement follows from Propositions 5 and 19, 0
Corollary 3. Ir(ei R be a ring with right unit, G2
————— NANNACANNAN AN -
a)
a multiplicative subset of IR such that *F is & symmetric
AN N NN NN ANNNANNCAN

filter for every K€ Q . Then for every semiprime R -mo-
ANNANAANANAANANAY — PAANANNANANNANANANANNNANAN

% M the canonical arrow M — Pﬁrg— is an isomor-
NANNANNANNNALANAANANAN
R
phism,

Proof. If M 1is a semiprime module, then ﬁ Ta
is an w-sheaf according to Corollary 2. Proposition 17 impli-
es that the camonical map M —> [ Af/\\lt%, is an
isomorphism. Now note that = {RY*Mm <& Mn if M is
a semiprime module, O

Corollary 4. Jet R begzing suchtbat Txta  gola

—

cides with the topology of Spec R (see Example 17); i.e., for
NN AN Ia Y Vo Ve Ve N " NN
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svery X ETR there exigte o family {o]i€ Iy TR
such that o = Sup{o; | €17,

Then for any semiprime R-module M there exists a uni-
que up to imomorphim shesf M on SpecR such thay

MEW@)S Gag M for every o« ¢ T?R -

1.2 Wi Wl e )

Corollary 5. Let R be a left noetherian ring. Then for
—————— VS [ Ve W We Ve WV W Ve U e N U U, e e N 2

ew%\i/m@, R-module M +the canonical presheaf}' is a

’ AN NN NN y
sheaf. In particular, R is a sheaf, if R is semiprime .
NN NN NN NN NANANANN AN\

Corollary 4 follows from Corollary 2 and Example 17; Coro-
llary 5 is a particular case of Corollary 4 . 3

Remark., The strongest, as far as 1 know, of the published
by now statements on the structural presheaves on a prime

Oystaeyen

gpectrum is due to Van and Vershoren; who used it in
their monograph [L('] as a starting point for developing of a
non-commutative analogue of algebraic geometry. In our notation

their statement sounds as follows:

Theorem. Let R be a left noetherian ring, If M is an
== ~r ANANANANNNAANANA A AN~ N

—_— — -

AN
R-module such that (Ann§)s=0 for every ¥ € M~ {07,  then

f\t

the structural presheaf M is a sheaf, W, R is
NANANANNANNNANANANANNNANL AANNNAANANAN Vava
a sheaf if R is a prime ring (recall that the ring R is
N NN INNANCANANN
called prim if its zero ideal is prim ).

This theorem follows in fact from the symmetricity of the

A A 04 Propositiond

filters ¥ , X €IR, and Corollary 1;. Corollaries of Proposi-
tion 18, and, in particular, Corollary 5 are considerably
stronger. O

Exemple. As is well known [§] the universal enveloping
algebra 'U(OJ) of a finite-dimensional Lie algebra
Oj over a field of zero characteristic is left- (and right-.)

noetherian and semiprime . Therefore, to U(‘O;) Corollary 5
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~
is applicable and we see that the canonical presheaf U'(cy) over

SPQQ.U(a&f) is a sheaf. Since Ugf)is unitary, the natural
map U(%)-—) F’g C(%() is a ring isomorphism. 01
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§ 5. Geometrizations of the left spectrunm.

1. Localizations at points of Spec,R. The left spectrum Speoln

that had come into existence in examples of section 1 and had ap-
peared until now only occasionally, . will be playing
hereafter (together with its subset Sp/?eolB) the most conside-
rable role. For the convenience of the reader list the relationms,
the principal part of which is established in seotion 1:
IgR D Spec,R > SPQJ'QR DSF:A;CQR
T:QSR D MaxzegRCMa'xcRﬂI:/R
Spec,RNIR = Spec,RNTRE SpecR

Here I"’R is the set of all. the regular left ideals of R,

Max °3R MaxcRnI”qR the sbt of thé maximal regular left ideals—-
the annihilators of ° non-zero elements of the simple R-modules.

For any peg sPeCeR denote by Jp the canonical ring mor-
phism R -——-)Grg- R .

Proposition. 1) It ¥ be @ sadiosl filter of left idesls
of B. For any neTpR the prelmage jgo(Ggn) of the ideal
Gryn ootmoldes with the F-saturation ny={2eR|(n:1)e F}
of . (see 4.8); in partioular, Gz =Cig Ny .

2) For any p € Spec,R the ideal J,,co‘g p) coinoides
vith B 3{AcR|(p: 104 5} (b3 Proposition 1.6 § belongs to
SéeceR nt 1o toomorpito 32 »).

Proof. 1) For any submodule N of an R-module M the submo-
dule 14 (6‘3' N) 1is equal to the F-saturation /V3-={}GM‘
m.%c N for some m€F } of K.

| Clearly, the image of /\/3. by the canonical morphism

M—%H?M belongs to the submodule Hg A ; therefore

? M(N:;-)C: Gl’g:
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For any §€J;MK"3’N) one can find an ideal meg F such that
H
ot - or
m JTM(ﬂCJ’:F M(/\/) . Therefore for every X € J’(m) there exists
n, € f}' such that nxx§€ /V . This means that the left ideal
(N ?) {ZGR [z %G/V} belongs to Fo{mYy< FoF . Since F
is radiecal, (W: ‘;)E F 3 i.e. %E/V:F .

2) 3. (C*F P) P , Since pips. . Acoording to Propositi-
on 1.6 the inolusion pc:p is an 1somorphism in IE’R for every
PE Speo]_R. a
2. Left quasilocal rings. One may consider the contents of this

subsection as a sequel of 2.10.

Definitions. 1) A left ideal m will be called final if
F,,= {R} and quasifinal if F = consist of q-non-proper

TN

ideals (see 2.10).

2) A ring possessing a (quasi)final ideal will be called a
left (quasi)looal ring.

maximal

3) Rings with the uniqueltwo-sided ideal will be called
symmetrically local. (In literature such rings are called local
P e Vg Vg Ve W Ve Y W ﬁ"e
as well as the rings withyunique maximal one-sided ideal. In the
topics that we study here the difference is too essential to be
ignored.)

4) A ring possessing a proper ideal wich contains any q-

proper two-sided ideal will be ocalled symmetrically gquasilocal. O
AN AL
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Therefore, the final ideals of R are the finite objects
of the full subcategory of the category I;R formed by the
proper ideals, This means that all of them are isomorphic to

each other and belong to Spec, R.

e
The quasifinal ideals are exactly the left ideals M R
such that R":"Cma: R s or, equivalently, such that /u majo-

m

rates any q-proper ideal n, i.e. n M. Note that a quasi-
finite ideal itself may be not gq-proper.

If m isa (quasi)finite ideal of R and m is an ar-
bitrary | gq-proper ideal then méﬁsmn(m: R)c/M,
In other words, every ring (quasi)local from the left is (quasi)-
locally symmetric,

5¢

Denote by Spece R the set of 2all p¢g Spece

for every proper left ideal m o4 R +the ideal (’fq-‘m is also
P

R such that

proper; and let SPQQiZR be the subset of all the ideals of
the left spectrum of R such that for every proper twosided
ideal m  of G(?PR the ideal GrTPM is also proper.
Obviously, Speef’: Re SPQCee‘ R,

Proposition. 1) For any pe SFeceR the ring G;;.PR

2) The following properties of an ideal p¢€ Spec, R are
ANNANANANNANNNNNNNNANNAANNANNNNANAANAAN

equivalent:
(a) p€ sPecjeRs
(v) Gig m=m for every left ideal mof G, R ;
3:P /\N\/\/&/\/\/\/\/\/\/\ ~e P
(ec) }\f,' \_/MGMa'reGr?PR , t/}\}/e\ﬁ GTQTP_-/M ::/M 3
(@) the fumetor  Gry,  lsoxect:
() Gy R 1.2 1eft local ring with & final ideel m

NN ANANANN N N

suth that GTﬁ:P/M is a proper ideal;
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.70 Y 4 U S WL N W WAL NI e We We Wa W W, Vg WaN

(£f) Gt R is a left local ring with final ideal («’73_- P .
3:P MNANANAANS P
3) The following properties of an ideal pe€E Spece R are
equivalent:
AN NN
(g) pe SPQCQ‘R -
(h) (}“3: R is a symmetrically local ring with maximal
AN CANNNS Y W NN VAN AN AN
tyosided igeal (Gry,ps.
Proof. A) Let m be a left ideal of Cr? R and G'EF m
=o= P
be a proper ideal. By Proposition 2.7 the latter statement is
a—‘ -
equivalent to the relation JP m € '}' 3 l.e., JP'm > P .
By Corollary 1 this (and the equality G'?' m = G,,}. ("" m) )
imply  mc Gig (Gim) > Gy, P
B) If under the condltlons of step A)‘Y'Js a twosided ideal
then Jp mcp (since me is a twosided ideal) and,
[ |
consequently, mc GITP(JP m)c Grg_—P P . _
1) If m is a gq-proper left ideal of 673_‘)‘2 , then
C,,?Pm is a proper ideal by Proposition 2.10. Therefore
(see 4)), m — Gig p .

The eguivaience of t&-_Ppropeﬁties,
2)¥(a) ~ (d) is a specialization of Proposition 11; the

implication (f)=)(e) is trivial; (b)=> (f) follows from A).
(e)=>(a). Let be a final ideal for which
_? ._‘./M 6§ pwvepesition 2,9 G-lT
is a proper ideal., According to Corollary 1 fh_)ﬂ'l—>[0,— n-;(‘,, ]
This means that 613: n is a proper ideal, if so is h ,

3) The third statement follows from step B) of the proof. 3

3. Left radical, For any subset W c Spec{R denote by
r(W) the intersection of all the ideals from W if W # @;
let r(@) = R. For every left ideal n denote by Vé(h)
the set {p€ Specy, R| P> P . The left radical ofv R is

the function assigning to an ideal N €& Ie R the ideal
- @
2eicly ()£ (Ve (),
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Similarly we may consider the composition of r with the
map V‘ 7! l-)V(n) '\fe(n)ﬂspecep . But in this way we get
nothing new &% to the following PpoPogi‘Ti‘Oh s'fa’fes

Proposition. *(ao( (nH)= /]-{ P [pe'V'(n)}-—’z ({}(’n))
for any ne TR, and the map m-‘,'zac{(n) is a functor from
IG* R into IR.

NN

Proof. Since together with every ideal p the set ‘V'(n)

contains all the 1deals (p:x), X€ R\P , then

2V, ()= N{plpe V;(n1Y = ﬂ ﬂ{(p-m)uxe R}= ﬂ{mpev(,,,}
since P{s (p': R) for every PGI(,WR: and
Speetkc Ie R,
A G773
Clearly, % (Vg(n)>2(Vy(n))=2%). On the other hand,
VaS . ™
U (6, |PEVL (Y}, where b ={AeR|[(p: )P}
and 35c P s since ’P\—)P according to Proposition 1.6.
Therefore ,P\!» = p4 » and, consequently,
(Vo (n)) = N{ Py | pe V5 ()} =2aclp(n)
The second statement of the proposition is now obvious. [

Corollary 1« If n is a twosided ideal, then
~ NANANANNLNANNANANANANANAN

— - -

:F (o ’Zade(n) cJh)

(Here J(n) is Jackobson radical of an ideal n , i.e. the in-

uiulwc
tersection of all the meximal left{ideals of R, containing n,
and (F&(n.)‘; ﬂ{Pl PGSPQCR’ nc pﬂ& is the lower Baire

radical of h.).
2) I(\f/ R is a Jackobson rlngg\tei{l itc(n), 'chle(n) and

T(n) coincide for every n € IR,
AN NN
Proof. 1) For any p¢ SPECe R the ideal p, belongs
to Spec R.

Let {o« ,pYcTR, apc Py and X p. . Then
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(P:r)cf p for every X € (\P(ﬁ) o« It follows pc P ,
since pé€ SpeceQ and B 1is a twosided ideal.

Thus, fg(n)c '2adew('h) . On the other hand, since
all the regu.lar maximal left ideals of R belong to Spece R,
then J(n)c rade(n).

2) Recall that R is called a Jacllobson ring, if every
prime ideal in it equals the intersection of the prime ide-
als (i.e. the annihilation of irreducible R-modules). The pri-
mitive ideals, in their turn, are the intersections of maximal
left regular ideals (annihilators of elements of irreducible
R-modules). Therefore, for the Jackobson rings (P(h): Jn)

for all ne¢ IR. O

4, Topologies on the left spectrum.

Lemma. The following properties of the subset W of the
- == MDA NN NN AN NANANS ANNAN—
left gpectrum are equivalent:
ANNNANANAANANAANANNNAANN
(1) W= SpeceR NTF for a uniform filter F of
NN NN
ESARC L
‘ {
(i1) W =8peceRN F " for a radical filter T/
10 % e e W e e e W e
(ii1) W= U{ Ve (p)lpewl,

Proof. (iii)=3(i). Clearly, the union of an arbitrary

family of the uniform filters is a uniform filter; and a set W,

satisfying (iii) represents in the form SPeceRn(U‘[ Pg:lpew}).
(1)=>(i1).  Spec,RNTF = Spec,R N F

for any uniform filter F , where ? is the radical closure

of ¥ . To see it, one can just follow the arguments from the

demonstration of Proposition 4.9 replacing of "topologizing" by

"uniform" (or note that for every uniform filter ¢ the set

1978 o
FeIZI() Fe...oF is a topologizing filter, as
N34
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A ~
can be seen from Proposition 1.3, note also that F = had

and refer to Proposition 4.9).
(ii): (iii). Obvious. O

Corollary. If a set Wc Spec ,R satisfies any of the
AAANAAN 14

AN AN T

conditions of Proposﬁuon 4, then

P Vi e T e S e D W e N e NN

(W =N{psipeWT.

Indeed, since W= U{V(p)IpPew] , then 2(w)=
NV, IPEWTY and 2(Vy(p))=pPs- 0O

Denote by I, the collection of the subsets of Spec R
enjoying the equivalent properties of Proposition 4. It is di-
rectly verified that }To is closed with respect to arbitrary
intersections and unions. In particular, §'° may be consider-
ed as the collection of the closed sets of a topology which
will be also denoted by T, .

Clearly, the closure of a point PE S’chep in the topology

¥, coincides with VetP)={p'c SPQCCR ‘ p— p’} , and the

closure W = SoW of an arbitrary subset W C SPeceR

is the union of the closures of its points. This implies that
'S, does not distinguish points isomorphic in Ie{"R ; in

particular, the embedding S‘aeceR iy S,PQCCR and the map
SPGCCR-Q Spece '

sihomeomorphisms. Recall, that a continuous map f : X —=>»Y is

, P l———)fD\ (see 1.6) are qua-

called a quasihomeomorphism, if the "inverse" map of the sets

-1

W — £~'W induces a bijection Y HelX ,

Topology '__3'_1_ . Congider the family :S'e of

all the sets of the form Vé(h)z SPeceR n"s ,NELR . Tote
that

Ve (") U Ve(mY=Ve(nam) (1)
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lest
for any pair n, m of Yideals of R. Indeed, "g‘u"‘g'z

={veLR|n>V , or mo v’sc{ue TR 'nnm—>u'ﬁ’=‘f—;5 nom -
(here, as usual, —> 1is a morphism of Ieé' R ). This implies
Ve(mUVp(m) 'Vé(nﬂm) . On the other hand, since nNme
€c"Fo™qg , we have
Ve ()= Spec, RN"""F < Spec, RN "Fo ™ =
=Q5pecekﬂ"'3')U(Specekﬂ"“}')=\é(n)UVé(m7.
Let 31 be a collection of all the possible intersec-

tions of the sets from '§e . Since "S'c is closed with respect

to finite unions, then so is ¥, . Consequently, '3;_ is
a basis of closed sets of a topology, which will be also denot-
ed by '3’1 .

Though 'Ki is usually weaker than ‘§, , the closures
of a point in both topologies coincide: {-;'5 =V, (P)-‘-'{PIIP-)P'}.
Topology '3' Denote by 3' the subset 0§ ’S'C ,

whose elements are the sets Vp(x), X € TR . Since
V(o()*{pg SPQQR |t p} for every x & IR, then ﬂ Ve ()=
te

V(Sttpo() Son any family {(;1%€JJjc TR . This and (1) 1mp1y that

S  is the collection of the closed set of a topology, which
will be also denoted by ’S . The closure of a point p in ¥

coincides with V (pg). For any J{o,«'}c IR we have
[Ve &) eV, VIS [Rrady () o’ ]
that
It followspfor any o« € TR the set Vg («) coin—

cides with V, ('zao(e(d)) and the assigning '—)SPQCCR V(o() U(u)
and W i— zcw)_ ﬂ{PlpeW} we define mutually inverse iso-
morphisms between the preorder of the radical ideals of R (i.e.

radical
of the ideals, that are equal to their leftVideed) and the pre-
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order of the open sets of (SP“:QR’ 5.

So, on Spece R the three topologies are defined, namely,
30 , fS’L and ‘S . In general case the majorations

N < ’§1.< To are strict. Let for every

VeTL,R there exists x € P(R) such that hy=C(nz:x) (the
rings with this property are one of the . charactersof & 8);
e.g. the quotient of R modulo a (commutative) twosided ideal,
i.e. a left-artinian ring. Then 751 and 'E coincide.,
If R is left artinian, then all the three topologies coin-
cide, since left artinian property is equivalent to the follow-
ing owne :

any topologizing filter of left ideals is of the form
"F={neLR|ImcnY for a twosided ideal m .

5. Structural presheaves and sheaves. For an arbitrary

subset X of Spec, R denote by ‘}'x the intersection
n{ qu l P € sPeCeR ~ X :X‘L} . The sets ?x are the
radical filters (since the intersection of any family of radi-
cal filters is a radical filter), which are maximal among the
uniform sets & such that QﬂSPeC RcecX .
Clearly, the map W > 35' V:Ls a section of the projection
F— V(%)= SpeceR nNF
c L3

To each left R-module M we assign the presheaf @M.WH
\——>G|<-5-w over (SPQCC R s :Xo ). By the symb:ls ‘@M and
61‘1 denote the restrictions of the presheaf @M on :5'1
and '§ , respectively. Let us find out what do the sgtalks

OraQ 1/AN a .

(’)M \ @M and @M at the points of Spece R 1look

like. (For any presheaf ngy F9) the sheaf associat-

ed with F; recall, that the stalk of F® =at a point ac is
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calculated by the formula F::,f = efm{PVlocEV', V¢ CfX}.)
A) The stalk of °© at any point pe Spece R 1is isomor-

phic to the R-module Grg_- .
Indeed, 0(9,” _e‘m{(,,g._v Mmipe &)=
__e‘m{G;r;-v((ﬂM(‘q c? Y= ?p M » since

?’V‘ (Fp) — TP .

B) The sta1£s~of'_ i‘@ . Here the situation is somewhat
more complicated. First of all, note that ?P: U‘{?vg(n),”e'%’
since nE€ 'EF%(,,) for any n€T,R and T%(njc ?P if ne*}; .
Unfortunately, this does not imply that the canonical arrow
i@a —-0 '(C”!g (/)VIIV\G? 1 >G|'G-M is an isomor-
phlsm. We have at our disposal only Propos:.tion 2.12, which en~
ables us to claim the following:

The canonical arrow @q - G”}- is injective. It
is an isomorphism if 613__ M!!Hg_- ‘371 '{\;1 for some m¢€ S:_P
The latter surely happens 1f the dlrected with respect to the
inclusion set of the submodules {?V(n)M Iné€ G' } of I
stabilizes; i.e. U{TV (h)M ,h € ?PPB ?—V(m)’M
for some M € Q-P . In particular, 1(®¢% ,Pf\« Gf'}‘
for all Pe %che R if M is noetherian. P

C) The stalks of GQM - For every Y€ TR

let ‘321;) n{TPIPESPQQQR psC V’;
It is not difficult to verify that

f:F(v)= v {?'V(d3 ‘“EIR o(cf.v'{;

Indeed, "-fv@o {n eT,R| pe Specclé

and h — P mply o(c:P"] for any « € TR . Hence
U{ Ty, )| *€IR ¢V i={ne TR | it me Zpec,R  ana
h —> M, then X < m  for some €& Fy, ﬂIR}:{nGIeRl
if ‘/AAGSPQ(’ER and n-—)/u,‘tﬁeh JM5¢ V}=S‘Zy) .
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4
Thus, as in the case of the sheaf CQ/; , Proposi-
tion 2.12 yields:

If an R-module M satisfies (;f"f - )MN‘-T(p )?\i;(o()
3 3

for some < € TR N '}" , then the canonical arrow

Q
M, p = {im fcfg_v(&)M “?’e IR”T 1J —7 G‘!Q.'(P )M

is an isomo hlsm. It follows @ ~ G M , when the
A Fvee Ml € TRNFp 7 M,p ~ PTG P ’
directed set of submodules|\stabilizes. In partlcular,

@a G’SC M for all the points peg SpeceR, if M is
Ps)

a noe’cherlan moolule

Proposition. Let R ©be left -noetherian, Then for every
N PANANANANANA AN NNANANNANNAAN

- ¥ - II -
Pl PE pP@feR md every Rmodule M the canomicel
monomorphisms a _
and a _ are isomorphisms.

After the mentioned above it is clear that this statement

is a gpeciad  case of Corollary 2. 0O
éy

6. Structural sheaves and quasifinite sets. Denote AR Mod

the full subcategory of R-mod, =~ o formed
by R-modules M such that the presheaf (’)M is an J-sheaf.
The symbol ‘3‘: : R-mod —» (Of -mod will stay for the functor
M Qa

— @M.

Proposition, TWOWlwgertles of w R—%

NN

M are e 3uivalent :
NN L0 Ua W U W e W)

(a) for any {«, pic IR the ?VCd) Fr (F»)
toxsion of M coingides with its F Ve anp) ~tezeLons
() [ fa,p¥c IR and the ideal {xeR‘Ann(x§)(.?v(bS

belonge to the filver Ty =¥ [AmTe Fup npyl fox
any € M
(c) M€ 08  Mod
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2) If M satisfies the equivalent conditions of the pre-
[0 Y Ve V L U A U N il AN NN A AN

vious heading, then for every quasifinite closed subset VW of

NN AN [ % Y VAU U U Pa Ve Va Y VR e o PaVavava d NN N~
a

(SpecyR,S ) the canomical morphisn Grgr M —> Op (W)

is an isomorphism.

ANAANNANNANANANN

If beeudes the topology '3 possesses a base B or qua-
NN PaVa Ve e T Ve e N FaVa Vo o

N L Y W LN ANNANSNS
. a —_
sifinite gets, thon  OF (V= Gm (Grg Mvew, we B)
for every V€T,
ANNANANANS -
3) L\g\t R be a ring with right unit. Then the restriction
¢ INANNNAANANAAANANAANANAANNNAN NNANANANNANANANANAANN
L] [~ S Cf
of Jhe functors 9p: M —> Op and L Mo By
anto R -mod IRY are suee and faitnrul functors.
NANNANANANACANANANTNN
Proof. 1), 2). The first statement is a specialization
of Proposition 4.5; the second one follows from the arguments
of step 3) of the proof of Proposition 4.17 and from Proposi-
tion 3.6 (see also Corollary of Proposition 7).

3) For any morphism of R-modules f : M —3 M' and any ra-

dical filter Fc IQR there exists a unique morphism
-, .

of R-modules § ! Gig M — Gg M’ , such that

the diagram o~

3:F,M 1 £ T JS‘,M'
M —sm'

commutes.
(The uniqueness follows from the “absence of F -torsion

\
by (;13_/‘4 ). This implies the faithfulness of the restriction

of the functor ‘eiR tMi— ®M onto the subcategory
o ?g .
R-mo of §_~-torsion-free modules and
-sulfhe;s and £

the . Vfalthfulness of the restriction of e:f onto

R - mod .
,Qf
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llow let R be a ring with right unit. Then the set

Max,R of the meximal left ideals of R belongs to Spec, R

and every proper left ideal of R is contained in a maximal (eSt
ideal. Therefore the filter q:g ={ne IQRI h+ p for
all P G%&%R}Wof one ring,-R. Besides, as was
shown at the second step of the proof of Proposition 4.17, the
exigtence of a right unit in R implies that the canonical
arrow  {RY*M — G‘{E} M is an isomorphism for any
M. Thus, R -mool Tor and Q-moo(% . coincide
with the subcategory R- m ool {RY of {R}-torsion-free mo-

dules, or, equivalently, with the subcategory of the unitary
3ullness ane

R-modules (see 2. ). The established above ~_ _ Vfaithful-
nesthiction o§the
ness of the|functor e“R on R-mod T turns out
Sullness Anol 2z

to be the sfzictyTaithfulness of the restriction of the func-
tor QJR onto the subcategory of the unitary R-modules,

In the following subsection we will show, among other

things, that(Spe R,'§) is quasicompact. This and heading
Fullness and Q
2) imply the “\faithfulness of the restriction of e:fR

onto the subcategory R —mod{p*q(. D

A similar statement holds for the geometric representa-
tion M — 4‘@:‘ (with IR replaced by IR
in the formulation). Note however, that the category R‘Mod ,
whose objects are all the modules M, for which i@M is an CO-
sheaf, is contained in RMoo( and usually is much more pour
than R Mod . Besides, as will be clearly demonstrat-
ed in what follows, in general, the amount of quasicompact open
%&S%CSP&(R ,'51) is considerably smaller than that of

(S’pec?R ) , and it itself is more
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seldom quasicompact.

7. Quasicompact open sets of (Spec ¢ R, T ).

Proposition. 1) Let R be a ring with right unit. Then
o~ AV Vg Vo N0t Y o S W e NN

‘‘‘‘‘‘‘ AN
the space (Spec, R, ¥ ) is is quasicompact.
NN TN ANNAANANANANAANAA A
2) The follow1ng properties of a twosided ideal 0( of R
A Y Ve N N P e W N W N e i g Wi N e Wi g S T INNNA

are equivalent:
ANNANNNNA N

(a)'\%(o() is quasifinite;
- ANANNANANN-

(0) If {x; 1{€TYcTR and o < 2ad,(s«pfx;|jeTy),
then X C 'laa(e(Sup{o(- |f€Jc}) for a finite subset J,= J;

1. e W N N O W, o N N

(c) if {ot; |T€TT] is an increasing chain of twosi-
AN AN AN
ded ideals such that X ¢ © « for all i and
PANANNANNNN NN~ - - e S Ve VN N
o nadly (sup{o; 15€TY) , then o¢c 2adly(A¢,)

o
(@ 5 {x;12€T}  ig an increasing chein of ideale

from TR~ Fype) » then suple [T€T3¢ Fypy
Proof. 1) (i) For a regular ideal h of an arbitrary

for some i_
NN

ring R the following implications hold:
[Vetd=2 1> [n=RT.

Indeed, every regular left ideal n is contained, if it
is proper, in a meximal left regular ideal, and maximal regular
left ideals belong to Spec, R (see 1.4.3). So, if ’Ve'('n)zp’ ,
then n = R, Clearly, '\fe (R):ﬁ .

(ii) If R 1is a ring with right unit, then all its left
ideals are regular. Therefore the equality

N{Ve i€y =V (supfx;lie T})
implies that
[ N {Vee)11edy = 1 [sup{a;lie 3§= R,

Due to the presence of a right unit Sup{o(; lteIy=R if
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and only if Sup{olj |je3o";= R for a finite subset J < J.
Therefore, [ N{Vp @)lie JY=F TSI N{Vzwu)liesi= T,
Ction

2) (2)=(b). According to subse¥ 4 (see the discussion
of the topology ) for eny family {o; [{€T {c IR
we have [o(c'zao(e(Sup{o(; liéJ})]@?[pe;"e(?‘;)C"\{(dﬂ. Therefore,
if the set V() is quasifinite, then
[ e aoly Gup{:1:eaNIES [V = () &)V 60=
~ﬂ (Vé(dJUVé(o())_ N (V(o( )UV(oo) (ﬂ Vo)) UV (@)
for a finite set J Lot J_]@[ Vé(q‘)CV(a)'I@[o(c?aO( (Sup(x ):(

(c)=(v). It is clear that “the condition (b) holds if
and only if it holds for an increasing chains of ideals. Besid-
es, ag wag already mentioned in the course of the proof of
(2)=p (b)),

[oﬁC wolg (supfx; LieTPNIS [V VeGO=1 C Vp X )U V(@) =
35 Vel N3 [ ¢ adp (sup{o; ﬂo(l Lg;,p]
(d)=§ (c) eand (a) = (d), since
Froey={n€TeR|otc “ade(n)}. O

Corollary 1. Consider the following properties of a clos-

—————— Ml g e e T e e W e N N U e B e e g Wi Wi W
ed set W of (Spec( R, T ):
NN N S—

(i) w is quasifinite;

MANNANNANANNAN
(ii) W=V(00 for a finitely generated twosided ideal
[l " Ve Vg Vi e e U \iie Wiy \ie V0 2 W W Wie UPe V2 Yol
o S

11) Cro, WH XTGP TR, X e for mw tnereas-

#og family  {o; 1T€ Y of twosided idesls of R;

(iv) the functor G,? commutes with the colimits (and
NS W N\ANANN (g%

I o e NN
. . 79 ~
Repetere Lo foomorphie fo Gry, R G RS
'S I
as usual, R a ri btained from R by adjusti

unit).
NS
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Then (iv) = (iii) = ()= (ii).

If R is commutative, all these properties are equivalent.

e 4 NN NN AN NN NN NN NN T T

Proof. (i)=2p (ii). Every idealmeIR presents in the form
Sup{o; |{€T} , where {o(; |t€e J"! is a directed family of fini-
tely generated ideals. If 'Vz (m) is quasifinite, then ac-
cording to heading 2) of Proposition 7 Vg (m)= "V QXJ )
for some Jj€ J.

(1i1) = (i). Let {o;: | T €T} be an increasing chain
of ideals from IR ~ ?W « Then {G'?Wg(i lze J} is
an increasing chain of proper ideals of Ckg. R . Since C@? R

w w
is unitary, S‘;P GTS-WO(,: is also a proper ideal., By hypothe-
(e

i ~ = s X ~ SUPpX~
sis 9$‘P (’fg'wdt Ggg-w( i{«P ¢ ) , therefore G'ZTW( 4P )
is a proper ideal. By Proposition 2.7 this means, that

Si@‘PO(: ¢ r:F\A, . It only remains to make use of the impli-
cation (d) = (a) of heading 2) of Proposition 7.

(iv) = (iii) is obvious.

If R is a commutative ring, then the set 'Sfe(o( Y=V ()
is quasifinite, . L¥§ K is finitely generated; and
V(x) = V(s ) for a suitable s €X . The ring GG:V( R(“coin"

3
- )
cides with the quotient ring (s) 1Ru and GT?V( )’:'(s)-ikcq®~.u
s g
Corollary 2. Let R be a noetherian ring (i.e. the
o 2. %0 Y V0 W e N e N\ AN

— - ——

agcending chain condition for twogided ideals is satisfied).
NN NN NN A e S e N N L AN

Then (Spec, R, ¥ ) is quasifinite. In particular, for
NN— AN N INCAN Nt

any module I

YLV R L N )
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(see Proposition 6) the canonical

from o Mod

~—NT LS e Ve U W Y W S NN NN
. Q . . .

morphism 6M — 06 is an isomorphism.

AN M AN

8. Quasicompactness of the space (5pec(R, 31)

Proposition. Let R be a ring with right unit. Then
ININNL SN NNNNNNNAN /A Ve VaW

the following pr'oper'tles are equvalent:
Fa e Y2 Y Vo Wi WA W W Wa WA WA WA Ve Ve Wa Ule W W U U N N

(2)  (Spece R, S, ) i3 gussicompact

(b) if ina
wat sup{tngxlied}= R for any fantly {x:liesic PR),

is a family of left ideals of R such
NN NN NN NN NN ravava Ve

finite subset Je€J
A e e}

then there exists a n
FNREENPL W Ui W U W U, VI WD VR i 0 W WV !
! -
for all x .
AN { J 'JeJorﬁc

such,\/&p\a/i: SuP (h..oc )‘J Jo'&:R

P (R,
Br-_ogf;. 1) Show, that
(\ Vel = U{Vé(sap(n-.x NI{x; lcc:ﬂjc PRYY €1)

R |t€3‘:} of left ideals of R,

Eos\fe(”;) DT/E(S“P{";WE JQS)

and Ve (Gm:y) < Vi (m)

are valid for any M€ T,R and y € J’(R) . Therefore
\/e(s{oé‘;(hi:'J(;))Cﬂ{\fe(nzﬂzgg'& for every family { 2c, |
te3yc PC(R) . on the other hand, let P be an ideal

from ﬂVe(n\ By definition this means that
(W
Is a weakly regular ideal,

f‘or any family (

Tndeed, the inclusions

he ~ p

for every ( € J . Since p
then N . — P if (n;:t(«)cp for some ‘t{~ from
OCR) ; therefore SuP{(nu'b)l[eJ'}cp Thus,

the ‘hcf’ust on
e maveV Ny, n. )(.e:s'}cU{ve(saP (n;oc D)o lieT3e P(R)}

which is inverse to the above estaplished.

2) From formula (1) we get ZmF(ications

combined with the obvious

[ONVeth ) €1y = % (supfng: o) i€3Y= R sor any
family {x:tiesye P(RYT

A ‘:l' l.

(2)

PR e

P
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implications
C(Specek, :SL) is quasicompact}@)

& [ir Ln;lteTY is a family of left ideal, such
that {Vpn)liery=F then n{ve('n&") lje3.y= &

for a finite subset J,€ :a’pr'ove the equivalence
of (a) and (b). 0

Thus, everything is much more complicated when the topo-

logy S is replaced by the topology Y and the

40
: . i/
geometric representation of the modules M @ turns

M
out to be an effective tool for the investigation of the modules
themselves only for the special classes of rings, the first
step to the description of which is given by Proposition 8.
The topology T , as we have seen, is more universal.

9. Spectra of quotient-rings and ideals. The aim of

this and of several next sections is to prove the statements

A
on the properties of Specz and Spec , Similar

14

to the Jackobson theorems about the structure of the spaces
?V‘tm of the primitive ideals (see [ & 7 , chapter
IX).

The@ft spectrum is somewhat abundant relative to all

the topologies, even -50 5 since So does not

geP&"&fe' the points isomorphic in the category I(%R,
Therefore we intppduce a new character: the set ~SF“€R’
the quotient of gpeceﬁ modulo the equivalence relation
"o & pf in IZR ". For any subset XCSPecCR the

F
notation x will stay for its image under the factorisation

Spec ¢ R —-——>>~Spece R .
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For' an arbitrary subset Y& R set Ué(y):{ PGSPeQEl

and U o) = U(V)ﬂﬁpece . Obviously, Ue (Y) and
U(Y) are an open subsets of (ﬁpec R 'S)and its subspace
gpecek respectlvely, l'S- Y (s a twc-sm(eo( tdeai O+ R,

Proposition. Let & be a proper twosided ideal of
—————— ~ - \NNANAS
R.
NI M SRS BTN Ve ()5 Fpeg N
SO =V N Spec,R > Spac, R/‘x,
whlch are homeomorphlsms in the topology S
AV e Ve Ve V2 VI W e e ) T VPP —
2l Ipe Ber MmN induges the maps Uyl LX) Spega
ol
g Ug: Upe) > SpegX - Thenae Mo iz 2 noneamorpnige
in the topologies So, By and S the map Uy
is a quasihomeomorphism in the same topologies. The "reduced"
/\N\/WW\/\/WW\/\/\/\/\/\N\/\/\/\/\/\/\/\’ AN
a ‘b( corr ondi to th a is bijectio
R o 0osorrssending to the mar U, 1§ bliection,
and, therefore, homeomorphism in §_ ~ T and ~3

A e AN s e~ e e O " i yavaet

Proof. 1) Let me VL (x), W= -/“/o(; n
a left ideal of R/O(’ N its preimage in R.
Suppose that (/(:\-‘.£>¢j for every XX € 33(;{ ),

It is equivalent to the fact, that (/iqsoc)¢f4 for any e

Since _m¢€ SPEC(R , then n —» M ; 1l.e. either
n Cﬂ , or (n ;‘y) C:/M for some Y€ ?(R).
Clearly, (hiy)> & (since &K < h and & is a

-

w — —
tAhosided}ideal) and (h’.d') =(h:y); the bar denotes the image
of the corresponding sets in R/O( . Thus, either(ﬁ :f)c/a

or FC\/T\:;xi.e., ﬁ——)ﬁ

AN
If JMG Specep\, , then a part of the above arguments

show that ﬁe SP,;C{R/O( .
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Now letjué SP“( /M the preimage in R of/M and neLf
Suppose that (/M 1)4/,« for every € (h) Then‘/u.\y)q‘/q
for every ye?(n-m() since K< g4 . Let hy be
the image of an ideal ho(':h-fo( in R/o( . Clearly, (/H‘J)C?/L{
if and only it {/’Z y)qf /(7 . Therefore, since

—

/UE SPQC(’. R/o( , then either N C/Z; , or (Eti)c
CfA for some X € J (R) 1f'//|€$(>¢c , then
h C/? . Obviously, it follows, that hc n,( — > M

(that nc m 1f‘/M€S{JeC R/ ) -

Thus the map JA +—2 g/l'(/(,( R induces the
bijections '\fe(o() A SPQCCRA( ’ Vé(o() A SP/Q\Ce R/o( .
The fact that they are homeomorphisms in ‘S follows directly
from the definition of the topologies of the corresponding
spaces.
2) (afweé_g—o%:s:)that for every /ME-(}é(o() the 1deal/nno(
belongs to gPQCe

Let NE Tpot and suppose, that —(/Mnd:x?x:,(/“nd:x)ndﬁ
for any otefP(n). It follows (since (/‘4”°‘iy)=§my)n°< for any
yc R ), that (/“"”‘7‘#/_" for anyxej)(otrg.Since ME
GSPQ R and & is a left ideal inR’then the "inclusion"

o(n-—»/h holds; i.e. either a(nc/u or (dnzy)c/u for

some Y € ?CR') . Consider each of these cases.
(i) Let o(hc:/u . Then (R,n)-—)fl\‘
Indeed, if (R,n) -{-Ju then fof, (R n)}c'}' since
by hypoth <
y hypothesis q‘.'/( heme AN = o((R n)CT C;

contradiction.

(ii) Now suppose, that (a(n: J\)Cf for some y € J (R)
Then d((R,n) J) C/,( » since, obviously, ((R,n);y)c
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C (o((R,h) :y) . As was established in (i), 0(((R,n):y')c~/‘4
implies that ((R,n):_y)%/“; hence, (R,n)—a’/m,

Thus the both cases lead to one relation: (R,n)—>ﬂ
This means that either (R,rﬂ < M , and then N <M,
or ((R’n):xjc/m for some ¢ E(P(R). Let us show that in the
latter case X can be selected from (P(o()

Indeed, there exists 2‘/“6 Jr—)(o() such that (/ua/“)c_:_/a

(if this fails, then —=:~/u ; but, since the ideal &

is twosided fo(—)j«j@ [o( C/A:( ). The inclusion

(R, XY= pm inplies that ((R,n): oc)-
= ([(r,m: JO:%{;JC (/M P20 M.
It is not difficult to see, that (pn¢g fx)no(c
C (R, 20Nt < MNAl , These inclusions mefn, that h-—-z/«no(
in I(‘"o(
A 1t /ue'Ui(cﬂ then U Not € Spece
The implication [ n € TpX and (MO .'x)o(#/«'

for any XK€ (P(n‘)}'—")[f/aoc)% for any X€ CP(o(n)] , estab-
lished in the beginning of (a)’ for /AGS/; R can be con-
tinued as follows ! é[“n:d(k’")c/ﬂ' If (R,n) ¢_/“)
then (R, n)e'}'o’f 5‘ i.e. O((R,n)C#‘/u . Therefore
L (R h)c/u QED.

(0) 1¢ mEUp(e), YEL, R and &NV = then
V— M

Indeed, if ¥ —I—7/\A since °<+>ﬂ,
then Vﬂc(e o'}_ c ? ; i.e. YNd -7‘9‘/L4

In partlcular‘, the map Uy U(o()—) SP'C(“

l—‘:/Mﬂo( is compatible with the preorders on U(o() and

Spqceo( induced from I R and I; respectively.
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It follows, in turn, that Uy uniquely defines a map
1/10(. U(O()——‘rs‘:e(o( such that the diagram

U, («) <s SPQC
¢
4 ~ v (1)
Up (0) —=> " Spece™
is commutative, and this map is injective.

() If MEU,), VEI,R and VYN < u

then V< since if U¢ , then )//)o(E?_ oF cF =
AL M M ~ M 3‘-_4
:.[neIekln{/,&,This implies the injectivity of ud_
(ci1) The map Uy 1is continuous in the topology s,
[0 % Y Ve W I i e e e W R N R T T e W
e nave (B UyGdzmna I Lot pot < mned J6
for any’thence it is clear that u;l(VE“(P))=%R(dF“)nW(“)'
(c2) The map U, 1is continuous in the topology "SL,
ANANAA ANANNANANANNANANNNNNANAANAA A .

Let hexeo( and h— MmN where/uEUé'(a() this means that
either hc:/uno(, and then (R, n)c:/«7 or (n Zy)C/MRO( for
some \ye?(o() In the latter case ((R,n):y)%/which,as we will
show, implies (Q,n\ -9‘/14.
If (CR,n):y)'l—?/u, then q(((R,n):y)—/-)/u . But o ((R,n):y)c
C(o((k,n):y}:(qmgy)c(n;y) and (h;y')C/A by hypothesis.
Thus, if“/lite'(}é(q) and h—-)ﬂf)o( , then (R’n).?/u ;
.e, \A—; ('\/éd‘(n))é\fck((lz7h)) . In step (I) of the proof it was shown that
\’\—)/Mﬁp( if (R,h)‘?/u" i.e. the inverse inclusion
%R((R,n))ﬂ%(vl)cu:(‘ﬁm holds. Any closed subset of the space
(gpeceq 5 -51) is of the form n{'\lzozn:)lfe I?, for some
ramily {n; i€ I{c T« and the equalities
TN VERR,n) = Uy (V0 tmely g (ﬂ “(n))= Uy () 0
n(ﬂ{vJ((R n )l ieTy).

(e3) [ m€ VRN U016 [ Mt € 5% (mna) ]
for any MEIQR.

~ ~

Let m€ V‘QCm)n'Uc'(d),If M & M, then certainly
ﬂﬂdG'\/e-d(mﬂd). If (m:x)(:/q for some X € T(R), then
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(m:= x)cﬂ for some 2 6?@() (see the arguments in (i));
Therefore, (MNA : Tx)g( (m: 'zﬂx)no( C/M ﬂo(
and 2 ~€P () . So, in this case afSo /"(10(6 (mnd)
Thus, the implication [/JGV(m)ﬂU(o()]$
>f/|And€ V'e°((mno()] is established. The inverse impli-
cation is the topic of step (b) above.

(c4) From (c3) we may deduce that the map Mo( is
closed (sends the closed subsets into closed subsets of the
image of Ue(d)) in the topologies 'S’ and ’51 ;

the map Uo( is also closed in these topologies.
(d) For an arbitrary ideal M € SPEC( set

/“o( {;eRldzcyM'& It is not difficult to see, that /‘1.42(
Q
is a¥ ideal (due to the fact, that & is a twosided ideal).

Let us show that

Mo € gpece and My € Slp/e\ce R , if

M€ s(neceo(.
Let n€ T,R and (/“d\“'x)d:/“o(
for any ¢ € 32(N) . From the definition of the ideal M

it is clear that (/f_‘d‘x)¢/“a if and only if there exists

A€ R such that AA,x < y and (A ¢/¢.

Hence, oA d?/ﬂ o<)\agc-:/,‘ for all ac g ) (n), and, consequently,

%.x)ﬂo(Cf/M for any X € ﬁ'P(n) ; in particular,

(//_\‘.x)ﬂp(c/g for any X € \'P({x n) . If /hegp?c(q
then it im‘;(.‘eg Khc m . By definition of My

this means exactly, that N <

Now, if ME gpeceo( \SP?CeD(’ then either K N S M,
and hence N< M ; or (@n:y)Nk Sy  for some y€ P,
Since o((n:y)c(«n:y)no(c/q , then (n:iy) S My .
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So in either case n -)/40(
Obviously, _/Mcﬂdnd . Since /Mo((lg(z{geo( ‘(/“‘.?)o(:o({f,
then [46 SpeceQ( implies/u“()o(—)/u; and of /,(e SP?C(O(

then /uo(nol.c./u . Therefore in the first case the ideals
/Mdﬂo( and /“ are isomorphic in Ie‘"o( ; in the
second one they coincide.

o

This means, that the maps uo( and ~H°< are subrjective

- ) se
and therefore bijective. As was earlier clarified, the, maps
are continuous and closed in the topologies 'S and ’3’1

) ~

(restricted onto -(}é(c() and SPeceq( ) and in the topologies

~

Ky and ~T1 induced by the topologies '}“’ and ';i

respectively on MU{.(?Q and ~Sf>ec29( . The homeomorphisms are
continuous closed bijections.

It remains to verify that 740( is a quasihomeomor-
phism (and, consequently, "’uo( is“a homeomor‘phism)in the

topologies ’3‘0 (respectively in the induced topologies ""3’0 )

.

According to (c3) the map U, sends the set Vek(m)n(}é(ga)
into V (mno()f‘or' every m € To,R . It follows that Uy
sends the set ,'S°WnV(°<) = U{VPlP)f\U'(o()l pPEWY
into ULV (pnedl pe U GOINW T = Sou (W)

for any WCSPQCCRI and realises a bijection of Qg NU. (00)

onto ”C{;o’u«(‘\nﬂ) (see part (d) of the proof). Therefore

the bijection 'N*Md commutes with passing to the closure
in the topologies ;nduced by -.50 on ~U€—(E() and ~SFQ(e(l(
respectively. This means, that N'MO( is a homeomorphism

v

in the topologyes S, - Therefore U, is a quasihome-

omorphism ('(fe(ogj) '_S_o‘) _— ('S'peceq‘( , ZSO ), jm



- 160 -

Let R be an arbitrary associative ring. By heading 1) of
Proposition 9,the map M l—-—?_/yl/R induces a bi jeotion
’VQR(L)(R)Q:, Spec Z , since R“’/pj:‘_,z (as aside, this bijec-
tion turn out to be a homeomorphism in all the topologlies used
here). So, we can (and will) identify 'Ve‘R(“(R) with Spec 2,
and, therefore, U'(_Rm(R) with SPeceR(”\ SpecZ .

Evidently, the canonical projection Spec R“—» Spec RW

w

induces a bijection V (R)-—»VR (R), that allows to identify,
(2%

also, V, R (R) with Specz.

After these prelimineries we can use the second part of
Proposition 9.

Corollary 1. For any assoclative ring R the map fAHJMnR

- - NANAAANA AN NN AN I e Ve Vo

realizes a bijection Up Sp’éc R\ SpecZ =% S’P/Ec R

and induces a bijection “Up: “Spec,R™\Specz “SpecyRe
The maps QR and "~ U are homeomorphisms in the topo-
[ n e P [ ad AN AN N AN NN NN AN

logies induoced by the topologies '3'0 ’ ’31 /a\gg Y on Specek
ANANNANNNANNNANANANNANAN - -

ANNANAN

)
and Spee,R~SpecZ  respectively
Corollary 2. Let  be a two-sided ideal of R. Then
—_—— = - - A AN
2% (hNo) = 2ad K (n) N (1)

Tor every ne€IgR .

Proof. By proposition 9 the map m = M N« realizes
a bijection (/J\'(o()‘\' Sp/zce ; and for any nel,R the
set V‘x(nno() {/Mégpec «\nno(—»/u} is the image of the set
V (n)ﬂ'(]'(o() (see the implications (¢3) in the proof of Propo-
sition 9): V“(nno() {ﬂﬂ“\/uEVP‘(n)ﬂU@O} Therefore
'lade(nnot)=ﬂ{juﬂo( | me e(n)nt};,_(o(ﬁ: ﬂ{/uno( VAT
=0l pe VPN = 'Zao((p‘(n)no( .G

Corollary 3. Let o be 2 two-sided ideal of R. Then
for any left ideal m of the ring
AN MANNAN AN

NN AN
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zao(g((m) = zade“((R,mmgO: ZadeRCCR,m))ﬂq.

Proof. According to (c2) of the proof of Proposition 9
for every me I, X
Pal
« R 7
VEmm)={ pmng| me VRUR,mNT, 0},
This and Corollary 2 yield the desired equalities. O

10. Digression: the hereditary properties of the prime

spectrum. For the prime spectrum a statement similar to Propo-

sition 9 holds:

T I o U

Proposition. Let o be a two-sided ideal of R.
S S e e N N N e S
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1) The map P+ P/ realises a homeomorphism
NN ANNANNANNAANANNANANANAN NN
ere et et Vi) ong Spec Rrx -
2) The map P - Pno( induces a homeomorhpism of
AN (8. %0 %0 Y2 Y Vo Ve e U U W e e Ve Ve
des < -
an open suvset U GOE Bpec RWVE)={p |x¢p of Speck
smie Spec o

Sketch of the proof 1) It is clear that the map

FI—»E-: P“*d/o( is a surjection of the set of twosided

ideals of R onto the set of the twosided ideals of R= R/o(

e Spechk . ,

Let § B> Fz}CIR , PEV(d ),‘v’__aen%'c_")(P the premage of

+ in TR . Then [Ei'ﬁzc'ﬁ](:;[p";zcﬂ@[?ither

Pic P or pch](:?[ respectively, either 'F—’i CF or EQCF],'
[ PLF?_C:E 3®[§1§2<,ﬁ¢—_->[either "_;ic4>~

or F,‘C(E—] —2 [ respectively, either P‘ic $

or B, C ::F 1 . This makes it clear that the map
POP= P}d realizes a bijection @ i V(x)5S Spec R/O( ,
and o (V(NV())= W (V(mse))= V(M)
for everymédR; i.e. f, is a homeomorphisnm.

2) (i) Let us show that Pn_f"eSPecgi
for every pe€ 'U'(oQ.

Let {P’P"&CIN , and ﬁPlCP-
Then PR“ P! < p . This means, that either
Bpcp or o(@’c. P . Then ['dp’cPi(:)[o((Q,P/)CPK.__)
(since & ¢ p by the hypotnesis)]1=D [ p'c pnu J,

(ii) Every ideal P € S’Pe(o( is a twosided ideal
of R.

Indeed, O(R’F C'.(.P (since AR < o« ) and, therefore
R‘,F c ('> . Similarly, the inclusion *Ro{ c ,P implies
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(iii) For any ’F c SPeCR the left ideal
,‘Fo(:{ZG R ‘O‘ZC(R 'y is a prime  ideal of R. The maps

Pl—s Pno( and (P H’Po( induce the mutually inverse bijections
(=0 N? gf:eco(

As it was shown in step (ii),,ERc ,P for every ,Pe
QSPQ(‘_Q( ; it follows, that "'PO‘ is a twosided ideal
in R. Let {fm_ nY¥< IR and  Am C P si.e.
dhm C (P . Then (o(h)(o(m)c_(#
and, therefore either oh C(E' or o<‘m - ‘,P . By
definition of (‘Fo( these inclusions are equvalent to the
inclusions hCr_Fo; and M C (.Px , respectively.

Tt is easy to see, that rP(an‘:{‘?G‘x_ ‘o('g C‘P,.,"S:fP,
if p is prine, Conversely, if p € U () , then (P”d).fP'

We leave to the reader the task to verify that the bijec-

tion 'U-(dJSSPQco\ is homeomorphism. O

Corollary 1. For an Qrbitary associative ring R the

W e o~ o . - - /\/‘\/V\N\/\—/W\/\/\NV\ANW N
e
mR ey MR realizes 2 hemgmorghisn

Spee R Specz o, SPQQR

An analogue of corollary 2 of Proposition 9 is a known
(for the unitary rings) fact concerning the "hereditarity"

of the lower Baire Radical:

Corollary 2. I’J\xfet o §\r_1d m l/)\%wded ideals
—————— ~ ~ g e N W
of R. Then
A7 (mne) = R (mIN .

Proof. By definition of the lower Baire radical

M’J}( (mne)= ﬂ{rPI«Ee V% (mne)

The map U()-> gf)eco( beins a hom:E)mor'phism means that Vq((mno():

={pna|peV(mMNUEY. Hence ,_E“(mnoz): N{pn« |pevimn
N = N{pna|peVimt= kRcmIna. o
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Corollary 3. Let X € IR ,y N ET K . Then

— e - e— N~ NN
« o« R

427 = K7(R,n,RIN«) = f “((R,n,R)N&.

The statement follows from the equality

and corollary 2. O

11. Homeomorphisms connected with the idempotents.

Let e be a non-zero idempotent of R and ff(eRe)= € o
eRe dm k. € {me€ Spec,R|
Troposition. Tpe rap M > mNeRe

”\
; ; A
IBANCER S NSRSOMSIRIAST  Uepe ¢+ Up(eReIFSpecyeRe

in the topologies, induced by %,

Proof. (a) If M € {}Q (e Re) , then
“mneRe ~ ~ A
interesectionybelongs to SPQQ e Re ,
NN NN NN e N €
(al) Note, first of all, that (¥: o)Re :(v:ex)nge
for any subset 2 c R and for any Z -submodule pcCc R
: »

and therefore (7NeRe ix)NeRe = (VixINekRe

if x c Re
(a2) Let he TpyeRe and (MNeRe :x) =
- eRe

=(ﬂﬂeke:x)ﬂeﬁg¢ﬂ for every OCGKJ)G\). The formulas of
(a#) imply that (m:ydNeRe=(m:eyINeRe=(uNeRe :ecy)N
Neke ¢\/M for any Yy € ?((Q,n)) . In particular, (/uv])¢

SN for any y € T(R,n)) . Since gy @
C-SP'EC(R, then (R,nN)C a4 ; hence, nc mneRe
(b) wae?receke), ve T R and
vNeRe c m » then Y & Mm
Indeed, L[ VNeReculH[Re(vnRedIcM [=>[vNRecp
(since by hypothesis Re ¢t and GSp?ceR3

see part (a) of the proof of Proposition 9)]:} E VC/M

{by the same reason, see part (b) of the proof of Proposition

;i
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This implies the injectivity of the map “eke and

the 1mpllcatlons [/\AE (eRe)ﬂV ), chQl@;[ﬂﬂeReC
€ SpeceeReDV (el;e)} which make it clear that Ueps

sends the closed sets of the space U(elle) into fhe
closed sets of .Sp/sceeﬁe‘
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Then the map m ‘-—)/,qneo(e if{l/d\gces the homeomorphism
AV W e e Ve Ua Vel

A~ [ Wia Wap W \Wo Ui W N8 /\ o e W WA %
U, (eReINV () =% Spec, exe,
A
. . ~ ot N
Erj_ogg. The homeomorphism ueRe . Ué(eke)—s S’Peceeﬂe
realises a bijection’ hence, a homeomorphism of the open subset
~ A ~ )
[jé(eRe)ﬂ'(]'(oO of T}é(eke) onto the open subset 'C}é (eo(e) of
SFQ_(,QQ Qe . By Proposition 9 the map PHQO(QDP realises
a homeomorphism of U'(ecxe) onto SP/ECQ exXe , O
Corollary 3. Let e be an idempotent in R, which is
- —_ = D A~ Ve e Y e e D e e i

[0 Y Ve Wrg N

not the unit. Then for an o( the ma -

induces a homeomorphism of U((L-Q)R(‘—e))nv(d) onto
NV\/W\N\/\/\/VWW\
SFQC (1-2)0(0—9) (Here (1-e)X (1-¢) is the image of
oles
Xec R under the map xo——)(1-e7'x(1 e)=oc-ex-Xxe+exe, 7
lf_rocl_f‘. If R 1is a ring with unit, then we only need

a specialisation of corollary 2 for the idempotent 1-e

i
().Cl

Corollary 4. Let e be a nonzero idempotent in R.
NN AN AN AN

— —— —— - —

1) 'ZaO‘QeRe(P,neRe)" D(R(E)ﬂeke_ for for_any Ec IR ,

2) For every twosided ideal 51 %‘ eRe:
ANNANANAN AN -

'Zadeeke (Pi)zmo[ee Re((r, Bi,R)NeRe)= 2R, p,,RNeRe.,

Proof. 1) By proposition II (see step () of its proof)

the homeomorphism /b\leg 'Uk(eﬁe)——? SPQC eRe

sends the set V(P)(')U (eQe) into
the set -\’}CQQ (ﬁnelle) . Therefore

cleRe'(EneRe) N{p'lp'ev eQe(pneQe‘)_ﬁ N{pneRe|
PeVe(pn T erer)= ﬂ{meaelpev(p)} 2ad, (g)NeRe

in general case replace R by R

This and statement 1) imply 2).0
B_ein_aik_. Proposition II is clearly a particular case

of Proposition 9 if the idempotent, mentioned ther‘e'is central.
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As is known’ if there is nownea-zero nilpotents in R, all its
idempotents are central. Indeed, for an arbitrary idempotent
e and for any x the squares of (1-e)xezxe-exe and
ex(1-e)=ex-exe vanish. Therefore the lack of noh-trivial nil-
potents in R leads to the identities xe=exe, ex=exe, i.e.
ex=xe. Q

12. Idempotents and the prime spectrum,

Proposition. Let e be a nonzero idempotent of R. }‘\95
R W Ve W V)

_____ REL € De a nonzero ilcem
nap prypOeRe  indices 2 nomeomorghism of tne subspace
UeRe)={p|PPeRel=U(e) of the prime . spectrum of R onto
SpeceRe.

Sketch of the proof. (a) Let p€ Ue) and twosided
ideals of eRe, such that B, B, T pﬂeQe . Since

PLF’z Fieﬁep,_ ‘3112%7_ , then elot(:lher' RS p s or R P
(b) Let P € gpeceRe (F<e>——-{2€R| e(R,2 R)eC(F’S,
{ol, 0,k c TR , and o, o C,P@) The latter
means exactly, that e d o,e C b . This implies
(eq(,_e)(e‘,(,le)c;"‘> , which in turn implies (since egt'ee»IeRe for
any x'€ TR and P is prime ) that €x;ec p for
i=4 or 2. So ('F<€>6 SPQCR
ey £ €1k S £ e R freRe R ey
for any pe U‘(e) since [eR(ZRe)cﬂ = [ (because e g p)
zRecp']@C?e Pl . Therefore the maps P""P”epe and

'F..H "Fﬂe) induce mutually inverse bijections

-

~ ~ ;
u@) : Uie) Sy spec (eRe) and 1}297. Spec (eRegJ=3 V(e). The veri-

fication of the continuity and of the closedness of

u(e?
is left to the reader. O

Corollary 1. For every ldempotent e of R the subspace
- - — - — MNANA A AL AN [ %% AN T T

‘U (e) of the prime spectrum is quasicompact.
[ N N N AN N AT NN A
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Corollary 2. Let e be a nonzero idempotent in R and XxCTR,
-_——— = - - NN [0 %0 S VRN e Ml 2 S NS e e ) ~~

. . .
AR R ProPhede  SeLnes AL SIRETINA

U(ENU () &5 Specexe
Corollary 3. Let e be a nonunit idempotent in R.
______ — lava e f\--"\/‘\/\va—\_/\,,\_/v\,’\/\/*
Then for an th - -
induces a homeomorphism of the subspace U((g-e)[l(l-e))n(}‘(o()
TV Y Sl Vg N N N N N N W N NP W e N N N N
onto Spec (1-e) O (1-¢e).
[ % W

Corollary 4. Let e be a nonzero idempotent in R.
————— e i e N R N N o N

1 feeRe ﬂeRe)=,{1RC9<)ﬂe Re for
every o € T R.

2) For every twosided ideal 0(.4 of eRe;

ANNANNANANANS AN NN
eRe eRe R
B @O = T (R, g, RINeR) =L (R ,RD N e Re

The proof of these statements is as similar to the proof
of the corresponding corollaries of Proposition 11, as their
formulations are. O

13. Digression: the left extension of the Jackobson
radical. For every h € TpeR set je(h): 4 ('Vé(h)) =
okedy - y e &
- n { p |P€‘\/é (h)ql where %(ﬂ):"fe(n)nMax'z?R

is the set of all the maximal regular ideals /“

such that n ——>ﬂ .
Since for any > € RT/M the ideal (/4:3() is maximal
in IQR and regular,lf‘ so is /u , then Ie(n):n-{ﬂg '/“G'%(n)}
which makes it clear, that 3'€ takes values in IR, same
as '?ao(e . Together with rad ¢ » Jo is a functor from

I:R into IR. There is an obvious embedding ’?ao/ec_;. I?

For any subset xC R put TJ;!(x) iﬁ#&cg(x)nﬂax’;"g.

Cion. e oo
Proposition. 1) The map Mi»mNw deternines 2 bijec

. -
tion ™~ 2eq which is a homeomorphism
Ao~ Ué (“)_"5 Mo"‘g 0( N\/\/\/\/\/vwvv\/p\/\/\,

in the topolégies inoluce‘l 8y T, 3 "S1 and ¥,
N e e T NN — A —_ - NN T
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2) For any idempotent e inh R the map ‘/u(_)/{,(ﬂeﬁe
2 9720 O g W

la " e Vo Vo We e W VL dNe 4

ind a homeomorphi ) ~
nduces me upv\s/m\ IJ'Q(eQe)-—>Ma9CeeR€.

P Vi W N T W T T

in the topology 7Y
AN -
Reyg

Proof 1) Let O(GIR)/MG Maoce R and o(¢/l,

It is easy to see that [« ¢//4]<£>[o(¢(/44"x) for every X €
GR\/Mj . This and the maximality of all (/A::),xc-kjw’yields
that RO“ is an irreducible X -module. The canonical

epimorphism o —>» Ré"‘ induces an isomorphism of

¢ -modules 0(/0(”/%3 Ré« This means that “/a(/)/u

is an irreducible X -module and therefore O(n/u is
CeSt
a maximal regular/\ideal of the ring X .

Now show that the map P> pg(ogj{zERlO(Z C P’&’
inverse to the bijection T,}Q(d‘)g') Spfe\c{o( ’/«HJMDO(,
(see step (d) of the proof of Proposition 9), sends Maxflgo(
into N&'lzegR

Let mE Maxg"ffx and d an element
of the ring 0( such that '.)Co(— a€E M for every € K,

Since & is a twosided ideal, then yd~yemo( for any y €

€ R ; i.e. m is a regular ideal with a"r‘ight unit” al.

Consequently, M“ is contained in a maximal left idealf

which is necessarily regular.

Since 6(¢j4 s thenﬂeﬁe(q); hence,‘/u/)g((:
e
GﬁPeced, Since m c/,( N o and m is maximal, then
i A A N
ﬂno( = m . The injectivity of Ug : %(«)“"SPQCQO‘
implies that /M =My .

Thus, there is a commutative diagram
»

U, (o) —— Up (o0

* Fa¥N
U S o Uy
Maac, Yot — Spec o

in which the vertical arrows are bijections. It is clear,
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P
that since Uo( is a homeomorphism in some of the topologies,
. A
then uo( is a homeomor'phism in the induces topologies.
2) All the ideals from U (e Qe) are r‘egular', more-

over, e is right unit for all the ideals from U(QRG)
In fact e is right unit for all the ideals of the form
oleSs
My {?GR‘QZQGJ“}, where U € T, eRe , since
e(Xe-x)e=0 for every k€& R . By Proposition 10 (see

step (d) of the proof ) ‘Ué(e(ze)z{ﬂ(e)\ﬂespfe\ceege'.2,.

All the ideals of the ring eRe are regular, since eRe
is a ring with unit.
The standard considerations needed to terminate the

proof are left to the reader. [

Corollary 1) Let X €TR, NE TeR , and
MET, - Toen T (nNad=Tg (niNs
&
and  Jg(m)= TER,mMNK,
2 ket © begn demporent in M BE TR 20 R'€TeRe,

Then Re([&ﬂeke)“jg(p)ﬂeke and :r'Re(p,) IR((g,p,Q))neQe
Here J_R(.) is the radical ‘Jc in R; and J-= JR
the usual Jackobson radical.
This statement is deduced from Proposition 3 in the
same way, as ama,(oac‘u’:' Coro??am‘eg were deduced form Propositions
9 and 11. The second statement (and the first, i{ we con-
fine ourselves to twosided ideals and replace (R,m) by
(R,m,R) in the second formula) is well-known (see [§1, Ch, (X)),

A
{4, The torsion r'ad¢ . Recall several basic concepts of the

radical theory (see EH] >. Fix a category (¢
e} \“Ings closed with respect to twosided ideals and homomorphic

images. Let r be the map 08@(-—906’0-( which to any
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ring BEOb ¢  assigns a two-sided ideal r(R) of R. A ring
R is called r-radical 1if r(R)=R and r-semisimple if r(R)=0.

The map r 1is called the Esfgégg or the iﬁ&ﬁ&lleffﬁﬂi'
?3£z\f39£93} if the following conditions are satisfled:

(11) £(r(A))c r(£(A)) for any ring morphism f: A—>B
from Ot ;

(r2) r(B/r(r))=0 for any ring RE€ 0bO{ ;

(T3) i£ B8 1is a two-sided ideal of R, then r(g)=
=r(R)N B (the heredity property).

Take as C{ the ocategory Rings and for any ring R set
rgdl(R)= rad§(0)=ﬂ{p | p€ Spean} .

:;3 Rings.

Proof. 1) Let f: A—>B be a ring morphism. By Propo-
sition 9 the map mr—>f(m) realizes a bljection V%(Ker:t)ﬁ’—)
—=>8peo,f(A) yielding

rad, (£(A)) <) p’| p'e Speo, £(4)} =n{f(p)l pe V?(Kerf)} =

= #(rad}(Ker?)).

On the other hand,

rad,(A)= r(Spec,A)= rad}(Kert) N r(U}(Rert)).

2) Obvious.

3) An equality r@dl(§)= r@dl(R)ﬂ 8, B€IR, is a direct
corollary of the definition of fadl and Corollary 2 of Pro-
posirion 9.

Remark. It follows from Proposition 9 that r’a\dl(R/a)—':-
£=frad§(ﬁ)/g for every associative ring R and any Be€ IR.
This implies that fgdl and restrictions of rad1 onto two-
sided ideals are equivalent. However, replacing radl by

rgdl, we loose information on the values of rad1 at the
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1

ideals of I,BR~I'R, where I'R 1is the set of all the

left ideals of R isomorvhic (in IfH) to the two-sided ide-

als; it is easy to see that me,IlR iff either m=m_, oOr

(m:x)=m , for some x€ ®@®R).0

15. Torsion rad, and locally nilpotent radioal.

An ideal is ocalled locally nilpotent iff any finite sub-
Ea 7 S W e A . e e}
set of 1ts elements generates a nilpotent subring. Every as-
soclative ring R possesses a two-sided locally nilpotent ideal
L (R) wich contains any left or right locally nilpotent ideal
of R; this ideal £ (R) 1is called locally nilpotent radioal
AN AN U TS e T TN

or Levitzky radical of R. As is proved in Section I of Appen-
Ve T e N e U N e e
dix, the radicals fgdl and &£ : R—> L (R) coincide.

16. Discontinuity of the left speotrum and decomposition

0f ring into the direct sum of two-sided ideals.

Proposition. The following properties of R are equivalent:

- o o o= [ N N . e e N N N e e N g W e e W N . e e e Y

1) There exists a family {; | i€ T} of two-sided ideals
L e W N N g

D T ST N N N N

of R such that
N PV Ve W e A
(a) xyno;<rady (R) 12 i#j 3
PaS
(v) ggﬁ/ileg ’1/§HP%§;IEEI} is rad,-radical.
2) Spec;R is homeomorphic to the disjoint union of a fa-
I Ve e e N W e W U U B U W P W W U W

mily of topological spaces:

[ Vi W e W it Wiie Nt A T T S

(SPQCIR X)Nt\e/rx d

Proof. 1)==p2). Let {X;|i€I} Dbe a family of ideals
satistying (a), (b). Then
Ue (O};)nUe (O(,j)—__Ue(O(.‘MJ):/Z
for any (i,])EIXI such that (#j ;
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UV ) 1R€TY =T, (sup{e  1Z€TY) 2= Spec, (supforz! i €IY)
(by Proposition )) and Spee_e(SuP{d;(fEI)&
o~ SPQCQR by condition (b), since 'VE(S:PD(()?SP@C((RéE‘Pa:)’
2) —-‘-57 1) Conversely, let SPQCCR be homeomor-

phic to the disjoint union of a family {X{ (€ I} of topo-

logical spaces. This means, that SpeceR :_(ejr?,(_ ¢ , Where
all the subsets Zl; are both open a;d closed and do
not intersect with each other. Choose for every (€ T a
twosided ideal . such that MU; = Ve (o) . Since
U0 =Y @)= ror & # ] ) and

U (supi; i€ TY) = U RxD1ie 1Y = Spec, R,

then {a) and (b) respectively follow, O

eorollar‘y. Let R be a semisimple ring such that
------- - N~ O e g W S e T W P
for any proper twosided ideal (v 4 the set Ve (0() is nonempty.
I T S N N W, e W N T P W, = Vo e e N - AN

Then the following properties are equivalent:
AN NN NN NN AL UL TS

1) The ring R represents as a direct sum of a family
NN AN [0 Via Vg Ve Ve We Wi W W e Ve W7

”~
{d;\fel"y of nonzero (hence necessarily iaole-semi-
. [a Ve e Ve e e Wl ANANNNCN NN AN

simple) rings;
ANANANNANNAN

2) Spece R represents as the union of a family

£ Vi W NV Y0 i Vg U W Wre W W e W W a VW e U W U DAV o WL UL PN
{Q&:]CGI} of disjoint non-empty sets that are both QESQAEES
%0 Ve Va Vo Wy Ve W VUL WL U W Ue We We Ve Ve Ve W W W Ve Ve o

closed.
V4 V2 VIl W i

The decomposition of R into the coproduct of a family

2 SN NGV Ve e W ' Ve Ve W e Ve e Ve e e W N S e N a Y U U

of rings {o(; HEIB (ideals of R) is related with the corres-
[ e e N ) R N N N ™ Y o U N e e N e e N N N U U

ponding decomposition of the left spectrum by the following
[a VA N N N N A S VI T U S S S T S N N N R N U T A

relations:
NN N N

. :'Zade(o(z)z'z (U{uj \56]}{;7,1;) , U= Up @) (1)

Proof Let {o;|ieT} be a family of twosided ideals

- - -

of R , satisfying the conditions (a), (b) of the proposition.

PaS
Since R 1is radz -semisimple, then (a) means, that O(fndjz
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if i#J . Since the rady - radicality of a ring R is equiva-
lent to the fact: Spece R = Q’, tehen Sb) (due to the bijection
%(d)gsf’e(-ek/o( ) is equivalent r:gs‘j‘}e-s;\fe?igpa:) . By hypothe-
sis condition

By Proposition 14 the rgd( -semisimplicity of R implies
that of all the twosided ideals: z&‘o(e(o()z'z;\de(g)no(= o,
In particular, for every (€T the ideal O(U):S“P{djl
jGI\{I\\ is Qﬁc‘e—semisimple; consequently, the ring R/o((-
is ’l/c:de—semisimple. This means that d;:qu{e(d()='z(‘Ve(d;))‘
But it is easy to see that Vé(a(;'): DE(O( (;))'
Therefore

ol = 2 (U (D)) =2 (U{ 1@ | seInfey)= (VY lie T i),
The implications ['(fe(ol ):Q](:} [O(C ’éfx\q'( (R)']
imply that if R 1is r/;de -semisimple, then

[U’((a)zlef}@;[aw]. This yields that Z((S%é:(;)a‘:ﬂ,tel‘, To
complete the proof is suffices to refer to Proposition 16
and the relations, appearing therein. O

Remark. The condition ”’\fe(o()qé:,@' for
a proper Twosided ideal o(” is surely satisf‘ied,
if R 1is a ring with right unit (see Proposition7). Besides,
the ring R is surely r'adl -semisimple, if it is semisimple

in the sence of Ja :obson, i.e. is J-semisimple.

1%. The central idempotents. The setSI(R) of the central

4ollows:
idempotents of a ring R 1is traditionally ordered as v esﬁ-,
if e§ =e . It is known (and easily verified), that
de§
(31(RY ,s) is a structure and eA§=05 ) ev§=eoS=p45-¢§

(the cyclic composition of e and f).
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Proposition. Let R be a rad, e=semisimple ring such
........ ~o~ Ao~ [ 4 [ g Ve W G N W R L NN

that V(o) ¥¢ for any proper twosided ideal o,
18 V2 T2 W W L W W, W e e i

1) For any e € FI(R) the subset vV, (e) is quasicom-
pact, open and closed.
VT Vo W I NI We W

2) Togpap e > Vg (e)Uulis an injective morphisn

of the structure of central idempotents into the structure

of the open-closed subsets of Spece R
ANANANNANNNNNANN NN

3) If W 1is an arbitrary open and closed set in ‘U(('e),
~ ANNANNANANANANNANANANNNN A AN NN

Wwhere eGSI(R), then there exists a (dnique) central idempo-
ANANANA~ AN NNV

tent f such that W= U (f)
N ANNANAANANN

Proof 1) Let eGgI(R) Then there is a decomposition
of R into the direct sum of its ideals R=eR + (1-e)R (recall
that (1-e)R :{ x-ex l X € R}),By Proposition 16 to this decompo-
sition a representation of Spec( R as a disjoint union of
an open and a closed set corresponds: SPeceRZ rf((eQ)U
U'U'e((i.e)R) . The quasicompactness of Ué(e}:"(]e(ek)
follows from the unitarity of eR (see Proposition 7) and
from the existence of the can@nical homeomorphism 'Ge(ekﬁg

SPQ‘QQ'R {Proposition 9Dy Pr‘opo&f«:nﬂ)
o Proposition (6

2) Since the conditions of cOr%ITETy‘%fa'FE“s_a’t/isfied,
then eRZ'ZaO(:(eR)z'Z(Ué(a_e)R)) for any central idempotent
e. Therefore, if 'U((GR)U((}R)I“OP some central idempotent §
then eR:—QR . Since e and f are the’unlts of the rings eR
and fR respectively, then [eR:ngS{:)[e =§1.

For any pair of central idempotents e and f we have
seﬂl eRNSR , (1-ea5)R = (1-e)(1-5 R = (1-IRN(1-3)R (the

agtet'nahtugmay/\!"bduced to the first one by passing to R“‘) the first is veri-

fied straighforwardly). This implies the desired relations:
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TUe(eSR)=UR(eRINUL(5R) 5 Tp(eoSR)=V, ((1-e0f)R)=
= Vo ((1-0)R) U Ve (1-5)R) = Up (e RIU TR (5R),

VoS
3) Since Ui(ek) is homeomorphic to SP/;(eeR

by Proposition 9 we may consider W as an open and closed subset

~ woe-siclec!
of Spece R. Since eR is rade -semisimple (as a fideal of a

7
radc -semisimple ring) and unitary (see Remarkinis), then the
o5 Propopition

conditions of CorollaryYi@ are satisfied, according to which

the ring eR is the direct sum of its ideals o« B
eR L e R
such that U = Ue ), U =$pec€eR\'M = Ué (ﬁ)
From the unitarity of eR the unitarity of

and F follows; hence K=JeR = §R and B=

'—‘-892=82 for some {(uniquely defined, as was already verified

in subsect ?2) ) central idempotents f and g of eR.Now
note that 3I(€R)=3I(R) , Since the centre of eR belongs

. Qa

to the centre of the ring R

unit. Then the correspondence eo-sﬂlfg(eR) is an isomorphism
NN R e e W N N WL NI P NP N NN AN NN

of tng structere (3x(R), <) oL shecsrtrel Hdens
potents onto the structure of open~closed subsets of
NN AN

e W W W e W W N W o W, W Vs Vi

Spec( R.

The statement follows directly from headings 2) and

3) of Proposition 1¥. 0O

Corollary 2 Let R be a unitary ring.
———————— ~U [ Shan Wikay Wit D0 Vo W e W Sl

Then the following condi-
[a Ve Von URL WLy VAN NE A VI Vo We W W Vg )

tions are equivalent:
[ Ve V. W Wa VW W W W, 2 St

1) Spec, R represents as the union of a family

(4 AN NN LA
of disjoint open (and therefore closed) sets.
ANANNANNE A AN NN T T AN
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2) In R there exists a family {e;l:e I} of orthogBnal
r~ AU AL LN AN AN NANNANNNAANAN

idempotents such that
/\/\/\NW\/

~

(a) = e;=1 - is the unit of R -
(b) [e\,'xf}_e'x -xe; belong to rad R for all (€T
[ e 4 e [ S e Ny
and X €& R,

The family of sets from 1) and the family of idempotents
AN A AUNNANANNANNN VN AN AN NN SN

from 2) are related via
V. "2 Ve WL W Wi e e U We Wi e

U. =Up (e;Re)=Spec, e;Re, , Re; +v~ao( ®= (U U;)
: = Ue (e;Re)= Specy e Y K
Br:ggf‘. By Proposition | €& and Corollary I the condition

V)
1) is equivalent to the representability of r'ade -semisimple

ring. R = R/»&ol,(R) as 2 e€.R
€ ter ¢
where {@; |T{€TIY are the central orthogonal idem-

potents inﬁ . Since ‘zﬁole(k) is a nileideal, then according
to the Jackobson theorem the family of ortogonal idempotents
.['e‘: l';GI’g can be lifted to a family {e; [i€ I}
of orthogonal idempotents (n R (see [5‘] , Chapter III,
§8). Set ?G'_Ce- . The orthogonality of {Q; (fe IE
impliesy that e is an idempotent, and € = Ze, =4 implies
A ter®

XQ_'xekao(e(R) for any 2 € R . The latter means that
R=Re+ r’&de(‘z) , which implies by Nakajama lemma the equation
b= Re . A similar "right" consideration shows that
R=eR . obviously, [ R=Re (R=eR)]=D [ e
is right (respectively left) unit of R].Consequently, e is
the unit.

{b) is satisfied, since all the 'é‘. belong to the
centre of R. Thus we have shown, that 1) ﬁ 2)

A canonical epimorphism R—3» R induces a homeomorphism

SPQQCR = Spec{ﬁ of the left spectrums that
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sends TU,(e;Re,) into 'U‘e('ézﬁg:): Ue (8.
The equality ﬁéz ='Z(~L*}"273) , Where aj is the image
— NE X3
of u3 in S‘oec.QR y implies, obviously,

- Re; +2ad,(R)=2(U{u;lje T {idY)
It is clear now +that the relations (1) follow from the same
relations for a fghl—semisimple ring R, which, in turn, follow
from Corollary of Proposition 16.
The implication 2) —3 1) follows from Proposition 16.0O

18. Closed points. Irreducible spaces. Dimensions.

A. Let |X| denote the set of closed points of topological
space X.

Proposition. 1) (Gpec,R, %) gonsists of sli the two-sided
ideals that are simultaneously the maximal left regular ideals.
Fa YV Y Wa W Ny \e B0 Pa U W N e e N o e L U ) S N U W e W N N

2) |(Spec,R ,3))|=((Spec,R ,To)l= Maocg'efl RNIR .

Proof. 1) (i) First, suppose that R is a ring with right
unit. Let ME KSPQCeR,'io)l’ i.e. V-Q(J‘.‘):{/"_“S' Since R pos/s\esses a
right unit,ﬂcm for some MméE Maxy R and M“xeRCSP"(eR-
The closedness of M implies that /1_4=m . Besides, since
/M-)(/A;xﬁ for any x€ R, then _/u:(/v::r) for all IER\jM .
It follows that /M:/M, ’ i.e./M is a two-sided ideal. It 1s
clear that for any m from Max ,R NIR the set V(M) con-
sists of one point.

(11) Lemma. The map ¥ +— ¥NR  realizes a bijective ocor-
respondence between the set of all left ideals of R“’,)' that con-

[ Y Ve Uie W VAU WA NI e g Ve W U W U Yl W e Ve U e W U U e W W) AN N
tain the elements of the form 1-a , @€ R, and all the regular
[ i e N e N i W W N N e U U ) [0 %l Vo W e e e e L e WY
left ideals of R.
INONNANNNN AN

Proof. Let heIeRmand 1t-a€ n  for some a€& R. Then

r —xa=x1-Q)€n for every xeR; i.e.n(R is regular.
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Conversely, let m&€I,R and a-xa€m for some a€ R
and every X€ R . Obviously,(m:a)= m . Since (m:a):(m;q)R(,,nR
(we consider m as a left ideal of R®Y), it means that
m =(m:a)RmnR. Clearly, (1-a)a=a-aa€ m , i.e.1-a € (miayy-
(iii) We are interested in the following corollary of just
proved Lemma:
The e map /MH/MﬂR %ze%wectlve correspondence

AV Vo WIAVE 2 eV VUL, Ve Vv Va v e

between the set of all the left maximal ideals of R(’) that do

[ 52 Y2 VINA ) O W W VO S 2 W e W e W e W e Ve ¥ O O N O R VL O L N L N AN

not contain R and the set of all the regular maximal left ideals
NN /‘\/\/\/\/\/\/\/\/\/\, ANV
of R.
[a VA
) )

Indeed, 1f m€ Max,R" and R& m , then M+ R=RY,

This means that {i=Y+a for some y € M and a€R.
~ , N wd A

(iv) The map Up: Spec,R™"'\SpecZ —>Spec,R , p+ pNR ,

is, by Corollary 1 of Proposition 9, a homeomorphism in the to-

pologies '-f)'o . In particular, C‘R sets a bijective correspon-
dence between l(SPec.eRu)\SpecZ, Tl and |(Spec,R,3)|. Since
by (i) ‘(SpectR(”\ Specz,'}'_oN:MiaxeRaﬂIR(QSpecz then the
statement follows from the equality
Max( reiR = {ﬂﬂR‘/ﬂG Maoce R( N Specz }

which is, in turn, a corollary of the statement (iii).

2) Clearly, qu:efi RNIRC \(SpeceR , .

On the other hand, l(Specek,fS)\cl(SpeceR,’Slo)\, since the
topology 3, 1s stronger, then 5 . O

B. Proposition. The subset W of (Spec,R,?) is irredu-
cinle 42 ant only it the Hosd (W) =P pew] fe prim.
Lo particular, the space (SpeceR, T)  to trreguotle s2r
7ad,(RYE SpecR .

Proof. Let {x,B¥<IR . Since [We V()& [xc 2 (W]
and V) UV(p)=Vo(p) 5 then [We VUV ()] <> [xpc2w)].
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These implications imply, obviously, an equivalence between

the irreducibility of W and the fact that 2(w) is prime.
C. Recall that an (algebraic) dimension of a topological

[a V2 70 VO Ve W Ve )

space X 1s the greatest integer 4d such that thére exists a

strictly increasing sequence W< ... & Wy of non-empty,

closed and irreducible subspaces of X . If there is no s ch a

sequences, set dim X =9° |

With the topologies ¥ , 5, and ¥ two notions of the

1
ring dimension are associated:
e . ; . .
dimc (R) = Clum(,Spec-.eR, I) = clim (SPeCeRa '341)
and  dim(R)=dim(Spec,R,3).
They may be easily defined directly:
o\lmQ(R) is the greatest integer d , such that there ex-
ists a strictly increasing chain Po® P22 .. @ Pd of ideals
from Specp,R  (or from Sp@ceR )s
dim (RY) 1is the greatest number k for which there exists
a strictly increasing chain (fdg (Pig_ -cr-;ka of prime
ideals such that ?a"l{(‘Pﬂ:ePz for all { , or, equivalently,
for every o< t<k the ring R/c‘P‘ has no non-zero locally nil-
[4

potent ideals.(see Appendix, § 1).
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6. Left affine schemes

1. ©Spaces of irreducible components., Ve are interested

not only in topological spaces themselves but rather in pre-
sheaves and sheaves on them., From this point of view only the
category of closed subsets of the space is important and a
selection of a "topological representative" of a given category
of closed sets is the matter of convenience., For instance, some-
times it is more desirable to deal with the subspace of closed
points of an algebraic variety than with the whole spectrum,
Similar is the situation with morphisms: if X, X', Y, Y' are
topological spaces such that X =clX' and dYQdY; then any
continuous map $:X'— Y  induces the direct image functor
from the category of (pre)sheaves on X into the category of
(pre)sheaves on Y. Thus we come to an extension 73; of the:
category ‘ToP ol topological spaces whose formal definition
runs as follows: O¢ T:,; = 0¢ fToP and the arrows X — Y
are morphisms of co3ity of closed sets ¢: X—->! such that

for a continuous map &:X'—»Y' there exists a commuting diagram

x>y
T T
ZI - i XI

[ )
Aiter A superficial glance on the definition of TOP one might

N
be afraid that the composition (XY, Y _"’az)w (xmz)
might lead out of the category. Thanks to the following state-
ment one should not :werry about that,

Proposition. 1) The composition (X 3; Y)\(.f.)zz )-,_,,()( f_o_fz)
~ - [ e N e e
mkes Tep into a category,

SN e N N N N ) ~

2) The canonical functor cf: LTBP — T?P sending X 5> Y

[0 T3 S U U N o W e e N A TN~
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inse X =Y oossesess o ferhiully sorics sight adjoint
Proof, (i) Let X be a topological space. Denote irrX the
space whose set of points is the set of irreducible closed sub-
sets of X. There is a canonical map € x X > ire X assigning
to each point X € X its closure {x}. The topology of irrX is the
s trongest of the topologies with respect to which Cy is cortinu-
ous. In other words, a set Wc (rr X is closed if and only
if C';'CCW7=U{YIYEW} is a closed subset of X. It is not
difficult to see that Cy 1induces a cosity isomorphism and for
all Y such that there exists an isomorphism ¢ : LY = CZXI
there exists a unique homeomorphism Lrrp: irrX = ire Y

such that the following diagram commutes

Cx SL Lrre b‘ (-’—\-{ (L)

trrX —/—irrY

. 5
Besides, for any continuous map X—Y the correspondence
Ve (V) correctly determines a unique continuous map

irr§ : ireX —ire Y such that the diagram

X =Y
€x | wes | v (2)
ireX—irrY

comutes. In fact, let V be a closed subset of X and (V)cW UW,
where W, and W, are closed subsets of Y, Then Vc ‘S"(Wl)ug"(w;)
and if V is irreducible, this implies V< §7(W;) for {=1

hauve
or 2. It follows S(V)c W;. Therefore weademonstrated
wrn X — irrY m,
that the correspondence V - §(v) determines a mapWfhe(obvious)

commutativity of the diagram (2) and the definition of topology

on irrX +the continuity of irr® follows., The uniqueness of irrf
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for wiich (2) commutes follows from the fact that Cy 1is
isonorphism,
(a1
(iii) Fow let X —> Y ©be an arbitrary morphism of %P;
while 1p: L X5elX' and t,J:cQY":* {Y' be isomorphisms such

that for a continuous map % :!X’—> Y' +he following diagram

commutes: ?
X —> X
¢ st . Ty e
X' ——Y
De’cemin? a map c‘.rvwf: trr X —ireY setting Erv“ep =
=trrd olir§ o tvreg, It is subject to a standard verifica-

t ion that Crw(p does not depend on arbitrariness in the choice
’ —

of (3); more exactly, for any morphism tp:.X——> Y of g_of: there

exists a unique continuous map v inX—ivwY for which the

following diagram commutes
P
X —— Y
c___x E\ ive ¢ ) 1 %_‘(
ire X > re Y
In other words, the arrows X —>7Y of Jop are all continuous

CD)

maps irr X —irr Y, This immediately implies the closel:ess
of CI:;E: with respect to the natural composition,

(iv) Clearly c={c, |x€0€Topy is the morphism of the iden-
tity functor 'IolJv—o-P' into (ifro &' . The family of canonical
isomorphisms &ol:r‘r X—S X , X 6063(3%, assigning to a closed
subset V ¢ irr X the closed (by definition of the topology on
irr X) set U{YlYe¢VY{ 1is a morphism of functors
h & olrr — T Tr"\P ., 1t is easy to see that the following

relations hold

ieeh o eiN‘:Eerr ) helo f e :?J& .
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In other words, ¢{ — iry and (oc, h) are conjunction mor-
phisms. Since h is an isomorphism, then irr is full and faith-
ful.
Corollary 1. The follow&ng properties of a topological
T N A NN NN N AN NN NN NN
space X are equivalent
~NTN AW W Vg
1) X satisfies
Fa Ve W e W e e
a) any irreducible closed subset of X contains a generic
AN TINANNNNNANANAANANNANNNANN NN A NANNANNANNANNNNN
point (i.e. is the closure of a point);
ladadd NANAANNNANANANNNANNANNAA A
b) for any (x, y)EXxX [{x)={yy) = [ x=y].
2) Any quasihomeomorphism X-——>7Y is a homeomorphism.
ANNNANANANANANANANANANANAN ANNNANANAANAAAAANAAAN
3) The canonical map Cy? X—2>pirrX is a homeomorphism.
NANANANNAANNANA ANNANAAANAANAAAANAN
Proof. The condition (a) is equivalent to surjectiveness
of oy and (b) to its injectiveness. Therefore 1) = 3). Cle-
arly, 2) —> 3). It remains to show that 3)=> 2).
Let f£:X——3»Y be a quasihomeomorphism satisfying (b),
i.e. Oy i1s injective. The biJectiveness of cx and irrf in
the commuting diagram

x.._g_—yy

Cx l l, Cy
irrt

irrX———irrY

implies surijjectiveness and, hence, bijectiveness of Cy- It fol-
lows that £ is also bijective and, therefore, homeomorphism.

Let 31?; denotes the full subcategory of 73F> formed
by all the spaces X, satisfying the equivalent conditions of
Corollary 1.

Corollary 2. 1) W T?P <_;TOP possesses
a left adjoint functor Irr aq5£§3i2§ irrX Esviﬂfggce X and

NN NN VN

irrf to a continuous map f.

/\/\ AR U NV P Vo L e

2) Uﬁ?} is equivalent to the residue category of ﬂTbP
NN

A U e S W e e, U N Wi V0 T ) Ve e e
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modulo all the quasihomeomorphisms.
ANV AL AANANNAAANAL T LA AN AN
3) dim(X) =dim(irrX) <for any topological space X (where dim
ANV WO AN NN NV NN
is algebraic dimension; see 5.18.C). The dimesion of a space
NANANNANNNNANNN NN NN NN AN ACA -
Ye 0é ‘T?P coincides with the upper bound 4 of the lengths
(A2 Vo P U W P2 e W D Wl WP e N N W P e W N N 10 50 Y2 Y Vi UR L U 2

of the chains. (Recall that a sequence YgreoesVy of points of

NN L [0 5720 S S Vi W W N W N W e e W AN N

the Space Y i3 a chain of length k, starting in v, 3nd ending
in yy, 1f y3# 954 288 ¥y, y;  for all Osi<k.)

Proof. 1), 2). It directly follows from Proposition 1 that
T;P is isomorphic to the residue category of Top modulo
all the quasihomeomorphisms; see [12], Ch.I, § 1.

It is not diffioult to see that the functor irr: Top —
— ToP takes values in Tg\?a , and its corestriction on
3725 is an equivalence of categories, since both conjuction
morphisms { h.} and {c.} are isomorphisms, when we confine
ourself to :rﬁ?, .

3) It is clear that dimension is invariant with respect to
quasihomeomorphisms. The second part of the statement follows
directly from the definition of dimension (see 5.18.C) and pro-
perties a) and b) of the spaces from ﬂiﬁg ( see Corollaryl).Ol

Therefore the functor i?rdsbirr\T?P performs a natural
for the study of "geometric objects", i.e. the spaces ringed
with presheaves, decrease of the number of objects and increase
of the number of morphisms. So, if there is nothing special
against it, it is advisable to pass from ringed spaces (X, ®)
to their quasiisomorphic ringed spaces (frr)(, QX*(b)

Example. Let A Dbe a commutative associative ring with
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unit, MaxA the space of its maximal ideals with the Jacobson-
Ldarisski topolog,y- !T‘Spe(,A the subspace of SpecA formed by all
the simple ideals that coincide with their Jacobson radical)i.e.
are intersections of maximal ideals. It is easy bto verify that
the map assigning to an irreducible closed subset W the ideal
’lCW):ﬂ{f« UAG‘W} performs a homeomorphism of UwviMaax A
onto FSpecA.

fow let B be a (commutative and unitary) Jacobson ring, i.e.
sgpeegz gPMB; for instance, B is a finitely generated algebra
over a field or over the ring of integers. Not every ring morphism
B—> A  induces a map Max A->Max B, but every morphism
induces the map @SPQCA — ?_PSPec,B ., O

In what follows we will meet a noncommutative analogue of
the situation described in this example.

2. Spaces of irreducible components of the left spectrum.

et Spec R={pe SpecR | p=acl,(pt.

Proposition. 1) q;\\lle\f'e is a canonical homeomorphism
NN IANNANNNNANANSNAAAANA AN

~e: (NSpeceR ,“'_So)f‘é Ov‘z(,S’PeccR ) S )
N _

2) There is a canonical homeomorphism
[0 S0 T e W e Wiie g Uia T8 Tt 00 W2 \Z NP e W i e LN

i (SpecR, 3 Spoe R
assigning to an irreducible closed set V the ideal
ANNANNANNANANANANNNNNANNNNAC U AN NN NNN-
rew=N{plpewh,

I_Jri)o:_. 1) blnce the closure of any subset Xc SPQQ R
equals 'SoX U{VE}‘)'J“6X} then the irreducible closed
subsets of (SPQ('eR7-S°) are exactly all the Ve-(P) , P€ SPQQ(R.
In obther viords every irreducible closed subset "W C SP@_(Q

possesses a generic point’ and therefore (see Corollary 1 of
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Proposition 1) the canonical map C : SPQC(R—%;JUL(SPQC!R, 3,)

is surjecctive., Since [W(P):Vé (p:)]{:}[pc_"P’], then e induces

an injective and therefore bijective map

A(’.’:CSpa%R,“"SQ—-»fJW(Spa%Q »Se). Clearly, ¢ is a homeomorphism.
2) This is a corollary of Proposition 5.14.B. O

3. Main homeomorphisms. Closed points of SpecR.

TFor any subset xc R 1et

— —_ o — — — N —
V)=V ) ={peSpecR | xc Py, UO=URE) gSpee R V().
Propositions 1) Let ol be a two-sided ideal of R.

_______ [ e e NP e W e e e S i e W Ve P e Y
i) The map PHp/o( determines a homeomorphism of the
NN ANNA NAANAANAANNAANANN

A Ve W Ve VA4

closed swbspace V) of Spee R omro  Spee R, .

11) Ihe map prspNat determines a homeomorphism U, of
the_open sbspace Ue) oute Spec .

2) Let @ be @ nonzero idempotent in R, The mp mryMNeRe
determines a homeomorphism Uepe ! V(@)D BpeceRe .

Proof. 1) These statements follow from Propositions 5.9,
5.11 and Proposition 2Wﬁe existence of a natural homeomorphism
vw.(SPectR,S)S Spec-_k. The following commuting diagrams

sefve ag U jusﬂ&yt‘,ng documents” :

(1)

t ~> M
Ve ) —>n V() -5V ()
sl sy Il

Spec,Bg —» r Spec Ry 25 SpeeRy, J‘A‘%(

Mu&
‘ > (405
(cc
[ - = > Ps
U, @) Uy () — U () ]’
v

l s} \’ BNk

Speqdt >l Spec,a™> Specx 0
P Mo > (P N
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) mb A - — T Ms
T,(e Re) —> LUy (eRe) > UleRe)=U(e) -

s, sy !
SpecyeRe — U2n SeceRe = SpeceRe
JM!'\e.Re=e/ue; 2eme), = epge

In the last diagram we have made use of the fact that the

inclusion SP/EQQR‘a_) sPeCe R( is a quasihomeomorphism for

any associative ring R' (Corollary 2 of Proposition 1.6).Q

— . — — —

WBW. Then the na jAA——)jAﬂede induces a homeo-
morphism U(e)NU(x) =5 Sﬁ—e_c exe,

Corollary 2. Let f be an 1dempotent in R different from

(@ e S e N N N N e N s i T W N e e}

— . — — —

unlt of a two-sided ideal. The ap M .-9/«!')(1 K (L-%)
/\/\/\/WWW\/‘

pesores 5 fomomomiism UlerN T 5 Hpec exce.

These statements are proved as are Corollaries 2 and 3 of
Proposition 5.11. 0

Corollszy 3. The map Me>MNR  performs @ housomorphisn
of SfecR®~ pecz ko SpecR. (Here os slvgye R ig
the ring obtained from R by incorporating the unit.)
NV\/WW\/W\/W\/:/TE)\/VV\N\A

Proof. Slﬁc RN SPQCZ“UR (R)

Corollary 4, The set |Spec R|  of the closed points of

AN NN NN AN NN

— — — — —

SPQQR coincides with the set Max*¥ R of two-sided maximal
[a VeV Ve Ve Vel Ve U Va e T Vg NN

regular ideals of R,
[ Y e Ve e e Ve Ve e

Proof. 1) Let R be a ring with right unit. Then Max R<

C Iiﬂs. | ME Max, RY and therefore MaxRc S(Fc R,
Clearly, MaxR C (5'9-@‘(1 R | and since any proper two-cided
ideal is contained in an ideal from Mc\xR, we have the converse
inclusion.

2) 1In general case the homeomorphism ,QP?QR(D\SPQCZ-":»S{)TL‘R_
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induces a bijection lSp-e'c R(1)\spe(z|SlSF?&,R\ . Clearly,
| Spec R(”\SPQCZ \= iSp_e-c R(i)] ~ Specz =Max R(“\Specz .
Thus, ISFE-CRF‘-{anRl M E Maoc R ang R#/A} . But, if
M€ Max Ru)and Rcf/l«l y then m+R = R and, therefore,
1=oc +a for some X€ M and a€ R . As follows from the regu- »
larity criterion provided by Lemma 5.18 (step (ii) of the proof
of Proposition 5.18.A), this implies the regularity of m/NR .
Let us show that /MﬂRG MaxR . If m 1is a proper two-
sided ideal of R, containing MR, then mc(miRa)c(m:a)= m
and, hence, M =(m:Ra)=(m:Ra) »NR; in particular, (m: Ra)R(o
is a proper two-sided ideal of R(".) Since (an R: Rq)ﬁ)(/u:Rq)R(,?jJ’
then the inclusion /MOR < m implies the inclusion Mc
e (MiRa)p(1r; the latter can be substituted by equality thanks
to the maximality of m. Therefore ﬂﬂR=(m:Ra)Q(4>ﬂR=(m:RaHn.
So, we have proved that |SgeeR\c Max**9R .
Now let ME MaxtJR. Then m , as any regular left ideal,
is contained in some left maximal regular ideal m (see [16],
Lemma 1.2.1, or prove this simple fact yourself). Since m 1is
maximal, 1t coincides with m ; therefore m¢ S,;e‘c,R . O
Comparison with Proposition 5.18.A shows how many closed
points did we acquire, in general case, passing from (Spec(Rj’K)
to its quasihomeomorphic Sﬁe_c R

4. Canonlcal open embeddings. We have spent quite a time

discussing topological spaces and ignoringthe structure {(pre)
sheaves. Now we will restore the equilibrium. To not lose the
objects like presheaves of rings ©R and presheaves of @Q—
modules C’)M , M€ 08 R- mocl |, we will broaden the
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traditional frameworks and consider the preringed spaces and
presheaves of modules over them. Just in case let us.elucidate
what were speaking about: a preringed space is a pair

(‘X, @) where X 1is a topological space, O
is a presheave of associative rings over X and a morphism of
preringed spaces (X ,@)%(X',@') is a pair (¢, Lpo)
consisting of a continuous map @: X —> X’ and a

/
morphism L9° of the presheave G) into the direct image

“F“G of (©,

The category of preringed spaces thus defined will be

denoted S’PR{ngs . Denote ,S’Llefngs and Sh R{hag
the full subcategories of SpR:ngs formed by QO -ringed
spaces (the (X R ©®) such that (©® is a ) -shea$§f)

and ringed spaces respectively.

Further for preringed spaces of a particular form several
general notions will be used: ‘

A preringed space (X R (9‘) is connected if its
basic topological space X 1is connected and irreducible if so
is X.

A preringed space CX, (')) is  reduced or

V‘ac(i- reduced if @ is a presheave of rac[(-

-semisimple rings.

For any radical pr in the category of associative rings
we similarly define P -reduced preringed spaces. The canonic-
r~
al ringed space (SPQ( R, R ) of a left semiprimary

Noetherian ring R (see h.17, 14.18) is a good example of a
rp -reduced ringed space where qt is the low Bair radical.

In what follows we will deal with J-reduced (0 -ringed
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spaces where J 1s as usual the Jac obson radical.

An open subspace of a preringed space (X R @) is
a preringed space (U , CO‘ U ) where U is an open subset
of X. A preringed space morphism ((p,(e°): (X,@)———? (X’,C’)')
is an open embedding if it induces an isomorphism of (X, ®)
with an open subspace (@(X), @ ‘F(X))‘

The open embeddings--the main tools for constructing
global objects from local ones--are the main characters of this
section.

Proposition. For any twosided ideal x of a ring R
‘‘‘‘‘‘‘ g i e I g T NN

the map \/M l-——?r_/uno( induces preringed space isomor-
AN F e e N N N W e S S U
phisms:
NN

(Ve @, 0 Uy @)) = (Spec, % ,°G,)
(Q(«),‘@MU‘!(@) —=> (_Speeeog 0x)

(Ve ), Oplu ) == (Specok, Ou)

Proof One half of the statement, on homeomorphicy of

- -

the map wuy: Ug(x)—> Spec, & A mNe in topolo-
gies S | 'S1 and S o3 1s proved above (proposi-
tion 5.9) .,. Let us prove the second half-the existence

of the natural isomorphisms of the corresponding presheaves.

o
The presheave OR ”Ué(’o() assigns to a closed sub-
set W NT, (0) of T&) (where W 1is a closed sub-
set of (Spec, R 'So) the ring G R Clear-
(P "o ) Fy; o uw
ly K G TVe(o() UWwW for any W since GT%(O()

<

Lemma. Let F be a radical filter of left ideals of

P W NP NI NP U e, N N e \/MNW\/\/\/\

R and « a twosided ideal from F. Then Tﬂd—-{u{)d’ue EF}

e N e I e e e
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1s a radical filter of left ideals of I 4 and there exists a
r\/\/\/\_/ NN B S S W W e e D V]
X
unigue isomorpnisn  Grp o S G R such that

the following diagram commutes
AN N e TN N T TN TN

Gre % 5 G R

FNx
(1)
js‘ﬂo( d /‘\ J:F) R
? d < R
Proof. The radicality of FN is subject
to a straightforward verification. Clearly FN is a

cofinal subset of ideals ¢n F . Therefore Ff M:(’}'[)o()iM
M R _

for any R-moduleYand Gl':}- M = G-? M= g"'_’g(“"mg('", (fnd)"M)lmeTlld),
Now notice that for any pair R-modules M and N we have
Hom , (M;M)“—'“OMO((M,A/) if the {}-torsion of N (s
zero.

In fact for any £€ Homo( (M,A/‘), o€ R and
A€ X we have A §(x-)= §Oxe)=2Ax§5(-),
I.e. X (S(x—)—x&(~))= O, Since N has no {o(}—torsion, then
$(oc-yY=x§) meaning (since 2c€ R is arbitrary) that
§e HomR(M°A/)'

In particular, Hom, (- ,@FN) M) = Hom (-, (FNK)M)

and therefore

Gy M5 € g (Hom, O, (FOIM) m € TN G M

Applying the established isomorphism Grg_Mf: Gr‘;_ndM
to the R-modules o and R we get the commuting diagram
R ~
R—> GrgR > G R |
z“[ 1 Tl o Tz (a)
) s R

A — o ~
G‘?
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[

in which G,T L& is an isomorphism since o<£ ¥

Therefore @ll#: arrows of the subdiagram 2 in particular (%
are isomorphisms. Since Grg: e is uniquely de-

termined ~$3 the commutativity of the subdiagram 1, then ’E’«x

is uniquely determined by the commutativity (1).
Obviously lemma and remark just before it implies the
. . . . (o4 .. o ‘
existence of a unique isomorphism @0( — U3 @R U&(O()

such that the following diagram commutes:

06'?( —_— T u“,‘o@R |U€(0‘)
T 1 €
K < > R

Here v and R are considered as constant presheaves on
(SPQCQN , :5'0); and the vertical arrows are sets of morphisms
Yo and ) =U, s |

{JTW 70(\We ‘Soﬁk {JT\:(, s R * J‘}—u‘i'w 3'

Thus, we have constructed an isomorphism «®
© ¢ M °c N\ o

(U, uG )2 (U, B [y e0) = (Speeent, Cut).

It induces the other two isomorphisms, mentioned in the formula-

tion of proposition. 3

for any radical filter Fc I,R , ideal € FNIR

and any R-module M obtained in the process of tlie dam»ﬁul\'v«.of

o (] ~e o
i i O Y, -

Lemma presheave isomorphisms uo(,M GL*M ol % C?M‘Ue@() fol

low (here (:z is the restriction of the scalar ring func-

tor corresponding to the embedding X {t Xy R ). The re-
strictions of morphisms °u“,M on ‘31_ and §  deter-
mine isomorphisms

0., U

1
= U‘X* (QM,UQ(“)’ uo(’M‘ [:M a(x(gm\'(_fe(d)'

1u : d’ oa
o« M L*M



- 194 -

For any presheave F on (SP@(‘_CR ) 'S )

denote by F the corresponding presheave on Sr;e_e R
the direct image of F with respect to the canonical quasihomeo-
morphism SPQCCR —> SpecR

Corollary. For any twosided ideal of R and any
AN TSN NN ~

’ - - == e

R-module M there are canonical isomorphisms

AN NN o f 2 T O U N e N i S U S T il TIR PENGZ e e )

a) prerl\rl%gc\i/jg/z_abces
(w uo‘ ” u? MDE (U(oc) @R‘U(a))ﬁ (Speco( @ ),
b) of presheaves of (90( —w (9 “M @M 'U(O()

M S i N N NI W e Vg

Proof. The statement follows directly from Proposition 4

—~ - -

subsequent Remark and Proposition 3.0
1r (X ,0) is a preringed space then (X, 6*)

will be called the ringed space associated with (X, 6)

Since '25 lU (tg \U) for any presheave Y ean. X and

any open subset U cC X then the open embeddings of
preringed spaces are uniquely extendible till open embeddings of
associated ringed spaces. In particularly in all the isomorphisms
of Proposition 4 its corollary and remark we can replace presheaves
by associated sheaves.

5. Left schemes and quasischemes. Now we have enough argu-

ments to give the following definitions:

A ringed space (X ,0) will be called %‘m
a left affine quasischeme, if (X,®)= (S’Pec R @ )

an associateW ring R 5

a left affine scheme, if (X’e)Q(SEC‘Raéa) for an asso-

ciate®® unitary ring R

a left quasischeme (left scheme) if there exists an open
C o \omop P e

o

covering {Uo( |=x € O{} of X such that (U“,®I-U“)
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left affine quasischeme (léft affine scheme) for any &« € (}{,

A few words on the interrelations of these notions.

1) By Corollary of Proposition U4 an open subspace of a
left affine quasischeme is a left affine quasischeme. This state-

ment may be refined: o
? ) —_— X
x, )P (s v, B2)
l (Spee ¢, B2)
~ (~a 7
W, 0|y ——=—> (W), 6| o)
L)

Here o(:'Z((p(U)-L); is the comlement in SP—e-O: R to

the image of an open subset U C X .

This implies that an arbitrary open sﬁbspace of a left
gquasischeme is a left quasischeme.

2) Specialization of the same corollary of Proposition 4
shows that any left affine quasischeme is isomorphic to a left
affine scheme with a truncated SPeez’ since for any R
we have a canonical isomorphism

(SF“;’—Q R ’ ®; )’—: (SP-QC RCL)\SP“Zr 62&) \SPT(‘_ RN SPec'Z‘)'

3) < - Call %ril)fged space (X ,©®) copmutatiye

if @ is a (pre)sheave of commutative rings. Clearly a com-
mutative left affine scheme i& = an affine scheme in ¥ Wl
SUMSE .

A commutative affine quasischeme is isomorphic due to 2)
closed SuBspace,

to an affine scheme with a trt,lncatz’;*dy~ Specz andl therefore,

is a scheme. Besides, a commutative affine quasischeme is an af-
fine scheme if and only if its basic topological space is

quasicompact.
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Recall thatk?{yP/roposition 5.7 S'P_é_c R is quasi-
compact for any associative ring with unit. Conversely let R
be a ring (not necessarily commutative yet) such that
E;F;EE- R is quasicompact. Then there exists a finitely
generated ideal X E TR such that 55&: R= G(u)’:
QSF{QO& (see Corollary 1 of Proposition 5.7)We will consider X
as an ideal of the unitary ring R Let {ty,.., t} be

a finite set of generators of (as a twosided ideal) and

‘t::tl'...

then O (T ()= (IR and Spee ¢)'RY = @)= SpecR.

4) Any commutative quasischeme is a scheme since it is

) . . .
vtk . If R (and R 3 is a commutative ring,

glued together of affine guasischemes which are canonically
isomorphic to open subschemes of affine schemes. In the non-
commutative case this is not so; there exist left affine quasi-
schemes which are not schemes.

5) However any left quasischeme is isomorphic to an open
subspace (subquasischeme) of the left scheme.

Ind“cl, let (X, 06) be a left quasischeme
{'Cfc |ce Ty its quasiaffine covering i.e. there are
isomorphisms (U, , @\—U-L).":. (szc R:, 6{;\)
which determine the the gluing conditions ¢

(Uij ) @;ZlUiJ)C: (Ujf y @;j‘Ujé) R {i,j}c J.
The passage of affine quasischemes to their compactification
(Spee R(;)’ éggﬂ) doeshdt affect the glued data with the
help of which we‘glue a left scheme of left affine schemes
(S(;EE R%ﬂ) (‘9?2(;)). In the thus constructed left scheme

one naturally single out an open subspace isomorphic to the ini-

tial quasischeme.
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6) Let R be a ring; AnnR 1s its twosided ideal
r
v
{xeRle;o}. The canonical epimorphism R —> R/Am gp=R in-
— r
. . —_— ~ _— Vv -
duces the isomorphism (S,\pee R, @R) 1 (Spee R, G .
In fact, Anan\ c 'lao(z(R) and therefore the map

M= JM/Aym R performs the homeomorphism SF?C RS
= SPQ(’_ R Moreover, Ann R is exactly the kernel of the
canonical ring morphism R— Hom (R R), xes .

(see 2.10) and G‘{R'ER Gr{R’y R G({ 3‘2
7) If R 1is a ring with right unit, then (SPQC R @R)

is a left affine scheme since in this case R""’Hom (R R)®,

Reduceed Cest R
6.YT schemes and Zac/{-semlsimple modules,

P
Denote by I{ R the Fﬂmil}l of all left ideals
ole
V o% R such that 'zao(e(v)=)/s="Vﬂ(V:R), And R-module M
. Pa) . Py
will be called ’Zo:o(e -semisimple if Ann%e Ie R
for any %G M . A full subcategory of R-mod
formed by "zix\de -semisimple module we will denote by
A . »
R—mod. These new characters enjoy the following
properties:

1) The intersection of an arbitrary family of ideals of
P ~~
I,R belong to L, R,
2) [VET R~ {RYIEY [Ry € 08R-mod, (ViRYc V],
In fact, let (Anng)s=2ad,(Anng) for any §e R/y.

This means that (v:t)g= anle((u:t)) for any TER~NY,
But V¢= ﬂ{(v:t)slt €R~YT ana therefore ))s':’zao(e ).
P
Conversely suppose that ¥ € ToR ; i.e. Vs-:?ade(y)z

=(peSpec,R|v->p},  This implies that (V:t)sc Radplv:t)c
.ﬂ,ng(v)} (Vs:t), On the other hand (Vyrt)c (V:it) and thepefore
'Zade((v:t))c (v 1t)E (V.t)s. Hence (V:it)g = 'zao{€ @:t)).
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3) The left R-module R is '?/a\c/e -semisimple if
A
and only if R is 7&‘a(e -semisimple, i.e. ’tao(e(R)=O.
In fact by (2) R-module R is 'Zacle-semlslmple if
~
and only if (O € Te R . But clearly
~ Ve
[0€ TeR 1= [ 2l 4 (RY= 0]

k) It is no difficult to see that the category R—-rr{;o(
of 'Za\o(e -semisimple modulegis closed with respect to
arbitrary direct products (in R-mocl ) and contains together
with every module all its submodules, In particular R—mool
is closed with respect to direct sum.

5) Any R-module with zero Jackobson radical is ‘ta\o(e-
-semisimple.

. A

In fact, every simple R-module clearly belongs to R-moo[.

that
It is known (@],Proposition 18.0.2)/ever'y R-module with J=0 1is

a submodule in a product of simple modules.

Pl
Proposition. For any ’Zaa/ -semisimple R-module M
— o - —— NN Q NN NN AN
the structure presheave @M is a () ~sheave.
ANANAANANANANANANAANANNAANANNNNN ~N\ NANAN

Proof. By Proposition 4.5 we are to verify the validity of

the implication

= 1= T o
for any 9 € ’_[?R and any pair { , P’B of

twosided ideal.

Si/r\me S‘r—v-( (mﬂp)z{hEICR |0(ﬂ BC ’aaole(n)} R
and ToR={m¢T,R |2ady(m)c m7y the ideal VU $rom IR

belongs to ’F‘fe(‘xng) if and only if o(ﬂpc V.
P HOBET Ty *ETyeo T RET s

and therefore

e Ty
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Corollary 1. (a) If R is a e, -semisimple
________ A~ A C INAAAANNAAN
Whg/xz (QR is an w)-sheave. noedule M

~ A AN~ ,un‘_tag R-['-{___)
(b) If R 1is a ring with right unlt then for any{ srom R-maol
~

A A B A e e A P U\ )

the canonical R-module morphism M —> r“@“ is an isomor-
AN NN AN A AN L AN

phism. In particular if R is a Qad —semlS:mele ring with

~ON L N N e T e VavaYaS L i e e N N L U
. a . .

unit then R —> ™ 6R is an isomorphism.

ANy [ S S S el S W e e W WY

Proof. The statement (a) is a direct corollary of Propo-
sition and a corollary of 'Zac/c -semisimplicity of R
as a ring and as a module (see (3)).

(b) If R 1s a ring with right unit then the space
<SPQCCR ) 'S) is quasicompact by Proposition 5.7 and for
any M from Ruf/o;{ the canonical arrow {R}‘M‘*F@A:
is a R-module isomorphism. In particular this is the case for
module from R-mod by Proposition 6. Now notice that M={R]ILM
i§ M is Qfde—semisimple. a

Lemma. For any radical filter F and a subset WC SPec R
AN AN A ¢

- — -

we have

L N i

G (2w -FN=N{GgP|pew~ T}, (1)
Irf (WNF¥H)e F then

o

Gr g (rew)= 2 (Gr - (W), (2)
1rf F= ’}_V ) for some K € IT R then for

any n € I, R
Cro (2acln ) = T (Crg- (G (W) > 2ad, (Gigh).  (3)
Proof. 1) (i) Clearly,
G (2(W~FNCN{Grg P | PEWNFY= 2(Crp(w T, ()
ii) Notice that for any PESE\QC R~F we have

sz;-1(C"'3»'P P) In fact p= JP ((a-‘}, P) by Proposition 5.1

and the including :TC TP

pcis(Gepdc jgi(q?ppl

1mp11es



- 200 -

(iii) Therefore we have
Ig (MGgPIPeWD=N{ 1} (Ggp)lPeW}=
=N{p|pe W~F}Zr(w-7)
implying the inclusion convert to (4)
N{GgplPEW TFic CTT(j;(ﬂ{Grg-p |pe wAT )=
=Gqg (2w F)),
2) 1t T(WNFIEF then Cre(2(WNFN=GrgR
and
G (2= Gr g (AWATIN 2WNF )= Gr g RIWANFING - (2(wF)=
(since C;r? is left exact and therefore "preserves" the inter-

sections ofpairs ofditdeals): Grg.('l(wx?)): n{CT:}-Pl pe W\T}=
=N {Grg P lPeWTZE 2 (Gig(W)).

RwnFIe T,
3) If F = TVC () for some X ETR then\ for

any Ww¢c¢ SPQ‘;QR Aand therefore (2) holds for any
V4 e '=Valw) e | M.L 2 )
W Specy Rigf W=Vp(n) e LK fhen (2)
takes the form
C,,,}.('Zade(nﬂ = 'ch’rg: (\fe(h))): 'Z((Jrg-c-‘/é(h»).
By Corollary 2 of Proposition 2.9 (for any radical filter F

the functor C’rf}' sends SpeceR\ F into SPQCerg:R-
Besides as states Corollary 1 of Proposition 2.9 m > (},3: m

is a functor from Ig R into Ie?GxgrR. . Therefore,
for any n€IQR_ the functor G’g:‘ Liany %‘he ideals ef
Ve(n,) ~F into the idealsof -VéCGyg_-h.).
.. . bt -~
This implies thal 'zczde(G,g.n)c ? (G'T(%Cn))‘ o

Corollary 2. The following properties of the unitary ring
NN NNNAANNANNNNNS

R are equivalent:
ANANNANN NN A
1) R is a Yad -semisimple ring ;
AN~ e ’\/W\/\/\/\./\/\,
2) (SP’Q'Z_ R, @R) is a reduced preringed space ;
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— u
. — Q
5) The left affine scheme (Spec R, Op) is redfcea

and R& P@;
AAA ‘_ _
L) (SPec; R , @g) is reduced and (DR is a; €J -sheave.
NN TN NN

AN INANNA
Proof. 1) = 2). By Lemma C)fg: R is nadd, -
-t ) Ve (X ) ~ e
-semisimple for any X€T R if R is ’thd‘—semisimple

. ~ A~
since Zao(e (Zg:ve R c G‘_TV ('Zaa( (R)).
2) 2»1) Since R is unltary’then 6] (ﬁ)& R.

3) = Y4) Follows from Corollary 1.

3) 1) is trivial.

/\
1) & 3) (i) Let us show that the -'laa[e ~-semisimplicity
of R implies ’za —semisimplicity of all the fibres of

the stwnctnal duw% 637,

In fact for any JM € SPQQCR the ideal CDJA P
of (9 --&m{Grg_- Vae )\o(GIRﬂT} either coincides with

(ir Jusc P ) or belongs to SPee @q

0%, p R,p

(see Corollary 4 of Proposition 12) Lemma 6 implies that

[ 2o, (R)= O]%[ﬂ{Grg_ /u]/uespeck} O Jor

any o(éIR]ﬁ[n{ PUue SFQ%R?, o].

(ii) Following one of the conventlonal(m p01nts 4
sheaves let us identify for any closed subset wc SPec R
the ring of "sections" (O (W) (over the compli-
ment to W) with the correspondlng subring in W ®R
where W = de¥ Sfaec R ~W, It is not dl}z‘fi-
cult to see that for any closed subset w C S ec R
and any VY€ IQR the ideal @ (W) or (9 w)
equals (T -6:7 P) N 6: w). From here we easily

deduce that for any \/Vt c SFQCC R and any closed subset
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(a) (7); (W) is either improper ideal or belongs
to the left spectrum of GE(W),
o ,
) N{OL (W) M€ Spec,R}=0. D

7. Maximal left spectrum and ringed structural spaces

1. Maximal left spectrum. We will call thus the set

Maoczes R of maximal left regular ideals of a ring R.
Proposition. Let M € quQQgR and V be a regular
------- ~AA (4 AN AN ANAAN

left ideal. Then the following conditions are eqguivalent:
[ Ve e e U VI T U T W P e W P O W L VRN A S e W e R L

‘

1) jv\——\7 ));
— . (I) (-)
2) V_(ju.x) m ZIZEJ(R)\J(/“).
Proof. (a) Let m €I R and VETILR, Then
the relation m — VY means that there exists an element

}r (<) R/m < such that the canonical epimorphism R—»R/v
w
/ factors through the epimorphism R~——>> R‘; ” A —> 1-%;

f‘ i.e. there is a commutative diagram

/ o w
| Ry ————>R,
In fact since m € Iew—R then m-—> Y if and only
| it (m:x)c V for a finite subset x:{x‘“,.v’xkkc R.
Let X, be the image of x; in R/m. Then (m:x)= Ann}
where %: O?:ie .. ,@ik; i.e. § is the desired vector.
(b) Now let MmeE Maoc:eqR and /M—él}, Due to
‘ (a) there exists a cyclic R-submodule R% of 8 R(f"
(where % R/m is the direct sum of countably many copies
of R/m) such that there exists an epimorphism tp: R3—»> RAp, -

Since submodules of semisimple modules are semisimple (see e.g.

Dﬂ? Ch. III, & 1) then R‘g and ‘QQJL(P are semisimple.
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This implies that R‘f’: kyup@R/v;i.e. R/U is semisimple

Z

I
and can be embedded into R%., This means that R/y’: iB R

for an finite k.

Now suppose that VY is regular, e the right unit modu-
lo V , l.e. Xx—2ca € 2 for any x € R, and @,
the image of @ in R/U . Obviously Ra,= R/v
and Anna, = V, Let gv be the image of Q, with
respect to the isomorphism @ : R/U = @ R/f‘ (L uﬁflearly
Ann‘;v =Anna, =V, On the other hand %u: i‘@meik
for a set A ={xg,...,X 3T R ( ic is the image

of O ; 1in R(/M) and therefore Ann %v‘: 914 1 o0),
Thus we have proved the implication 1)=% 2). The converse

implication is obvious. O

e
Corollary 1. ’5{ {/u,‘/u"&CMaxegR ?33 ‘/u-—?/ul then

_______ AN

M=(pit) foxeqe te R~m and therelory M
Proof. By Proposition 1 the relation _m ._)Ju’ means that

/“'-’—(/M:oc) for a set o= e, ,.,20 ) YT R~m. The

maximality of J“' implies -/“l:\(/“:xé) for all (:, 1<si<k. O

Corollary 2. Let T be a topolo on
‘“‘_—"y“" N~ ‘\/\/\/\/\I.)/\/\gz [a ¥ SPQCCR

h that th 1 f int inci
sugh, that the closure of any point  p€ SpeeeR  coincides
il Ve(p) (28 T=S. or T= So , the strongest

. . . ™~ .
tepology with this properts) “T the quetient topology of T

~ ~- N~ N N~ ~ ~ .
on "Spec,R . Then [ (“Spec,R, )= Max3IR
Nore exactly the mp  Spec R —> "Spec,R  induces

a surjection CR of the maximal left spectrum on to the set of
I Ve R\ . R D S P N e e S N N N e R e Ve U

closed points of (NSPQCCR ,~’t’) and eR(fn=€R(jw) /i\f/@cl‘only

e P Ve W NN i, S

AL M= (uity  for sone T € Ry
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Proof. Since |( SpeccR,”t)l=KNSPeCLR,MSO)I
it suffices to verify the validity of the statement for Se.
Let us make use of the homeomorphism
~ (1) ~. ~ ~ -
(7Speey RN Specz, 3, )55 ("Spec,R, ™S,)
induced by the homeomorhpism (see proof of Proposition 5.14.A
and 1.6):
€D
SPQQCR \59@12 =, SFQQR s M l——)ﬂ{'\R’
which in its turn induces the bijection
~of p(1 ~ ' 7= ~ 2
¢ Ppec, R 31> SpuZ = C SPQQ€R7 Sol. 2>
since 'V, (p)N Maoce R'=#£ ,®’ for any ring R
with (right) unit and any point pE Specekl, then

(2) enters the commutative diagram

It Spec R(O o)‘\spe(Z = |(~ Spec R NSO),
'l 1 / T eR

Manxc, R¢Y SpecZ _— A,Maoczgﬂ

in which #® and therefore ?' are surjections. This implies
that QR is a surjection. It remains to make use of Corollary 1
. _ PR . (_ ‘
thanks to which ek(jﬂ— éR(ﬂ) if and only if M= (/“ t)
for some t€ R\J‘A u}
The topologies S,, S, and S induce topologies on
'Le 7N ~ 7\
Maoce_ IR that will be denoted G‘y So, 3.1. and X

respectively.

Ro¢
2. Structure presheaves and sheaves on Maoce JR. To

O/\ 'L(g ~
each R-module M a structure presheave G)M on (Maxe R,,'So)

corresponds. It sends a closed set W into the R-module

o/\ PaN A

G4 The restrictions of ([ onto S and S

(}J A M i (e}
will be denoted by O nd @ respectively. Let us discuss

M
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«
the local behaviour of the associated sheaves (’)“ i(?
and (9 in the same terms as we perform this for ¢ "‘ ‘(QQ
and @q in 5.5.
m A e
A) The fibre of O@q at had any point/ME Maace gR
is isomorphic to the R- module 613:— M

V% = Lim (Grg' Mlj“é‘ed) -&m(G[g_. M |QJC J‘):G;M

.Mvﬂq__ Ve(¥) Ve (€9
since v (E, ) ‘J—'/“ 5 here V(ej =€ n“’PeecR ,
For any €~ c set where
JM Spe e » /ﬁ' /p.
/M is a representative of _/M . Obv1ously ?ﬂ is well-de-
fined.
a
Prop051t10n (9 is isomorphic to the sheave, send-
-~ - Sy - ANAANNNNANNNANANANAN AN NAANANNN

1ng an arbitrary closed set W into the R-module

A N N N A e O /\/\/\/.\/\/\/\NW\

TT{GT MIJME W‘L} where ~wt is the image of Wk
‘F [ e N N N N, W

= s i

=Max4R ~W in VSpec, e R.

Proof. The map (Marxugg 3‘0)—-‘7(74 7R "'3-‘)18 a quasi-
homeomorphism and as is clear from Corollary 1.1 the space
(~Ma,£2¢9,l ,~S°') is discrete (recall that the closure of any
subset W of (SPeQeR , So) coincide with ,g}ew\fc(p))‘

Any sheave on the discrete space sends any its subset into the
product of fibres on the p})\ints of this subset. It follows from
A) that the fibre of I, ©F bit int M

a he fibre o *“m over an arbitrary poln Ju
is isomorphic to Gr,};aM ()

Let us add a few words on the sheave of rings o@g,

Lemma. Let F be the radical filter and me Magc:‘&g\:r

ANANANNANNANAANA b
Then  Grp M is a maximal left ideal of GryR.

Proof. 1) If ¥  is a regular ideal gromI,R ~F

and & right unit modulo ¥ then 1-J'3_ R(q)G’G‘,}_v where
)

1 is the unit of G?R since R (1 ~J‘3. R(a))c Gl'grv
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This means that j? R(Q) is right unit modulo 613-1{
and in particular J:.r R(a)¢ n if h is a proper ideal
of G\-g. contalnlng C)fg:-
2) Now let, /MGMaac JR\T and @& be right unit modu-
fes
lo M; n a properaldeal of C’rg— R containing
. =1 - =1
Gr&,.ﬂ_ . Then _MC Jg o (h) and a¢ JJ_-,R(V\-)
as we have just found out. Thus J':;R(h.) is a proper
2
ideal and the maximality of implies i~ (ny= .
: y M p JT’R( M
Since hc G"?JIF R(n,) then h coincide with 613_-/" a
Corollary. For any s € Max IR the quasifinal ideal

Cra. ;.

M

B) The fibres of i@“ . The presentation of (‘FJ"‘ in

the form U {F n = implies (see 5.5.B)
the 1% Ine .= 9, plies (
© =£¢“m(6\3:. M |neF ) and the existence of the canonic-

M of Gr&— is a maximal left ideal.
NANANANANANNANAANNANANN

al mor'phlsm

175 a
1q’M?jM: (DM - C’fs:

Proposition .
V" Bmeef. 1) The canonical arrow

4
....... P @M iy — Gy £ M
ke zenomerphism. 1t 1s fsomezpblen If Hg ( V(,,))*M—> Crg, M
is an epimorphism for some hn € 3:_/\4
fWW\/\/\/\./\N\/W\/

2)160‘ M, Gl‘g.— M if one of the following con-
?

ditions holds:
NN AN

a) ordered with respect to inclusion family of torsion

swmodstes { T M | re T L M stani-
PR
b) M is Noetherian ;
ANANNNAANNNN

¢) R 1is left Noetherian.
L S e e N e e e e W

i Q
3) For every m € Max'”ﬂ R the left ideal @
of the ring 1@"‘ is maximal.
ONSANANNNNAN j\A
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Proof. The heading 1), 2) are specializations of Proposi-

- — -

tions 2.12 and its first d%'corollaries. The heading 3) follows
from Lemma A (see also heading 1) of Corollary 4 of Proposi-
tion 2.12).

A
C) Fibres of @a . For any m€ T,R set

<m7°‘-—.‘=—5.' {‘44'6 Max:egk l/r;C m},
Proposition. Let € Magc'“fiR E
oposibtion- oL M e JAE A
1) There exists a canonicalYmorphism (pMJ“: O —G.M
NNANANANANANUNIANNANANNAAAAANANANAAN ™ 1/

Mom TF
for every M€ 08 R-modl, SR

2) is an isomorphism if one of the following
INAANANANANNNNANNNNANNNNNNNNNN N NN

(PM’_/,‘:

conditions holds:

ANNNAANANANSANALANA
a) for some KX €EIRNT the natural arrow
ANANANANA - A" AN NN

Y r 1 0 . . .
" Fopr oM 7 G g, e pinemhisn s

b) an ordered by inclusion family of submodules
ANANANANNNANANNANNANCANNANNANANANANANANNN

{9 oM Ixe FLNTRY of 1 stanilizess

c) M 1is Noetherian >
I Y Ve Ve e Uy e Va
e o~ . . . .
d) (Maccegk ,'S) is a Noetherian space e.g. R is a ring
- NN NN~ MNAANANAN N
with the ascending chain condition for twosided ideals.
/\/\/WVV\/\/\/\/\/\/WW\’W\/\/W\/WV\/\/\/\/\

) et m'€ Max, IR, Tnen

AN P
e) COres 'e Max, G R and OF, € Max, 07
. , 3?90/1‘ ¢ g_g}_a) N MM €7R, pm
AL Msem;

£ - ' . d Aq‘ = A
D gm0 R B Qu T O,
1L msEm.

Proof. 1) As in 5.5.C we establish that for any meT,R

- - -

we have

UlFy e 2 € TR, otgml= fuchR]ir m'€ MaxPIR  and
“'~>_/U‘ then %Cﬂ' for some & € F ﬂIR}:

={neT,R | ir M'€Max,9R  and h—_u'

then /14'5¢m73—: T(Vn?: T<ms>.
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Proposition 2 12 implies the existence of canonical mor-

phisms (PMJM 6a —_> Grq'_- M, ME 08 R-mod .
im?

2) A spec1a11zat10n of Proposition 2.12 and its corollaries

implies that CPM is an isomorphism provided (a)-(d)
2
hold.

3) It is not difficult to see (if one looks at the equali-
ties in the proof of 1)) that [JM € C}_<Ju7 ](:) [/\43 ¢_/Mj
for any /IA E Maac R. Thus 3) follows from Lemma A. O

Note that for any o €& TR ‘ the filter G3:‘Vé(ol) con-
sists of all h € T, R such that «c Te(n)

oles . .
where Te(h)z n{/lAGMax 3!2 I h—?JM} is the "left continua-
tion" of the Jac*obson radical (see 5.13).

3. Spaces of irreducible components. The space of irreduc-

ible components DUL(MOLI?S R, go) is isomorphic
to the discrete space ~Ma'x:“gR.

This fact follows from Corollary 1 of Proposition 1; essen-
tially it has been already established during the proof of Pro-
position 2.A.

Denote {PSPQQR the subspace of the prim  spec-
trum of R formed by all ¢the prime ideals which are inter-
sections of the families of the primitive ideals.

Proposition. 1) The map w r——)'z(w) performs a homeo-
f\/\/\/\- NN

1 W W W W W W T
Reg t i
mophicn ben(Mex YR, S)  onre PSpecR
2) ?SPQ(’_R is quasicompact if R possesses
AN NN AANNAANNCNN

right or left unit.
AANNANANAAANANANAA
Proof. 1) Follows directly from Proposition 5.14.B.
2) (MacceR , §) is quasicompact if R possesses

a right unit. This is actually proved during the proof of Propo-
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sition 5.7 (see also proof of Corollary 1 of Proposition 11).
Since @SPQC,R is quasihomeomorphic to (/che,kJ ':g\)
it is also quasicompact.

Now notice that the picture is symmetric (almost the first
time since the beginning of this work)~one could arrive to

j)S‘ch R starting from the space of (Max':egk’j]\>

of right regular ideals. Therefore (Max:esk, ‘§ D) , TSP‘ECR‘
and (Ma'x:qR ,j’S\ ) could be guasicompact (or possess any
other property invariant with respect to quasihomeomorphisms)
only * simultaneously and therefore R having a left unit im-
plies quasicompactness of g)SPec R a
2.2 quasibenconorphien. o paztioular PSpee R o2 J2imR.

Proof. :Pt[m R is the image of the canonical quasi-
homeomorphism Max:‘gﬁ —> ﬁSf)ec R 7./»“ — M. o

4, Main homeomorphisms. On main homeomorphisms of maximal

left spectrums see statements in 5.13. Here we will derive a

corollary from Proposition 5.13.

Proposition. 1) Let &« ETR. Trl\l/evm\-'sl/p Jur—-)ﬂ(]o(

- - - ——

cle

performs the homeomorphism of T () .:5 { peE j)SpecR lO(Cf- P}
AN NN N NN NN . o
onto .(PSpecq(.

2) For any non-zero idempotent e of R the map

ANNANANAANANAAANANANANNANANANANNANAN i AN
p—p NeRe determines a homeomorphism of ([-)U(eRe)=
NN AN AN

={pe TSPecR leRe ¢ pT  SuEQ @Speceﬂe.

Proof is almost identical to that Proposition 6.3;the only
T of
difference being that homeomor‘phisms/\Propositions 5.9 and 5.11

are used instead of homeomorphisms from 5.13. 0O
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Corollary 1. L

et
—————— Vaval

«€TR, e anonzero idempotent,

f a non-unit idempotent.
AN NN NNN AN TN

1) The map m |—>/Mﬂ exe determines a homeomorphism

[ Ve e NN NANANANNCNNCAANAT
PUEINPU) =5 PBpec exe .

) TR M M0 (1-$)K(L-5) determines

a homeomorphism P ((+-5IRA-5NNPU ) 5P Spec (4-5)x(2-5).
Proof is similar to that of Corollaries 2 and 3 of Proposi-

tion 5.11. D0
Corollary 2. TR MAP  me— mNR  pexforms g homeo-

nerphisn  PSpecROvspez ™ PpecR.

—— e — e — —

coincides with the set Max 223 R of maximal twosided
NANANANNNNNANNNANNN NANANNANAANAANAN
regular ideals (and so does lSPee, R l , see Corollary U4
[ Ve Ve Ve Ve Ve Ve e We Ve VA Y a T a Ve e Ve NN AN

of Proposition 6.3).
ANANANAANANN AN

Proof is the same as that of Corollary of Proposi-
tion 6.3: a) if R is a ring with (right) uni_t, then
IG)SPQGR': Max R as is easy to verifyj b) for an arbit-

rary R the homeomorphism ‘,'PSPQC R&)\Spec‘z.‘: TSPEC R
induces a bijection of ITSPQC R(1)~SPQ¢Z|= quRC‘) N SpecZ
with ~Max®IR, 0

Remark. The statements of this section may be deduced with
the help of approximately the same argument from Jackobson's
theorems ( [S"},Ch. IX, & 2) making use of the canonical homeo-
morphism Uwe J2%%¢m R (o g fPSPecR , Wi 2(w), 1In their
turn the statements of §§ 2 and 3 of Ch. IX in [5} are corol-

laries of the above facts. A

5. Canonical open embeddings. Denote by PF the direct

image of a presheave F on (Maxzegg , j) with respect to
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the quasihomeomorphism

Proposition. For any twosided ideal o of R the map
- = o = — - . T NN A — - AN
i i ism of i d spaces:
= MmN induces isomorphism of preringed spaces

(Ve , 20 |y, )= (Maxec, 20, ),
(% @, 16 |y (0 1™ (MaxB, 26,
(Ve ) | GR[U&QQ (Max}9x , GOy,
(PUEN, POR | prren) =3 (PSpeca, POK).

Proof. The statements follows from Propositions 4 and 5.13

I~y - —

and Lemma 6.4 (see proof of Proposition 6.4).

6. Semisimple rings and Je-semisimple modules. Denote

by I%R the family of all proper left ideals k. of R
such that 'J'e(n)c: n or equivalently hg = JeCn).

. . . 3
A - 1 - bl £
A Fmoddde M iz Jp ceeplsimple if Amnie IR . Lo
every §$€ M~{0%, The full subcategory of R-mod formed
by J( -semisimple modules will be denoted by R—‘Temoof.

to products (in R-mod) and contains together with every module
NANANANC AN AN ANANANANAANNNS

or its submodules.
NSNS

2) Every R-module with zero Jackobson radical is J_ -semi-
0 AN €

AN LA AN
simple.
AN~
3) Let YVE€T R and (V:R)c V. Then Ry

. . . . R d
- 1 f 1 f
is J -semisimple if and only if ¥ € TR,

4) A left R-module R 1is Je -semisimple if and only if
AN AN no [ ¥ W W e e S W W e e e g

R 1is a semisimple ring, i.e. J(R)=0.
MNAANANNNN N A ANNN

~ wa!‘d

Proof. 1) It is subject todstr-s\iaukr/\ verification that

—_— - -

Igp\ is closed with respect to intersections

of arbitrary family of ideals, since Jé(ﬂ h;)C ﬂ Je(ny)
K3 (el
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and,therefore,the fact that Jp(n;)c W; for all
(ET implies IC (N _nHc N n..
(€T ter ¢ ,
It follows that together with any family of modules {M;lfel}
the category R - Jepod contains T m - The
e

statement on submodules is trivial.

2) Recall that the Jac obson radical J(M) of M is the
intersection of kernels of all the morphisms of M into irre-
ducible R-modules. Therefore J(M)=0 means exactly that
M is isomorphic to a submodule in the product of a family of
irreducible modules. Clearly all irreducible modules are J, -semi-

(4
simple. Therefore 2) follows from 1).

3) The fact that [ (V:R)c v, R € R-Temod 161 VGIQJR]

is verified as the fact

[ R)CV, RAE R-mod Je3T e IR ]

in 6.6.
4) By 3) the R-module R is 'Jc -semisimple if and only

if o0¢€ IER, It is easy to see that [0 € I:R]<=>[T(R)=O].u
Note that any J€ -semisimple module is 'Zc/l\ole—semi—

simple.

7. Structure presheaves of Jt-semisimple modules . There holds

a statement similar to Proposition 6.6:

Proposition. For any J,-semisimple module M the structure
-_ - VS P N P N e Tl e e W e W Wy

—— — — - N N e
”N
presheave 6] is a ) -sheave.
NN M N VaYaYaYal

Proof. As was noted at the end of n.2 for any o € TR

the filter ('FV ) equals { n e Ie R ( X C Je(n_ )}
¢

Therefore for any pair {o(, B’} CIR
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. : Ip _ T To -
(Tve(@ J—L‘}—ve(fs)) n Ie R= ‘3'_ve «np) nIc R=
={neTir|dnpcnl=("F o BFINI RC
[3 * j
< (q:\/i(oo ° ’3—’%(9))01‘( R
and therefore ‘j:VéCo(ﬂB) ﬂIgRr- (%u)"?vz(BQn I.eJR .

Thus the statement follows from Proposition 4.5. 0

Pal
Corollary 1. (i) If R is a semisimple ring then @R

“““““ N AN A A AN AN

is a ) -sheave.
NN
(ii) If R is a ring with right unit then for any J -se-
laa ANNNNNNANL A AN AN NN AN AN ¢ n~
~\
misimple R-module M the canonical arrow M — [P (B9
is an R-module isomorphism.
e~ AN

Proof. (i) The statement follows from heading 4) of Proposi-
tion 6 and Proposition 7.

(ii) If R possesses right unit then by Proposition 3

(ngcg‘ﬁk , :S) is quasicompact and for any R-module M
A
such that @M is an () -sheave bthe canonical injec-
. -
tion {RY¥'M — F'@ﬁ,‘ is an isomorphism
(we have made use of the fact that For = R and
. z
Q{RXMQ{R} M where R 1is a ring with right
unit. Now notice that {(RY*M = m for any J,-semi-

simple R-module M. QO

A preringed space (X , 6) » will be called semisimple
ir © is a presheave of semisimple rings.

Corollary 2. The following properties of a unitary ring

——————— [ Y i i e N e I Sl gl Y i e U i T T e
R are equivalent:

NN AN TN
1) R is semisimple

AN TS S TSN

N
2) the preringed space (MaoclzegR 6) ) is semisimple
AN N £ 2 R AN AL A
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. 'u,g /\n . . .
3) the ringed space (Maxg R, Op ) 1s semisimple
”N
e
and F‘OR ~R.
Proof is based on an analogue of one of the statements of

Lemma 6.6

Lemma. For any twosided ideal X of R
NN AN AN

Gt iy gy e = ﬂ{Gr:FV Mime (n)} nET R
in particular
NN

lirgo_f. If for some of IR then

- csc-\/ccot)
r(wn¥Fle F for any WCMaoc:QSR, and therefore
by Lemma 6.6 Grgr (eew)="2 C(Jlg: (W))
When W = ’\Q(h) , RE TR, this identity takes the
form
Crg (T(m)=N{Grg m| meV;nd}

In particular by Lemma 2.A the functor Grs_ sends ideals of
Maoc;uﬁR ~F into the maximal left ideals of CrgR
mherefore  Cr o (SR = Crg g1 | € Mare, SR~ F §2 T g R). 0

Lemma implies that 1) =»2). Clearly 2) = 1) = 3). We veri-
fy that 1) 2> 3) in approximately the same way as we verify the
corresponding implication in the proof of Carollary 2 of Propo-
sition 6.6:

from semisimplicity of R we derive with the help of Lem-
ma and heading 3) of Proposition 2.C the semisimplicity of all

/\
the fibres of 6R9

Q
it follows from the identity (9qu 6 (W)n‘ [ @ m, M
A€ MGI%SR\W
for any m € T, R and any closed subset W of (Nax'mﬂk ,8)
N oy
that for any M € ngc:egR the ideal @/« (W)

~
either non-proper or belongs to Mowce @;(W) s and

N {@g(w) | m € Maocz‘eng =

a
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Section 8. The category Ig' R and non-commuta-

tive algebra,

Let as above R be an associative ring. For any set &F

of left ideals of R denote Ly I;R\SF the full subcatego-

ry of I, R whose . . .. - IR~

1. Iz R and the structure of radical filters. The
following statement is similar to Prop'osition 2.8.

Proposition. Max(TR ~F)C SpecyR for any radical
filter ¥,

Proof. Let m€ Max (IQ?"R ~ 3:). Since
M —> (Ju:gg) for any A€ R, then the maximality

of /4 implies [xe R,(/M:oc)-laﬂ—}@[(/uix)é F 1.
Therefore this implies that

ME IC*R (see 1.6) and therefore ﬁés’

= {’XLG R I (/u'. xjhﬂ} is’by Pfoposition 1.6,an ideal £vom

A
SPQQCR; ~ L . ole§
M coincides with Mg = {’)e R {9‘. Ae g:}
For any e Ip R we have [h € I‘ez \G?]@)[_’ng._.EIQR\T].
Therefore the maximality of M (and t‘-{e.ih((ustow C/“(F )

~
imply that JM and -/Mq_. =JM are isomorphic. O
Corollary 1. I;\g& T be a family of uniformed filters
——————— PN N AN NN NN AN N NN A
of left ideals of R such that
NN\ VA Y Vg Sg Ul W)
(a) all the filters from T are of finite type,
INANAANNANANANAAN NN
‘ ‘
(b) Foyc U{F'(FETY for any {F,e43c T

Then Maoc(ICS'R\ OIF'1FeTY) C SpeceR.
In fact,it follows from (a) and (b) that 2T o—é*

= U{F'IFeTk is a radical filter. O
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Corollary 2. Let F be a radical filter and for any

—————— A AN NN NN NN
n€T,R~F  there exists m€ Max (ISR ~F) such that
N oM. fhen

W) F=N{F, |me Max (TER~FI} =
= N{F |

) Max (IR~F)c 5pecé g{ps]pe SPeceR}

Proof. 1) Clearly F c ?v(?)cn{g: (/MGMa’JCCng\fF)}
since Maoc(l'e R\?)cSpeceR F. On the other hand by

o(ei'
(9‘)

hypothesis a left ideal wv such that N -,L>(/M for
all m € Maoche?'R\?') necessarily belongs to .
2) Let m € Maax (TR~F), By hypothesis mec m

for some M [ Maoc(re*p\:}‘) and therefore mcjus_ Since

/Msé F and is a maximal ideal from
TR ~F then mg=m, O
2. sup - and sup.

Here after we will assume that R possesses right unit. The

reformulations for the general case are left to the reader.

For any family of left ideals .{n: lce T} denote ‘y
Sup“{nt {te I"S its exact upper boundary in Ieé' R
if it exists. In other words SHP}-{ n‘lie I} is the
colimit of the diagram in I'c}' R generated by {ht (teTX.

-

1Q -
Lemma. The following propert}—séf .{ n* ) { € I'ls c IeR
OANANANNAANAANAN NN AN NN
are equivalent:
/\/’\/\/\/\/\/\/\/‘\/\
- PP .
DosupT{n’(teTY  gxists.
2) There exists the family {ti {(eT 'I;C .T(R)
(A A Ve Ve UV aVaVa WaWe U Ve N d —d

such that
[0 S Y Vo Ve N

sup{(nii t)IPeTYy = Sup{CnitxcHlt ey
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fep ey other family {ox; i€ The P(R);
and Sup%{ nijteTy e sup {Cni:t )l ceTTd.

Proof. 1) =y 2). Clearly, hi (n'ioc;de supf(nk:x,)|ker}
for any {leje I} and e T 5 therefore
Sup}'{ nte Ty Sup {Cns; x.)[ieTT. On the other hand,
Nt — guP&(nk‘ keTI} means exactly that
(ni:t)c SuP“'{ nkl{kett for some ¢;€ JPCR). Select
such t; for every (€ T. Then S(AP‘{CHI‘: t()l
teT}c Sup"{n‘ [(eT} and therefore Sup{(hi:t;)|ieI}<

= supt{ni|ie1d.

2) => 1). Let .{t(. lteT§ be a family satisfying
(2), and {hfam(tet} a cone in I:R. This means that there
exists a family {o¢; lte T PR such
that (ht:'xc)c m for every (€ T. By hypothesis

Sup{(nf:tﬂl teT} —->sup{(nf:-x€ [eeT{cm, Therefore the
cone 4 né _>gu{3{(ni: tolie TG lie I} is initial. O

3. Symmetric radical filters. Clearly the assignment

n— ng is a functor Ies.R —> IR

(right conjugate to the embedding 'r C—»IC‘LR ). In par-

ticular’ ‘
ir {ht lt e I} is an direaea family of ideals in
Ief- R ’ then the family of twosided ideals { n} [TGI}

is directed with respect to inclusionj
Sup -[n‘j9 [teTy c (supflniix)Ite T
for any _[ n | teT ’15 c IQR and an arbitrary
fx; |C€ETYe PCR).
We are interested in the following property of directed
in I‘g R families of ideals {‘nf I(eI}cIek:
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(jfbsj There exists a subset {t; |ce I%C(P(R) such that

sup{niiieT Y= upfCniit)|ieTY), .
Proposition. Let - F be a symmetric radical filter
-——- - == g O O NN N N P U I U Sl e
of bifinite type such that for every linearly ordered (with
NN N NN e N e NN U NN NN NN LN NN N e
respect to —>» ) family {n'|teTI{c I,R~TF
ny) holds. Then
Vo e Ve N\

1) F= ﬁ{ | me Max(Ié'Q\S:)} Tv(?—),
2) Ma'acCIR\EF)CSPec R— {ps IPE S’PQQ R'}

Proof. Let {n‘|ie I be a linearly ordered with
respect to —>  family from ICR <~ F.

NS N

By hypothesis
supfni|ceIY=(Sup{tni:t)|ieTl), for some
{t;1te1Yc P(R).

Suppose SuP{Cnf- t.)[{ef}e‘}' Since F is symmetric,
then Sup{ h‘ LCI} (Sup(n t )) belongs to F . Thanks
to blflnlteness or F and the fact that {ns(ge]ﬁ

Lineagvre ideal .
isYerdered the\‘,\ h’ (and therefore ‘rrl ) belong to F
for some Je T, ‘This contradicts with the assumption ji.e.

sap{(nf;t‘-)lfeI'}é.?.
. J. ~ N -
Since h' . gupf(‘ht:-t(.),(er"s for every j EID
we may apply Zorn's lemma and deduce that every ideal from
Ié'R ~F is majorated by an ideal from Max Cfeskxgj

It remains to refer to Corollary 2.2. (O

Corollary. Let ewery linearly ordered chain of ideals from
IV\/\/\/\/\/\/W\N\/\N\/\./\M/\A/\/\/\MN\/\/\M

IFR  satisty (B,) - e

N

any radical symmetric filter F  of bifinite type
g Ve W \a Ua W e Wi, WU U W e, e

[ Vo VR e T U PR,

solneides with N {Fu | € Max (T R-FNY= Fyp 4y
The full subcategory of Rings, consisting of all the rings
satisfying to the conditions of Corollary, will be denoted by

LosRings.
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4, The prime spectrum and the left spectrum. " "z  .:, -

- S
oy sl . PRI

- s

Propositioni,Let R be a ring such that
—————— o~ 8 Vs Ve WL L Wi e Vo

(y)) For every primary ideal P the set of left
NANANAAANAAN AN NN AN

ideals {(p'.x)‘ xE R ~p % possesses maximal (with
NN NN N~

respect to —» ) elements.
NN NN

Then

NN

t . .
) the map moy mg performs the surjection
. in particular
SPQC&E —> Spee R; in particular, SpecR =Spec R ;

2)¥any symmetric radical filteraof bifinite type
NN

FNIR=NTy I MeSpecRFINTR = Foyy o5y NIR
Proof. 1) Let pE€ SPQQ R and €p; fxo’) be a

maximal (with respect to —>» ) element of {(p:oe)|xeR~ P3.

Let us show that (P Xo) € S'pec:e

Let y€ R and ((p: 92):Y)P (p:yocy). The
maximality of ((P: 9Cs) and the identity
((p:xe):iyd)=CP: yoes) imply that Yo € p; i.e.

y € (p: <o) (clearly, the primariness of p is not used
here) .

Since 9Cgo € R\P and p is primary, then Cp:xo)s:
:(p;(p,gco)):-_ p and therefore p belongs to the image of

A

h
the map  Sgee,R —>Spee R, m—s us.

2) Let F be a symmetric radical filter of bifinite
type , & € IR~NT.. By corollary of Proposition 2.8 there
exists pE€ S’Pec R~F such that o C p . Let

Cp: ) be a maximal element of {(p;gc)l«x@R\P'} with
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respect to —p, Notice that (P:xo)¢ F.

In fact, since F  is symmetric then [(pixd)EF I
@[(p:gco’)e g?'j 5 but (pP:Xy)g=fp as we have just verified,

s

and by hypothesis p ¢ TF.

Thus X< (PiXo), (P:ac)E S ,e\c R~%F anda Fc 3, :

°©7s LP*%o P€ce (p:3)

Since o€ LR~NF is arbitrary, then

IRNF =TIRN(N{F, | € Spee,R~F}). 0

Since F is symmetrlc‘then

=(N{T. '/MGSp/e\ceR\fF}nI:R>

Corollary. Let R satlsfy (b) Then

NS

1) ‘aw( (d\) = (LL (oD for any twosided
ideal of R.
A N~

————— e e -

In particular,the left radical R coincides with its low
Vg e e B W U Ve

Barr radical.
P A Y aVa Ve Ve Ve val

2) ,I\f & is twosided ideal of R finitely generated
NN NAANANNAAN

as a left ideal then AT _ (grv ) (\IR)

Proof. 1) By definition (pRCO() ﬂ{ pE SPQQR 1= P}
for any o € TR, On the other hand 'zao( ) = N{p’|
P'GS‘SZQR lo(C P'Ff(. By Proposition 4 SPQC R coin-
cides with the primary spectrum.

a
2) If o« isAtwosided ideal of R Tfinitely generated as

left ideal then the "radical closure" o /—-]\: of
is a symmetric filter of finite (and therefore . pifinite) type
(see Example #.37). Thus we may make use of the second state-
ment of Prop051t10n 4 which states that
TRA*F = N{F, | mESFec R ~FY N IR
Deno'ce ‘] S&R(ng‘a the %ui{l subcategory of the ca-

tegory of rings distinguished by heading property (U)
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The definition of SC thgg might look even less
constructive than the definition of :fjs R:n?g‘ However,
I know practically nothing on :f) RZnag whereas -

s .
. é!’mfa_t-.&nj/
the following section Cohtains ' A& rather satisfTactory
%
of ,SQ Rtnas "from the low".
5. Semiprime _ Goldi rings and SeRings, A left

ideal Y of R is called a left annihilator if ¥ =(0:oc) .

for a non-empty subset 2¢C R, Usually they write €(x)
instead of (0:x) especially when one have to deal simultaneous-
ly with right annihilators denoted by P{oc 7(={?.E R lx};:OPS),

R is called a left Goldi ring if

(1) R satisfies the descending chain condition for left
annihilators; non-zero

(2) R doegn't contair%‘inite direct sums of leftjideals.

Clearly, any left Noetherian ring is a Goldi ring. The con-
verse is false: a classical example is the polynomial ring in
countable many commuting variables’- it doesn't have zero divises
nor direct sums of left ideals’though it is not, obviously, Noe-
therian.

Recall that R 1is called semiprime if it does not have
non-zero nilpotent ideals or, equivalently’ (F(R)z O,
‘ The following fact (Lemma 7.2.1 in [1 61) plays an import-

ant role in the study of Goldi rings.

Lemma 1. Let R be semiprime ©ring, satisfying maximali-
INANAANAANAAN NN AN N AN

_——_—_——— A
ty condition for left annihilators. If n and m are left
AN NN AN NN NN T ~o AN
ideals of R7 Mmc N and r{(n) # r(m)’ then there exists

~~ AN

NN
h that . and =
A€ gunghat na %0 2L nanm=o,
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Proof see in [161. O
Corollary 1. Any semiprime - left Goldi ring satisfies the
—————— B e e e N N N e U U e W P il S e N N el s B

milimality condition for its left annihilators.
e e D T T S N N N N N W

Proof. Let {m,. | 1= L<oo'} be a strictly descending

chain of left annihilators. The relation M(_H_ = m(

implies %(m)#2(my,,) for alll (=1, Making use of
Lemma 1 select in each m; a non-zero left ideal (of R)
such that )) nme+1 0. Therefore 2. V, is an infi-

nite direct sum of non-zero left ideals which contradicts the
definition of a Goldi ring. 0O

Corollary 2. Let R be a semiprime left Goldi ring.
NN AN TN AN

Then for every left annihilator m of R there exists
N\./\./\/\/\/\/\N\/\/\/\M/\/\/\/\-r

N\ NN
P(RY Such rhek

Proof. Clearly if m is a left annihilator then (m:y)
is the left annihilator for any subset Yy < R, By Co=-
rollary 1 the set of left annihilators {(m:oc)| o€ J(R)]J

possesses a minimal with respect to inclusion element (m:oc,,).
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If (m:oc, ) (m:R) then there exists yE€ J(R)
such that (m: oc,,,)(# Cm:y) . But then (m:xm+y)=
= (m: 2, YN(m:y) < (m:ixc,,) contradicting to the mihi-
mality of (m:oc,,), O

Proposition 1. 1) Let R be a primeg  1left Goldi

rlng‘Then any proper left annihilator R is isomorphic to the
[ AN ANANNANANANA AN
zero ideal.
AN ANANANN
2) Any semiprime left Goldi ring with unit satisfies
ANNAANNNNAANSANAA AN AN AN AN NN
EE? maximality and minimality conditions for left annihilators
i S Ve e S e e e W A U U W U i U U W U O W W O O L U U U U U Vo

with respect to preorder —>»,
V' V20 S IR L, NP S, e W Wy O e P O

Proof. 1) Recall that R is called prime if its zero
ideal is prim . Let m be a left annihilator different from
R and R be prim . In other words ®™m = (0: x)
where x is a non-zero subset of R. Since O is prime and Rx=
+ O, ‘then (m: RY=(Co:x):R)=(0: Rx)=0O . By Corollary
2 (m:R) = (m:2,) for some ¢, € ?CR) and
therefore m — (m: R ) . Since (m:R)=O0OC m, this
arrow is an isomorphism.

2) Let X be a subset of left annihilators of a semi-
prime unitary left Goldi ring R. Consider the set XR=
-‘—”{(]_J: R)‘YGX.} also consisting of left annihilators.
Let (VYo R be a maximal element of XR 5 Vo GX,
whose existence is guaranteed by Corollary 1. Let 33 e X
and Vo>V . The relation V, —>
implies as is easy to see Q)o: RY (V' R) (without any
assumptions on R and its ideals: if (W,o'X)c< V, xc R,
then (Yg:R)< VYV, and since (Vo! R) 1is a two-sided

ideal this implies (VO:R) c((;}o:ll): R)c: (V: R)) . Since
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. Q) is a maximal element of XR , then

(Yo : R) = (V: R) . By Corrollary 2 of Lemma 1 for any left

annihilator m of R there exists an arrow M — (m:R) .

Therefore we've got a diagram

Vo —> V

) ) (1)

(vo:R) = (V: R)

Since R is a ring with unit (this is the first time that we

make

e
v’

use of this), then U; =(z}'; R) for any left ideal

‘thus’ the vertical arrows in (1) are isomor-

phisms and therefore so is the horizontal arrow.

The existence of a minimal with respect to —~» element

in X is verified similarly. O
Corrolary. Let R be a ring such that for any prime ideal
....... ~~ N e N T e N TN TN T e T e T T e e e T
p the ring R/p 1is a left Goldi ring. Then R belongs to the
NN U VN N O N U I
categor ~ (see n. 4) and N
r\/\éx/z S( R‘hgs A~ S{)QQQCSPQQeR’
Proof'. By the first statement of Proposition 1 any pro-

per left annihilator of R/p 1is isomorphic to a zero ideal.

This implies that any proper left annihilator of R/p belongs
to Sg\ecz Q/P .

in tact let m = (0: w') for some non-zero subset
w of R/p, @€ R/P and (m:a)- m . This means
that (m:a)= (0 awW)= R/P and therefore QW =
={o}; i.e. aC(0o:wW)=m as required.

In particular, 0=(0:Rs )€ SPféce R/p . But this
means that PQ SP/‘;QQR (Proposition 5.9) and for any
subset occ R ~ p the left ideal (p:x) belongs to

Pl
SpeceR and is isomcyphic to p. [

We have proved even more than promised in the formulation.
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Examples. 1) Let R be a left Noetherian ring. For any two-
sided ideal u of R and in particular for /MGSPecR
the ring R/p 1is also left Noetherian and therefore is a left
Goldi ring.

2) Let A be a commutative ring with unit, R an A-algeb-
ra. The algebra R is called a PI-algebra if for some al>o

potynomial

there exists a non—zer'o& §-€A[x1,.‘.,xd] in non-commut-
ing variables X4 5...,y such that 5—()\1,,..95\0‘):0
for all {11,‘s.71d-§c R .

Clearly, any commutative algebra is a PI-algebra with the
polynomial identity ’I)Ci')c,z_ —9C29CLZO;

if R is an algebra of dimension b over a field k then

R satisfies the so-called standard polynomial identity

[x'1')~"9xb+11': Z_ égh(6)xé(1)"' x&(b_“_)
S€ Spesy
where Sb+1 is the symmetric group ([16], Lemma

6.2.2). This fact is easily generalized replacing k by a com-
mutative ring;

in particular the full matrix ring Am over a commuta-
tive ring A satisfies the standard identity [xiy"-)'xm7-+1]=0
(Amitzur and Levitgky showed that Am satisfies [gc“m,fxzmj—_-o;

see a short proof with the help of superalgebras in the
appendix to this section);

clearly, a subalgebra of a PI-algebra is a PI-algebra and
so is a quotient-algebras

if R is a PI-algebra without non-zero nill-ideals then R
is isomorphic to a subalgebra of Am where A is a commutative
semisimple ring ( [167] , Theorem 6.3.2).

Atter this short introduction addressed to those who had
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not been acquainted with PI-algebras (for the first reading
we recommend Chapter VI of the remarkable book [167 ) turn
our attention to the following fact which is essential to us
at this moment ( [167] Lemma 7.3.2):

If R is a prime ring satisfying a polynomial identity
over its centroid then R is a two-sided Goldi ring.

Recall that the centroid of R is the ring of 311 the endo-

morphisms of the (R,R)-bimodule R. If R = R?* or
the left annihilator (O:R) of R is zero, then the centroid of
R is commutative ([5'}, Ch.5, U4, Proposition l)-, in particular,
centroids of prime- rings are commutative.

Therefore if R is a ring such that R/(kCR) is
a PI-algebra, then R/p is a two-sided Goldi ring for any prime
ideal p of R. O

Thus, left Noetherian rings and rings, whose quotient
modulo the low Bair radical is a PI-algebra (in particular,
all the PI-algebras )’ satisfy the conditions of Corollary of
Proposition 1 and, therefore, any ring R belonging to one of

these two classes belongs also to Seangg ’ and,

besides, SPecRC S':QC R

Proposition 2. For any left Noetherian ring R the canoni-
—————————— /0 Ve Y e Wa e Ve A Ve U P PN /'\/\./'W

al t t f th tr Q
2l geonetrization of the pring  spectre (SpecR, R")
.. . . . —_ = a
ceincides with the left affine quesischeme (Spee R, Op ).
In particular, the Van-Oyslaeyen and Vershoren affine schemes
L e N P NP /\/\/WV\/W\WV\/\NW\/\N\/‘V
(the canonical geometrizations of left Noetherian rlngs w1th
I Y g Sl S S S T S T N N -

A TN e T Y TN

unit) coincides with left affine schemes of the corresponding
e ~—— Tt ol T S P W W e W e W i Sl Vo S W W i i U g

rings.
[ N
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Proof. Recall that the preshief ;assigns to a closed
set V() of the primary spectrum the ring Cxo(? R.
Since R is a ring from Se R:ngg and the two-sided ideal
X is finitely generated as a left ideal, then x é?
coincides with ‘3'% () (Corollary of Proposition 4).
Besides, Sﬁg R = gPecQ by Proposition 4. Thus
(SP_Q—CR 76R)= (SPecR,E) and therefore
(spee R, B2 )= (SpecR ,R*). @

We will consider two more subcategories of Se R{‘ngg'

6. Rings the uniform filters of left ideals of which

are symmetric. Denote b] ﬁS’R?nag the full subcategory

of Rings 4ormed by such rings.
Proposition. The following properties of a ring R are
ANANAANANNANNANCAAANNANANAAA N

equivalent:
lava e e a a al
(a) for any left ideal n there exists oc € (R
ANNANANNNNNNANNANAN NAANANNNAANANAANAN
sych thar g = (ntoc);
(b) the embedding I RC—>I€’R is an equivalence of
AANNANANANANANANA [V W Ve W W Ve Ure Vi Y Ve g
categories;
NN
m
(c) the filters ?={h€I(R'm—’n3 are symmetric
ANANAANNAN ANNANNAANAAN
LTl mETR;
(d) R is a ring from SﬁSRInas;
AN NANAANAN
e) for any famil e of left ideals
(e) .‘\/\/\/y/\/\/\/\y.. {n lLEI'} NNANNANNANN
there exists SuP}'{h‘ \'{e]_‘"ﬁ and is isomorphic to the two-
NAAAANAANANANACN [ S e NN e Ve Ve e Ve We e We Wa S

sided ideal SuP{ YLZ jtexy.

Proof is straightforward and is left to the reader.

—— — e e~ -

IDSRE na% ‘and SeRings .

Corollary. 1) JCSREn&5 is a subcategory of
NNANNANNNNNNN-



- 228 -

2) Let R be a ring from ithn%g . Then for
any radical filter F of left ideals of R and an arbitrary
NANAANNNANNAANANS NN
me I, R the following identities hold:
MNNANNNNANNNANANAAANA AT
A~
- M
F= n‘[% I/MGMax(IgR\T%=TVC(g~) ; TF= ‘:F\/é (mg)°
3) IL R is a ring from &"/Sangs then

Spec R = SPQQRCSP/e\czR and any ideal from the left

NSNS

spectrum is isomorphic to a primary ideal.
NN

Proof. 1) The inclusion xsmn&g c fysR?nag

obviously follows from (e) of Proposition 6.

Let R be a ring from x,SR?nas and pE€ SPQCR.
Then (p:x)s=(p:(R,x))=p for any €€ R~ p;
and at the same time (p:x)> (p:x)g thanks

to (a) of Proposition 6.

3) Therefore, SPec R c SP/g\ceR and any ideal
M from SFQQQR is isomorphic to a primary ideal /}ﬂg
(heading (a) of Proposition 6).

2) Follows from the symmetricity of radical filters,
corollary of Proposition 4 and the fact that " F =""sF

for all m GIeR. [n]

7. Uniformly left Noetherian rings. A ring R, such that PI‘QM‘C‘CV
Té_ R is Noetherian) is called a uniformly left Noether-
ian (or I;-Noetherian) ring. The full subcategory of
Rings, formed by %g" -Noetherian rings will be denoted by

Ig'Rtnag . It is easy to see that
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- all the rings from cfS' Rings with a Noether-
ian preordering of two-sided ideals belong to IZ‘L Rings;
- if R is a I‘;-Noetherian ring then
N o T Y= F
F- ﬂ{?ﬂljueMcm (Ie R 3:)}—?%(9.-)9 ? Vo (m)
for any radical filter F and any M € IC R 5
and in addition any closed set in the topology 9‘1 (see
5.4) is of the form ‘Ve'(m ):{p’map}for some m € IQR. .

8. The support of a module. The support of an R-module
N AN N

AN

M iz the set Bupp(M) of ell the ldeals pE Spec, R
ssbthar T M#EM - ox cquivalently Crg M # 0.
If R is a ring with right unit then L Rm =0 &
& tSuPP(M):Q/jX for any R-module M. In particular, if
M is a unitary R-module, then [SMFP(M)=¢1®[M=O]
Proposition. 1) If N is a submodule of an R-module M,

‘‘‘‘‘‘ nNs AN~ A A
then

,S’(APP (MmN = Su‘of) (/V)USMFP (M/,V)

) M in e pun oIty i swoauies {4 Iie T

then s’uPF(M),—.?(éISuPP(/VE)-
Proof. 1) Clearly, Supp (W) < SQPP (M).
Let €M, §  be the image of } in M/N and

Ann—§¢ '}'P, pe SPQCQ . Then clearly Annt?¢ C'F
i.e. P € g“f’? (M) 5 therefore SuPP (M//VBC SUPP (M)

Since Gr'}'p is left exact then the sequence

is exact. Therefore, if G;.? M=#£ O then either 673: N0
(i.e. pe€ Su‘oP(/V) ) or GTT (M/A/):#O
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2) The inclusion U Su‘ap (/\/ ) c SuPP(M) and the
implication [T M+ M]:;;[S’f /\/-#IV~ for some { € I |\

are equally obvious. O

of an R-module M. Then Supp (M= U Vg (Ann§,).
In particular, for any R-module M its support is a closed
subset of (SPeCe R 5 307.
Corollary 2. If M is an R-module with a finite family of
Y a Ve We e We We W o Wa e W We e W e e Wa N

—————— me AN

generators £={j.12eTY, then

SMFP (M) = (Ahncg ) ([g T ”n? )
Proof. By Corollary 1 gup{b (M= U T{(Ann}) .
e [ 4

Corollary 1. Let {% he]‘_‘} be a family of generators
NN NN NN AN NN

It is shown in 5.4 that
U Velhd = Ve (N )
fex c€T
for any finite family { N, |c€ I"; of left ideals. 1
Therefore, the support of an R-module of finite type is

a closed subset of (SPQCCR, S, 3

' a
9. Associated ideals. For any R-module M denote ‘by Ass (Mj

or A%k RCM) when the indication to the ring of "scalars"

is needed the family of all the ideals p from SP/ECC R

such that pP= Ar § for some §€ /M . Denote by
Ass (M) (or AssRCM) ) the set of aiL p¢€ SpeceR
such that p& P' for some P’e AgAS (M) . The ideals

from Ass (M)  will be called associated. and those from A?S(M)
strictly associated with M.
If an R-module M is a union of a family of its submodules
{M; |t€ I"f then obviously
AS(my= U ASs (M:)
(A

and therefore Ass (M)= U Ass (M.’*)
(ET
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ey ~
froposition 1. for any P € SpecgR ey o
zero submodule M of R/p the set consists of ideals
NNANANNANNNNNNNS s INNNNAANAAN NN NN

isomorphic t\c_n P.
la 020 %0 Y Ve Ve Ve Ve .

Proof. Ann§=(p: xy)  for any $€ R/p where oy
is a preimage of § in R. Therefore, if % + o then
Ahn? [ag P, a

In what follows for convenience we will confine ourselves
to the study of unitary rings and modules. In the non-unitary
case all the formulations hold if we pass (also in the defini-
tion of associated ideals) to the "extended" left spectrum

. 1)
sPee RU{LRY i.e. to the left spectrum of &

e ’

Proposition 2. Let M be an R-module. Any maximal (with
sTT T ITT T N AN AN ANNANANNANAANAS AN

respect to the ordering in IgR ) element of { Ann %1
NN AN A NN

A
FEM~Loyy  nelomes ro A, (M),

Proof. Let p= Ann §' be such a maximal element; oc€ R
and (p:oc) > P . Since (p:x)=Annoc§’  then the
maximality of p among the ideals of the form Ahn?, fe Mr{o%,
implies that ’ﬁ‘g' =0; i.e. X EAhn?’: p. o

Corollary 1. Let M be a module over I{ -Noether-

——————— o~ NN NANANA
ian ring R. Then [ M# 0T [Ass(MD# F ],

Proof. Clearly, Ass(0) :/g .If M#0 then

{Ann% l‘;eM\{’o’ﬁ\ * ﬁf and since R is I{—Noetherian,

this set possesses a maximal element. O

Corollary 2. Let R be a I:?Noetherian ring M an R-

_______ ~~ A NANANAAANANAANANAN ~
module. The following properties of a left ideal M of R are
AN MANANAANNNANANANANNNAANANAANNANNANNAN A A% NN
equivalent:
NNNANANNN

N £ :
(a) + P for any pPE€ Ass(M);

() N4> Anng for any % e M~{0%.
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Propc_>_s1t10rl 3. Let M be an R-module, N a submodule. Then

' ™ N e Y a v a s [ 2 e W e NN
Ass (N )< Ass (M) c Ass(M)UAss (Muy)).
Proof. Obviously, Ass(WV )< Ass (M) . Let

PEASAS(M), E a submodule of M isomorphic to R/p ; F= FNAM.

If F=o0 then E is isomorphic to a submodule
of M/N implying p€ Ass M) . 1f F+#o0 then the
annihilator of every element from F <{o0% is isomorphic
to p by Proposition 1 and therefore P € Ass (W#). o

Corollary 1. Let an R-module M be a direct sum of modules
AN AN AN

B AV a T a Van A PAEEVCN

{M; ltexy . Then
Proof. Clearly, Lé Ass (M) c Ass (M) . Let us
-~ " t€ET

verify the converse inclusion.
a) Let (’ano((I):?_; i.e. I={E, j’} . Since M//V‘(_
is isomorphic to Mj then by Proposition 3%
Acc(M) c Ass (M~)UAss (M«)

b) By induction we deduce from here the inclusion As'(@ M. )c

ced
c U Ass(M{) for all finite J. Finally, M = U My
tEJ J —  oles
where J runs the set of all finite subsets of I and /V\—J =
=@ M.+ therefore (see (1))
293 [ ] _
Ass(M)=U Ass (My)e I Ass(Mi).
J
Corollary 2. g\e,t\: {Q; [teTT be a finite family
of submodules of an R-module M such that [\ Q.= O . Then
ANANA IEI (8 NAA
Ass(Mic U Acs M/ -
C . ( /QJ
In fact, the canonical map M— @ M/Gl.: is in-
[ 8
jective so it suffices to apply Corollary 1.0
Proposition 4. Let M be an R-module and (D a sub-
________ NN NN - NANA
set in /—\ss(M) . There exists a submodule NcM such that
[V a Y aVaXN P T S N N e N N T T e g W e o NN

~“Ass(M)="TAecs (M) ~@P and  “Ass (Mu )=,
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Proof. Let 4‘6¢, be a family of submodules P of M such
that "Ass(P)c "TAss(M) N~ @ | It follows from (1) that
6(1’ is ordered with respect to inclusion and inductive;
besides it is non-empty since OE € P . Let N be a
maximal element of ch . By hypothesis NASS(/V)C
C‘~Ass(M)\ ® . To complete the proof it suffices (by Propo-
sition 3) to show that " Asg (M/N)C Q,

Let pE Ase (M/p) - Then M/N contains a submodule
F/N isomorphic to R/p. It follows from Propositions 1 and 3
that ASS(F)CASS(/V)U{P'IP'Q"J}. Since N is maximal in

Gq) then F € ch and therefore "5'6 P o

Remark. The inductiveness of 6q> (see Proof of Propo-
sition 4) implies that for any P € @cp there exists a
containing P maximal element N of 6¢ such that (as we
have just verified) “Agg (/V):NASS (/V\) ~ q) and
“Ass(M/y ) =@, o |

Example. Let P="(Ass(MI~ F) , where F is a
radical filter of left ideals of R. Obviously FME 6¢>

and therefore there exists a submodule N of M such that

FMc NV, M€ Max B, 5 Ass(W)=Ass (M)N F, Ass(MA)=Ass (MINF,

If R is a commutative Noetherian ring and F = F for a multi-

S

plicative subset Sc R only one submodule of M namely

F M satisfies

Ass(W)=Ass (MINTF | Ass (M )= Ass (MINF
(see [ 27) , Ch. IV,&1, No.2, Proposition 6). Is this state-
ment true for non-commutative rings and modules over them?

We will answer this question jn subsecticon 11 (ProPosi‘fioh 2),
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10. One more variety of a spectrum. Recall (See 1.6) that

I;R denotes the subset of all left ideals n of R such that
[ {z,,2.%c R , Cnzz)-pn, i=1,2 {=>[(h: {z,2, ) nT,
5 .
By Proposition 1.6 the set M = MeR|(r:NH T is

an ideal from S{Qe&R for any h € I:'R,

Lemma 1. The following properties of hGIeR are
""" 2% % %" e
equivalent:
MNNANNNANANAN
s *
1) neI, R and
@) [2eR, )b T P[> n ]
. ~ ~
(i.e. (niz)H n for all € R), n+R;

say N cles Some .

(1) = ng={2€R|tn:2)e Fi#r for _ radical filver F.

Proof. (i) = (ii). Condition (Y) means exactly that
~ ~ ~
" = . . . .

h(}-ﬁ . The filter ?ﬁ' is radical since hGSPeeeR.

. e . . )

(ii) =» (i). It follows from the equality h = Ne for
a topologizing filter F that h e Izé R . Since
hg.t R then h¢ F and therefore
[(h:iDP nj = [(n:)ETF (by hypothesis)}'—"? [(h!z)-}-a N
(since h3-¢ F whenever n ¢ F )] a

Denote &y SPQQ:R a family of left ideals n
satisfying the equivalent conditions of Lemma 1. For any
radical filter F of left ideals of R denote by SFeceTR
the set of all h € IQR such that n=n 3.—11: R
As is clear from Lemma 1 SPQC? R — U{SPQCC?R ’ F
. . . _ T, ~
is a radical fllter}- v { SPeCePQ l pPE SPQCER}’

The obvious properties of SPQC;; R and its

subsets SPQQZR are listed in the following
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SpecgRN Spect R = Spec,R ~ F.

N\ P . .
2) Te map Mi» M, ME ZpecR iz left inverse

Proposition 1. 1) SPeCeR c SPQQZ*R and

12 the embedding  SfZe, R <> Speey R

») Tor any radical filter F  and any ideal ne SpecfR
eies Gign o GrgR  belonss to Spec,GrgR

AL R Ls commutative then  Speey’R = Spec,R.

Proof. 1) Since the embedding pc ’p\ is an
isomorphism in Ies—k for any p € gPchR by Proposi-

tion 1.6, then [m-> Pl [mP '[5 1 3 in particular,
%
Specekc Speee R. R
Fal
Clearly, p= P = PS’ for any pe€ SPeCeR ~F.
2) Follows from the above phrase.
3) GTS:V\ =G[3:hg. for any n from IeQ ~ F
F ' = h N
£ =
It n€Spee, R, then ng=hegs peceR~F
and,therefore'by‘aProposition 2.9  Corollary 2 o% \
/N
Grgne Spec€G$ R .
4) Now let R be commutative. Then condition (g§) of

Lemma 1 takes the form

[(n:ddn,zeRT=> [n:e)¢h 1;
in other words,if Z2E R and there exists Yy € R~xn
such that Y2 €€ n ) then there exists X € R such
that x=€ n - and (n:axdC N . But xXxz=20C

and, therefore, 2 € (n:x)ch . Hence an ideal n of a com-

)
mutative ring’satisfying (hH ), is simple. O

Proposition 2. Let § be a radical filter of left
-_——— n~v NANANNANNAANNANAANAANAANAANS

P —

ideals of R, M an R-module and M % FM . Then any maxi-
ONANAAAN AN AN NNANNANANANAN-

: -
pel Crith regpect o fhe ederig in IR ) slement

2L {Anngl5em~ FMY belongs to Spee¥R.
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Proof. Let p= Ann§ be a maximal element of
{Anns'ls'e M~ Fm Y 2R ana (p:2)+> p . Since (p:2)=
=Ann2'§ then the maximality of p implies Z%G TM;
i.e. Z2E Pg . Therefore ?C Pg. . The inclusion
Ng C ?L takes place for any h eIeR\S", o

Set

ASS g(M)= Spece?R N{AnnS | $e M5

AL (M) = Spee*R N{AnnS |3€ MT;

ASSECM) - {Pe SPee:Rl PC’ P' fov Some P'G A?S:(/"l)'sj
A95§W3= ASS‘E(M) N SPECFR .

The elements of Ass’; (M) will be called ideals * -
associated with M.
Corollary 1. Let R be a I:' -Noetherian ring, F a
——————— [aSa el NAANNANAANANAN AL nv

radical filter of its left ideals. The following properties
AANANNAANANANAANAANANANANNAANANANANAANNA NN M/WW\-/\/\N\/L/\/W
of an R-module M are equivalent:
NN laYaYa %

(a) M+Fm;

(b) AsSROMNTF #

) AssT (MY + 4.

Proof. Clearly, (e)=p»(b)=> (a).

(@) = (). It M #FM  then ZJZ{ Annt| temTmly
#ﬂ . Since R is Ig' -Noetherian then Z/:: is

inductive and therefore possesses maximal (with respect to
the preordering in I(FR ) elements each of which belongs to
SPQC’}-R by Proposition 2. 0O

Corollary 2. Let ¥ be a radical filter of left ideals

- - - - PANANANAA AN N Bt

?.
of & I -Neetherian ring R. Then for any p’€ Spec Gig R
o ~1
f
such that jo(p )¢ F  there exists Poespecek\?
/I ~
such that P = Gig Po-
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Proof. Let P'e S’P/;cerg_.R and P‘i‘_—i_sjt;.ip’
Consider the set {(P:ax)|CERNpPeY and let pe=(p:2)
be a maximal (in I R ) element of this set. By Lemma 2.9
Pl= Grg P . Since po¢ f}', then G;g: Po is a
proper ideal: besides Gfg"P0= Gr,?.(p.’}\) = (p': j;())).
This implies that P’:C,,,Jr Po . Since {Cp:oc)|xe Q\P?P'I
is nothing else but -{Ann§ | Se R/p ~ F(R/p)} 5 then
Po belongs to Ass (Q/P) by Proposition 2 and therefore
pog_-_—.. Poe S/PQCQR ~F . Now the statement follows from
the identity G,? Po= Gfg.‘(PO?) |

11. Localizations of associated and ¥ -associated

ideals.

Proposition 1. Let F  be a radical filter of left

-— e —— LR o o e e e«

ideals of R, M an R-module.

N e NN L o Wy 8

. L ADTF
1) Th d th .
) e map s Gg g induces the map Tt ASSI (M)
T A r g MY el
[®ePd=Rg(pY]> [ P = pg 1.
2) If R is I:-Noetherian then for any p~ from
A /WVW\/\/\/\./WWW AN
Ass  (Gi M) there exists an ideal pec ASS ¥ such that
Gl' R AN NN NN P SS (M) AN
Cz?:{).—_(p:-x) for some '3C€J.I(R)\ ' in partlcular,
NN NN
b GroP-
Proof. 1) For any ‘;e M we have
GT«J,-A""R% =A“nGr?R(JA3-’M(‘f )).
In fact, the annihilator of  § can be defined as a

(unique) left ideal R such that the square

r— e}
R——m> M

t 1\ (1)

Ann ——> ©
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is Cartesian. G’SZ is left exact and in particular, trans-

forms (1) into the Cartesian square
A )’j?,M (?)4\ .
GgR > Grg M
(;‘- Ahn'; > O
Thus G’g: transforms the ideals from ASS ?(M)
(provided ASS$(M)#g7 i.e. M#¥ FM ) into the annihila-

tors of non-zero elements of the G[?Q -module Ggg_-M
By heading 3) of Proposition 10.1 these annihilators belong
to ASSG' R (CT?M)
F_
2) Now let R be T! Noetherian ring, § € Gg M

and P‘= AnnG[?Rts € ASS GTS:R (GT? A47 . Since Grs

is a F -torsion-free R-module, then p = tles ;P
(which obviously coincides with Ann ) does
R
not belong to F . Therefore { — # by Lemma
P F

2.9. Let m be an ideal of F such that m§c jg o, (M);
2 an arbitrary element from pn~ p’- 52 ’

an element of M such that JS‘-‘ M (% )= 2. ‘g M= Arm";z .

Let p be a maximal (with respect to preordering in Ig- R )

element of the set

LAnny [Re RSN FRE)T=TOm DA€ R g ]
whose existence follows from the Iep -Noetherianness of R;
ie. p= CJV\ t26) for some ROERyMg.. Clearly, p €
€ A?si(M) and Gfg:P= CG'S']“ : jg.(ho)) . Further, as
had been shown in 1)

Crigm = An"GvS:R(J?(%’-ﬂ Ann iy (? $)= (P':jr).
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Therefore
GT:FP = (Gfg,-/u :jg:'(ho))z ((P‘:jg:(z)): J’.? (203)= (P’: j:F(aOZ)‘)'
Further, let us notice that this and the identity p’=

_ (}1(5 F" where p' = j’; p’ implies Ps= (p": 2,2). O

— o —— o ——

of IP-Noethe_rian ring R and M an R-module. Then the follow-

INANNNNAANANANAN AN Ny ANAAN

ing properties of submg/q/u}/c‘e Nc M are equivalent
ONANANAANANANNNANNNANNY AANANANAAANAANN

(1) Ass(MpNc Ass(MINTF and - AssF(a =4 ;

(2) Ass MuN cAss(MINTF and Ass®* (W)e ¥F;

() M=FM.

Proof. (1)&»(2) follows from the identities ASST(A/):
= Ass* (W) NAzsT My, AssS(MONT = ; these identities
clearly hold for arbitrary rings. An R-module N=Fm

satisfies (1) (see Example at the end of 9) for any R.

(1) =>» (3). Now let R be a I:-Noetherian ring.
First notice that Agg(M/N3C Ass(l\/ﬂ\ F implies
Fme N |

In fact, if FM ¢ A/ then ?(M/A/)?E 0 . By

Corollary 1 of Proposition 9,9
[ Ass(FMy #2812 TFMp)z0 T

Therefore if FM ¢ N then Ass(MHNNF +£ 0
and Ass (M) f Ass(MO~ 7,
By Corollary 1 of Proposition 10.2 [Ass?(/\/)=ﬁ]¢>
& [W= FN]; and therefore
[AssS (VY= I[NV FMT.a

This proposition is the answer to the question raised at

the end of n.9.
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12. Relation with support. The following simple fact is a

direct generalization of Proposition 3.7 from 1, Ch. IV in (371,

Proposition 1. Let M be an R-module.

———————— S AN AN
(1) If peSpec,R  apd no p forsome n o from

Ass* (M)  (more gene\r/e_t&]\.f, Anng — p for some éeM\{‘o})
then p € Supp (M),

(ii) I1f R is a I}—Noetherlan ring then every ideal
p from  Supp (M) "contains" an ideal m € Ass* (M) --
AONNANNANNANAAANNNAT

M -—>P . More exactly,there exists an ideal
NN NN NN
e Ass¥ (M) such thay (fiix)e p o for some xe P(RY;
in particular,ﬁ belongs to S“‘O‘O M),
NN . NN

Proof. By definition

[An;‘;; ples[Ams ¢ T, TS ¢ F M,

Now let R be a I_eé'-Noetherian ring and Pe S(,(PP(M)‘

The latter means that M =& ?PM . By Corollary 1 of

Proposition 10.2 [ M # ?PMIQ[ASS?P MYED T . Any
element from Agsg-P (M) satisfies the conditions of

heading (ii) of Proposition. O

~ ole
For any subset 7McCI,R set N =§ {l’l‘!\, (ne m}

Corollary 1. Let M be a module over an I?-Noetherian
______ AN NN N ‘e NN
ring R. Then
AN~ raVad
The minimal elements (with respect to —» ) 9\£
NN AN FaVa VeV U W e Wl
P .
Supp (M)  and Ass*(M)  are the same up to isomor-
phism.
NN
Corollary 2. Let R be a I*’-Noetherlan ring.
______ AN I NANNNAANANANANNA
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Proof. For any radical filter JF different from T,R

the left ideal R is not the F -torsion, i.e. Rz FR.
In fact, [R=FR] &S [ (0:x)€F  for any
xe RIS [0€F e [F=T,RT.
This implies that S“PP (R = SPQC( R and it
remains to make use of Proposition 1. O

13. ¥ -associated ideals over I;' -Noetherian

. 3 . - /\
rings. In this section we will show that for the sets As;?CM)=

‘ = N

= {ﬁ [/MG AgsT(Mﬂ‘( and Ass*(/\/\)-'—’-{ju ‘/MG ASS*CM}}
there are analogues of the statements of n.9.

First of all notice that Asgq'-(M)-_- UIAssg-(Mt.')

'S

for any radical filter r}— if M is the union of a family of

submodules {M; (3€I.k . Therefore

T °F
U AssT(m;) = AssT(m) €D
te I
2N —
U Ass®(M) = Ass* (M) (2)
teT
Proposition 1. et P€ Spec/R  and M a supmodule

of the module R/p. Then
MNANANNNANNAN ~e
D IM=FMIST AssF(MI)=¢g

2) if M# FmM then Ass¥(M) consists of ideals
4%l NN NANAANANAANAANAANAANAAS
isomorphic to p.
W As-\
Accordingly, Ass¥ (M) is either empty or consists
NAAANAANAAA MAANNNANANAANANANNANNANANA
. N ~
I . .
of ldcals PE SpecR  isomorpnic to .
Proof. If M= F M then Ass¥ (M) =¢.

If M#+FM then for any %G M~ TFm the annihilator

of ‘g equals (p:'x;) where t)cz is a preimage of %

in R > and (p:x¥)¢ ‘3-" Since by hypothesis
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ALS
P; =p={2e¢ Rl(P‘. )\)-’-)P"‘- this means that (p: AH=p. 0O

Proposition 2. Let R be a I‘L -Noetherian ring, F
I~ AN AN

a radical filter of a left ideals of R and M an R-module;
\r\/\/\/\/\/\/\/\/‘\/\ I ad Ve Y Ve T W

N W?A/\ . Then AssT(M/,v)zAss/TM).
Proof. If M= FM then My, = F(M/A) and

AssFM/N=F=AssT (M) . now suppose that M FM.

Let $€ M~ FM, p=Arn§, § De the image of § in M/N,

P.:Am%:{xenla‘;e MY . First notice that Py =P§‘ .
In fact, since NM<c FM and F  is radical,then

PL=ReRIAFeFMI=FMAT={2e R IAfe FM]= Py -
Let pe SPGCB-R (G.e. pe ASS g:(/\/l)) . Since R is Ief'..

Noetherian then there exists A € R such that (P’: o)
t
also belongs to $Fec§r R and thereforerAﬁ \T(M/A/).
We have
) /‘\' [ —_ / 'l 7~
(P:2) =(P:A)F =(Pg:Ae)=(Pg:A)= (P:s).
Since Pg—zlﬁegp/e\eel:l and Ao € R\P’?:R\/ﬁ,
then B = (F:20),
Suppose that p'—- Ann% c SPQQeTR and # an ele-
men’c of R such that (p:2)€ SPQC?R . Then
(P 2)=(p: 2)3: (Pgr'a) (Pg: 2)= (P z)—)P 0
Proposition 3. Let M be 8 moaule over an Ty -Noetherian

ring R, N a submodule of M. For any radical filter F  of left
AN AN NN\ [ S Vo e D e AN

ideals of R
NN

I~ ~ -
ASS‘/S‘“\(/\/)C Ags F(M) c AssT(WV) UAssT (Mu).

Proof. The statement is trivial when M = FM since

in this case ,4333:(/\/)= Ass?(M)z ASS?(M/A/)—"—,@, .
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Let M*+FM, €M, p=Annse Spec;‘FR.
Denote E=MNR% eand § the image of ¥ in M/N. Therefore
the submodule R? of M/N is isomorphic to R¥ /= .
There are the following possibilities:
ot
1) E= FE, By Proposition 2 in this case AssF(R}) =
oy =
:Ass?(R‘g/E):Asg‘q‘-(R'ﬂ. Since R§ < R/P then Ags/ﬁg‘g)
congigts of ideals isomorphic to p.
2) E+ FE. Then Ass¥(g) consists of ideals isomor-
phic to p and all the ideals of Assﬁ-\CE ) are isomorphic
~ >
to p as states Proposition 1. Therefore P €Ass 3:(/\/),
e aslF /5
Thus we have proved that Ass (M)cAss?(/V)UAgg?(M/,V).
P, e~
The inclusion AF(A)c AssF(m) is obvious. O
Corollary 1. Let M be a module ovev an ]_’e"-—Noetherian ring
avas eV Ve Ve Ve e e Ve W

R and N a submodule of M. Then

AANANNANANANANNS NV

ASER (A Y= ASST (Mc ASSKIVUAsH (M)

Proof. Ase*(M)=U{Ass¥r(m) |pe Sec, R
for eny A-module M and therefore Ass/*\(M):U{A@M |P€SP?C€R"§,O

Gorollary 2. lLet R-module M be the direct sum of the modu-
ler {Mmi(t€Th . If Rigen Iy -Noetherian riug then
for eny redical fiter ¥

AsSF(m)= ZUGIASGC/M:)

and  As® (M) = iLJGIASS/;?ME Y.

Proof repeats word for word the arguments of the

— -

proof of Corollary 1 of Proposition 9.3. O
Corollary 3. Let R be & I -Noetherian ring , { Q (1CeTy

a finite family of submodules of a R-module M such that
f\/\/\/\/‘\/v\/\,f\/vvv\/\-’ e VY W e oy P e S Wy
N{a;lterg=o0 « Then

)
Assx(m)c U Ass*(M/o
(eT ‘.
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and for any radical filter F of left ideals of R
fW\/\/\/\/\/\/\/\/ N\/\/\MN

AsSFCM) < v Asv?(M/Q ).

Proposition 4. Jei ¥ be 8 medule over en I} -Yosthsrian
ring R, § a radical filter of left ideals of Rand @
a_mbset in “AsSF(M) . Then there exists @ sulmodule ¥
of M such that . -

~assT~ @ = AT “AsT (M) = P,

Proof is almost identical to that of Proposition 9.4. 0

Remerk. It is mot difficult to see that Spect®ir=Spec, R
and therefore Ass‘fﬁ My= Ass(MHN Specek

for any R-module M. Therefore Proposition 1 may be considered

as 8 generalization of Proposition 9.1 and Propositions 3 and 4
as "partial " (because of the requirement of Ié’"—NOetherianness
of R) generalizations of Propositions 9.3 and 9.4 respectively.
The same applies to their corollaries. QO

14. Noetherian modules over an Ié’ ~Noetherian ring.

Proposition 1. Let Rbe a I{—W M a Noe-
thertan T\Histe extate & comosition series (M: dos i<y
oL M oach quotlent Miw/m; bBelng lsomorphic to R/p;
where P;€ s,saceg for o= is -1 .

Proof. Let f be the set of submodules of M with compo-
sition series with the above property. Since & ¥ @& (obviously
o€ &£ ) and M is Noetherian , then £ possesses & maximal
element N. If N ¥ M then M/ #0;  therefore
Ags(M/N):{: @ (Corollary 1, Proposition 9.2). Therefore M/N
contains a submodule N'/M isomoprhic to an R-module of the form
R/p where pe SP/Q\C_CR; then by definition M€Y  contradict-
ing to the maximality of N. Thus /=M .0
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Proposition 2. Let M be a Noetherian module over an
------- ~AA PRGN N O L Y

I{ -Nostherisn ring R end (Miosicy @ 90mposition series

Qf W guch  that Mevi/m;  is tsomorphic fo R/p; et
PEGSP%\Q{ ;3{ o< (= -1 . Then

Ags(M)(_ ASS*(M)C {Po’“ v Pr\-a}c Sulo{a(M) (1)
Besides the minimal elements of “’Ass*(M) “{Por:is Peos}
AAANNANANANANAANANNAANNANANANN ? -
and SuPP(M) are the same.

AAA ANV ~ A~
Proof. The inclusion ~Ass(Mc TAgs*¥ (M)

A~
follows from the evident inclusion ASs(M)c Ass* (M),

Since p; € Supp (R/p;)= SquP (Mesifpq;)
for og (gv-1, then p; € SuFP My e Sapp (mD
by Proposition 8. Therefore {Posis Pry ¥ Sapp (M),

The inclusion Ass’*(M)c {Poyiiis Pr-ad follows
directly from Corollary 1 of Proposition 13.3 and the identity
Ass(R/p) = Ass™( R/p) for any Pé€ Spe¢,R .

Corollary 1 of Proposition 12.1 shows that "’Ags/’;\(/w)
and "'Su‘::,p (M) have the same minimal elements. The
inclusions (1) show that these elements are also minimal for

LPosiirPrn} o0

/\/\N\/\N\/W
mortan ring 5. Ty TAss(M) st AsTOM) e ttte
Corollary 2. Let R be a left Noetherian and I(?-Noetherian
FaVal NN

— o — o — — -

(m;)og s« the composition series of the left module R
L Y e e NP e e W I NI I N W N e W e

such that for any 0< (s r-1 the quotient My /. A8
V) Y S Ve W e VY Yo NVl X NAANCANANAANN

N

teomorphi to R/pc) where P(Te SpegR - Then

(B RIYTad, (RY= p‘” (N PR, (2)

-1 1< (< Y‘—-
Formula (2) follows directly from Proposition 2 and Corolla-

ry 2 of Proposition 12.1. 0O
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15. Primary submodules., Let M be an R-module and pg SP/;C R,

We will say that a submodule N of M is p-primary if Ass(M )

—e e e NN
consists of ideals isomorphic to p. In particular a left 1deal/u
of R will be called p-primary if "‘Agg(R% )= "{py. A submodule

N of M (a left ideal M of R) will be called primary if it is

e N

p-primary for some p € SPQCCR‘
We will be interested in these notions when R is an I{’-
Noetherian ring.

— e = m— e -

from Spec eR and N a submodule of an R-module M, The follow-
NN Yl g e AN N~

AN

ing conditions are equivalent:
AANANANNAANANANANNANA AN

@) N 1s 2 p-primezy submodule in M ;

b) for any ye My~ {0y there exists & € R~Anmny fuch

that  Annocy =P jand Annz§ —>»Annxy  for all 2€ R Annj§,
In addition Annxfe Spec,R.
ANAAANAAN

Proof. a)=>b) Since R is an IL -NMuetherian rlng then for
any ¥'e M/ ~{0Y there exists an arrow from Annf into an
ideal from Ass(Mjy) . Since “Ass (M, )="{p} by hypothesis,
then Ann}'—> p  for all $'e My ~ {0},

Fix jeM/ny~{0% . Since Ass(R§)+ @ by Corollary 1
of Proposition 9.2, then "Ass (R%)="{ P} and therefore for

some x€ R Annx§ o p-
Let ye R and (Anmx$:y 4> Arnnxg, Since (Annx%:y)=
= Ahny'x%) this means that yoc% = O; i.e. ye Annx;'

b)=y a) is obvious. O
Corollary. A left ideal m of an I -Moetherian ring R is
- — - [ D R NI D P e e /\/\/\/\-r‘\f\/\/\/vw’\/\

primezy if end only if (mix)€ Sfig R for some xe R
and (m:y)—> (m:x) for all y€ R-m,
~A 18 %Y aVal
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A 3

Examples. 1) Clearly any ideal from Spec,R is
primary.

2) Let VE€TIpR and there exists a unique ideal M from
SPCCQR such that vc m (this implies that M  is a
maximal left ideal). If M is an R-module such that M # v M
then the submodule VM is m-primary in M,

In fact any p from A?SR(M/»M) contains ¥  and
therefore P: /u o

. ~ i~ s R

ring R, p€Bfec,R  and {Qz|f€TY g finite family of

p-primary submodules of M. Then n{Q; ]Ee I'S is also p-primary
P U N N e N W B g e e NN NN NN

in M,

I\

Proof. M/N({@;lte1 is isomorphic to a non-zero sub-

module of '5.2 M/a; - Corollary 1 of Proposition 9.3 implies
T

“Ass (8 M/a )= TAss (Mza)="1pY.

And therefore “Ass (M/n {Q;( e Iﬂpf_”{p} . a
16, Existence of a primary decomposition. ILet R be a Ié"—

-Mpetherian ring M an R-module, N a submodule of M, A primary
] AN
decomposition of N in M is a finite set {Q; [{€ TY  of
AN NN NN NN A ~
primary submodules of M such that A = N{Q;IceIT.
e e Ve Ve WD W P W e e i i e
If {Q; \E€I’7S is a primary decomposition of N in M then
the canonical map M/ — %IM/&‘ is injective, Conversely,
C [
let N be a submodule of M, and £ a monomorphism of M/N into a
finite direct sum Pz‘GGBI P, where every set A SS(PZ)
[4
consists of one element P, . ILet -S~€ be the composition of f
. . led ¢ -
with the projection P-—»Pi ) Glz/N the kernel of ~§(~,’ I = {tGI\
Qt * M}, Then {Q; lced } is a primary decomposition
of N in M., Besides "Ass (M/A/):{,PJ. “ej’k by Corollary 2

of Proposition 9.3.
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Proposition 1. Let M be a Metherian module over an I"-

- T === Ve Vo Ve Sl W N N e g Wl W W W N N g W Y

*/\(oetherlan ring, N a submodule in M., Then there exists a primary
A ¥ W o i e W e g N W N U N N W W e W

deconmposition of N in M of the form
%

{ Q) |p e ~Ass (MDY
where for every p = p€ Ass (M) the submodule Q) is
AN NN Fa VP Vo e e e o

Proof. For convenience assume that N=0 . By Corollary 1
of Proposition 14.2 “~Ags¢(A/) is finite. By Proposition 9.4 for
any p € “Ass (M) there exists a submodule Q(p) of M such
that ~ASSCM/QGF))={<-P} and “Ass(QE)= Ass (M)~ {py,
Set P=N{QAWP)|p€ Ass(m)}, For any p from “Ass(M)

we have ”Asg(p)C”Asg(Q@)). And therefore Ass (P)=@&
implying P =0 by Corollaxry 1 of Proposition 9.2. OO

17. Properties of uniqueness in the primary decomposition.

Let M be a module over an Ii’ -Npetherian ring and N a submodule
in M, The primary decomposition {Q;|T€ T of N in M will be
P T S e N W N e W VT T W W NN cANANAA AN
called reduced if the following conditions hold:
ANNNNANNANNN NN NN N NN N NN
®) there ismo f€T  such that MN{QljeI{e¥}cQq;

PO
©) £ “Ass(M/Q)="(pcY thon the teals Py, e,
From any primary decomposition {Qz |CE I'} of N in M
one can get a reduced primary decomposition as follows: let J
be a minimal element in the set of the subsets T 'eT such
that A= ﬂ [ Q: . Clearly {Gl ie J% satisfies (a). Let

AS,(M/Q ) {:ﬂ} P =4ip; (tEJ’} For any p from P  set
'J;_F—{cGILP-‘,F{f and Q(.P)—&D{Q |l€J{P3 Proposition 15.2
implies that Q(¢$) is a primary submodule in M. Besides,

N = O{GQP) (,Pe @11 and therefore {Q(,P)I,Peq’} is a re-

duced primary decomposition of N in M.
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_— e m— = — N

Proposition 1. Let M be a module over an I?— Wn ring
P T . e W e W Wt S i E

N N
R, N a submodule in M and { Q¢ |i€ ]_‘7I a primary decomposition
NN NN TN [ Vg W U e W Wa W W e e i gl
. ~ — . - .
oL N in M end let “Ass(MQ)=iech feraw el Tuis
Jecoupesition Is redueed g R LAkt s £
pRizvise ifforent and beroms to TAss (M), BIUS AR

TAss MY =dPe HETY  ad TAss(Qi/p)={dy 1 Je T
for every i€ I.
A

Proof. If the formulated condition holds then it is impos-
sible that A = {@;|jer~{ey7} since this would imply
that Ass (M) = {rF'J,l je 1\413} by Corollary 2 of Proposition
9.3’ contradicting to the hypothesis; and therefore the primary
decomposition ‘{G\E e T 1 is reduced.

Conversely, by the same Corollary 2 of Proposition 9.3 we
always have ~Ass(Mpy)c{p;|ieT 7§, oOn the other hand, for
any (€T set P[:ﬂ{()\j“el\{;}}' Then A= P.NQ;
and P[ +N if {Q; | te I} is a reduced decomposition.
Therefore, pf//V is isomorphic to the submodule Pr -+ Q{/Q .
of pt//\/ . Hence ~ASS(P;/N):{,{>‘~} by Corollary 1 of Propo-
sition 9.2 and Proposition 9.3, and fPL [ ~ASS (M//\/)
since Pop/c My,

Since A= N{Q;N Qjlje I\Uﬁ,then “Asg (Q://V')c
C J‘L"'Ass(atchnaj‘j“eI\{zﬂ by Corollary 2 of Proposition 9.3.
But &E/Q;ﬁ Q; is isomorphic to the submodule Qt*ﬂj/QJ.
of M/‘@\j . Therefore “Ass (G{/Q(n@j)c '{tPj} and
~Ass(Gimw )Cchgla‘e I~a3Y, Th}{s (1) and Proposition 9.3 imply
(2).D

Corollary 1. W decomposition determined in

““““““ D g S e S Y Y i g
Proposition 16,1 is reduced,
[ 2 S Ve T Ve e W W W W Vg W W Yan =
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Corollary 2, Let R be a - Noetherian ring, M an R-module,
——————— AN A NN NN TN
N a submodule of M and {alreT '} the primary decomposition

of N in M., Then C’a/zo((.L)> Cared ( Ags(/b%/)) The decomposition

L e e N W W e Wiy Vi

{GL (e T 1r is reduced primary decomposition if and only
AN P ANNANNAAN AN

AN NN NN

12 Cond (T)= Card (“Ass (M ).

Proof. The constructions preceding Proposition 1 imply that

there exists a reduced primary decomposition { Qj- (e ]} of

N in M such that Cand (I)< Cand(T), Thercfore the first
statement follows from the second one and the second one is a
corollary of Proposition 1, O

Recall that for any (radical) filtre F of left ideals
of R an;d\arbitrary submodule N of an R-module M . an (}:‘-W-
ion of N in M is the submodule Ag={{eM|msc A/ for
some me F ¥,

Proposition 2. Let R be an Ie Nwm ring M an R~

________ AN NN

mogute, 12 ewmoale 1n X, { Q|76 T 8 prinesy dscomposi-
bion o8 NI M5 “Ass (M/g)="(rik, Thsr fe e € T
the submodule Q; contains an ?‘P‘—saturatmn of N,

Proof. Actually we are to show that any p~primary submodule
of M coincides with its ?P-saturation. For this it suffices
to verify that

[ ~AssM)="{p¥I=> [ F om=0T].
If FoM#o0 then Ass(F M)= }2’ by Corollary 1 of
Proposition 9.2 and therefore Ass (TPM) ="{pY. But this is
impossible since Ags (3:‘._, M) c 'J-'P and p ¢ ?P
Therefore TP M=0, o

18, Associated ideals and essential embedc_l}_q_g_s_. Let M be an

R-module; p € "Ass (M) , M (») @& maximal among the submodules
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N' of M such that “Ass (V)= {p?Y. Proposition 9.4 guarantees
the existence of M(p) and the equality “Asg (M/M(,P‘))=74$s(/14)\
~{$} (see the proof).
Fix a set of submodules { M) | P E Ass (M)},

Proposition 1. I(@i: R be an Ig- petherian ring. Then the set

NANAANAN AN AN Fa VeV WA WA L

{ M (P lrye “Asg (M)} possesses the following properties:
NN NANNANANAANANANNN N
D MEOINMEPp)={0}  if p#p’ in particular

2. M @ is a direct sum;
PE~Ass (M) C/P) ANANAANANNANAANAA
2) = M(P) is an essential submodule of M,
e ~AsS M) AN AN NN NN AN

Recall that a submodule L of M is essential if L AN £0O
for any non-zero submodule N in M; they say that a module morph-
ism £: M'— M is essential if im(f) is an essential sub-
module in M.

Proof. 1) This follows from [M'=0)&> [Ass M)=F]

by Corollary 1 of Proposition 9.2.

2) Let E be a non-zero submodule in M. Then since R is

I:‘Nnetherian there exists ';TG E such that Ann§=
=pe€ Sl;éceR‘ Let p belong to f+ . If M(PINRE=0
then by Corollary 1 of Proposition 9.3 ~Ass (M(p)+R§)=
="Ass (M(PNU~Ass(RE)= {7}, Since M (IS M(p)+ RS,

we've got a contradiction with the maximality of M(p). There-
fore ME@PYNRI £0.

And aside, R¥ N M (P =0 whenever p# b/ 0O
Recall that ' '};P denotes the set
TP where p is a representative of a class of

r~ _
isomorphic ideals p for any P € ,S'Pecek (Obviously this
notation holds for arbitrary classes of isomorphic ideals.)

For any p € Ass (m) denote by T(,P):"}/ZACP) the
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radical sittes N{F,, | P'€ ”Ass(M)\{M}.
Proposition 2. Let R be a J-e aetherian ring.

— e - -~ — -

1) The followlg proportice of pe “Ass (M) 2T 2gic
a) F(PIM £ 0,
D isamedmsl igesl in "Ass(M);
c) TAss (FpOyM)= {pF.
2) Tor ey pe~Ass (M) the mubmodule Mep) colncides
with be Fep) -seturavion;
in particular, F(pIM C M(P).  If F(pIM#O then
Proof. 1) (a)=(b),(c). If TF(CPIM# O then
Ass(FpOMI£EZ by Corollary 1 of Proposition 9.2. Since
Ass (FCpIMYe FI==2 N{Fpr lple TAss(D iy
then for any ?,6 ~Ass (CF(,P)M) there ex1stsl\an arrow into

any P € TAss(M)~{PY}. This implies that ¢ = p and P
is a maximal element in ~Ass (M)

(b)=(a). Let p be a maximal element in “Ass (M) and
$E M such that Ann‘ge,P, Then clearly $€ F(pIM.

(¢)=>(a) is obvious.

2) Iet § be an element of the TF(P) -saturation M(,P)}.GP)
of the submodule M(p) in M such that Ann§=pE SP%R
By definition of T(,P) -saturation there exists an ideal
me T@) such that Mm% C M@). ThereTare two possibi-
litiesieither m% =0 or m3% # O . IZ the first case
AnnS € F (p) since mC Anng and therefore § e F(pIM,
By 1) this means that Ann$e p and besides £ is a

maximal element in ~Azs (/VD . In the Becond case there
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exists X¢ m such that X% #£ O . Since Annie SP/(’\((:R
and a€¢ Ann§, then the ideals Ann} and Annoc§ = (Anng: )
are isomorphic. Since oc‘ge TGF)M this implies that Annx3
and therefore Amrm% is of class P

Thus we have shown that "~ Ass(M ('P)g‘(,P)) =4y, Since
MPHcMGPD Fep) then the maximality of M(p) implies
the desired equality MEP)= M(P) F(p)

Clearly, F(pIXM C M($) since by definition
FPIM=Og(yy and Og(nC M) Fepy

It remains to verify the fact that F(pIM is essential
in M@ if FEIM+0 . B 1) p is a maximal element
in "Ass(M). Therefore, if E is a non-zero submodule of M(p)
and ¢ an element of E such that Anns € SP/e\ce R
then Ann ¥ € F () thanks to the inclusion
Ass(Ed e p5 ie. 3€EFPIM. O

Corollery. let @ be the subset of all the mexipel ele-
ments of “Ass (M) and R be Ie?.m. Then
Mz @) teansseniel sisedule of k

P €EAss(MN D
Proof. Iet {AM.| (€ I} be a finite family of modules

-

over an (arbitrary) ring R; L; an essential submodule of A/

for every ( € T ., Then @ L is an essential submodule

v tET ¢
in / ™ e
t@% T ¢
In fact, it is easy to see that all the submodules JAE c@rL&’
+
where L’d-:/\/i for Je_l.\{c'; and /—zzl—za are

essential., Since ® L .= A ALY then we deduce that
(ET (ET

'%1 L; is essential from the following well-known fact

[4

which is subject to a straightforward verification; the inter-

section of a finite <family of essential submodules is essential,
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Since M(P)NM(p')=0 for different p , p' and F(pIMc
[M(p) by Proposition 2, then Z FpM > MEP)  is the
€d P Ass D
direct sum. For every qbe @ the submodule F(p)M is

essential in M (p) as is stated in Proposition?2 ,
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Thus Z T(.P)M-G-Z M (') is an essential submodule in
P '€ Ass (MNP
> M@p) and EMcp) is an essential submodule in M, It remains to
+ +

make use of the transitivity of the relation "X is an essential
submodule in Y", OO
Now turn again to t he primary decompositions. Since
p 2 MP')  is the direct sum for every P € TAss(mM)
Ple Ass (M~ Y
we can (by Proposition 9.4 and Remark to it) find for e'\re::'y,Fé"As,(,‘,J
a submodule Q(p) such that

(2) %G"’Ass MY~pY MO AP,

(b) Q($) is maximal among the submodules Q' satisfying
~Ass (QF) = TAss (M) N (5T,
By Proposition 9.4 “Ass(M/g.)={p} and the family
{Q('P) € “Ass (M)} is the reduced primary decomposition
of the zero submodule in M (Propositions 16.1 and 17.1). In

particular since [V Q ($)=0 then the canonical map
+E"Ass (M)
M —

®
e~ Ass(y /@)
Proposition 3. Let R be an Iz-/\/netherlan. The monomorphism

e ——— A U, W S

is injective.

vt ® is tial, i.e, its i i
MM Ry QG i gssential, d.e. its imsgo is

an essential submodule.,
INNNANANNANNANANANNN NN

_lfrf?_f (i) For every PE ~Ass(M) the canonical projection
M —> M/q(p) induces an essential morphism U fot M) M/Q(f).
Since Ass (M(—P)V\As (Q(-Pﬂ:Q, then M(,P)/)Q(,F)zo and

th erefore u,P is injective.

Let E,Q((P) be a submodule of M/Q(«P) « If PCTAss(E)
then repeating the arguments of the second step of the proof of
Proposition 1 we see that ENM(P)£ O, If (P¢ “Ass (E)
then the maximality of Q($) and the inclusion Q(p)c E

imply E =Q(4) and therefore E /g () =0.
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Since by hypothesis M(p')c Q(p) for every ,P’ different
from p, then U,  induces an embedding rPGB M —u->’§9 Mg ()
determined by a diagonal matrix with the morphisms
U : M(p) —> M/Q(rP) as diagonal entries. Since all the mono-
morphisms 'u_P are essential then so is their coproduct u
(see proof of Corollary of Proposition 2).

This implies that 'U‘M is essential since clearly [{og
is an essential morphism] g [5- is an essential morphism]. o

Remark 1. If p is a maximal element in "~ Ass(M) or equi-
valently, F(pIM+0 then the projection M —> M/q )
induces an essential monomorphism T () M**M/QCP) since by
Proposition 2 ‘}'(,,P)M is an essential submodule in M(,.P),
In particular if all the elements of Ass(M) are maximal then
this and the proof of Proposition 3 implies that the restriction
of U;,\ on an essential submodule @ FPIM is an essential
monomorphism. O PETAss(M)

Iiez_na__rk: 2. If L is an essential submodule of M then for any
submodule N & M we have Ass(M)=Ass(LNN); in particular
Ags (L) = Ass(M).

Therefore if CP is a finite subset of the "reduced"
left spectrum NSFQCGR and {A(p) |PE Pt is a family of modules
such that ”Ass(/V'(,P’ﬂ:{,.P} for every pe ® then the existence
NM(p)

of either of essential monomorphisms M HePECP
r & QM(,P)—»M implies “~Ass(M)=& .

Propositions 1 and 3 may be considered as an inversion of

these simple statements, O

19. Modules over arbitrary rings and associated ideals.

In the above statements on relation of Ass(M) with the structure



- 257 -

of M the requirement of ]'{ - noethepness of R is
only imposed to guarantee the fulfilment of one of the following
conditions:
() if M' is a nonzero submodule of M then Ass(M/)#+ &
W 18 28 SRR Tom S obtotued pere o (12

Hore exactW results are summarized in the following

table,

Properties of M that guarantee
the validity of propositions

for an arbitrary R

Propositions Properties

.1, 4,2 M is ﬂqﬁtherian and satj::;:‘ies (#)

15.1, 17.1,2 M/N satisfies (%)

15,2 M/N satisfies (4 #)

16.1 /N satisfies () and
TAss(M/y)  is tinite

18.1, 18.2, 18.3 M satisfies (#) and

"Ass(M) is finite

Ijepggk_. Under Proposition 14.2 in this table we mean its
part referring to Ass(M) and Supp(M), For the validity of the
remaining part one should also require (for an arbitrary R)

that de:TPM‘S:-’?[ASs?P(A/)#EY:[ for an arbitrary submodule AVcM
and P E Spec,R. 0

If every non-zero submodule of M contains a non-zero simple

submodule then clearly M satisfies (#), Dually M satisfies (& #)
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if every non-zero quotient of M contains a non-zero simple
submodule.

In particular any module of finite lemngth satisfies (#)
and (##)

20, Modules of finite length.

I_D_rg_p(zsl_tl_og_ 1. The following property of an R‘%}f M

(& Jongin ()< o0

(b) M is noetherian, Ass(M/N)#¢ fm
M and all tm Ass(Mp/) are isomorphic to maximal

i Sl W Ve e I W U S W VA Y Y O e e N N e N N N N e e N T

left idealsg

A~
(e) M 1g detherian,Ass(MA)+ @ for ey prover submodule
Nin M and "'Supp(M)cNMaaceR.
Proof. (a) = (c¢). Clearly if length(M) <oe then M
is rfgtherian. At the end of the preceding section we have already
noted that Ass(MpN¥EZ it M+ M, Tet (M;ocic
be a simple filtration of M, i.e. Mm/ R/ _where m; € Max,R
for Os i< ¥-1, Therefore Supp(/"‘au/,u D= "'{/4473 Proposition 8

implies that S“FF(MX U Shpp(Mm/M) Therefore SuPP(M)-

os isv-1
=~{f“o')m7/“v~1’]lc Max, R,

(e¢)=> (b) since Ags(M/N)c,SuPP(M/N)c Supp (M) for any
submodule N of an arbitrary module M.

(b)=>»(a). Making use of Proposition 14,1 for an arbitrary
R (see Table 19) whose conditions constitute a part of conditions
(b) select a composition series (M;')os s v such that
Mir SR for Osis Pt and {p;los i< r-1hc Spec,R
Now notice that every ideal P: is isomorphic to & maximal

left ideal. In fact ~€ Ass (Mi+i/, YcAss(M/ ) and b, othesis
» Pr€ Ass (Mg Ychssiy, y hyp
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the ideals of Ass(M/M:) are isomorphic to the maximal left
ideals. Let p, be isomorphic to an ideal M:€ Max,R, By
Proposition 7.1 this means that p; = _(/M;: x;) for a finite sub-
set x;:{xgklisks et/} of R\/M:.
= i - | = '. 3 3
I P=R{mjlt=isvy  agall my  are &ifferent ideals
from Maoc, R then tThe 1length of R/p equals r.
AN NN AN I Y a Ve Sn ta N
In fact R/p possesses a simple filtration (R/u Vo<
where Yo=R, .vz-::ﬂﬁjujlis\)sc} for 1=i=,
In particular if pP,= (:/M‘-:’rc3=n{(/427((~k7|15 k<€
then R/p. possesses a simple filtration (M;)og j< €-
J =Jd= %
and MJ‘*/ '\.R(/u for all j. O
Corollary 1. Let R be an I} /Vnetherian ring. The following
M NN e ONNANANANANANAANNA NANAAAANANANAL

— — -

<S(g V

properties of an R-module M are equivalent:
AAANNANNAANAANAN NN ANANAANANANAANANNNN )
(a) 1length(M )< oo
. O ) . oy R
(b) M is netherian and any ideal from Ass*(mM) is iso-
AN V0 Y20 Y 2 Y Ve W g e Wi \a W We W g Vol AN
morphic to a maximal left ideal ;
NWVVWWW\Z\'WWW\M/\’
(¢) M is netherian and NSUPP(NOC NMaoceR.
AN I A AL NN
Proof. (a)=>(c) follows directly from Proposition 1.
-~ .
(¢) =>(b) since Ass*(M)c SuPP(M),
(b)=>(c). By Proposition 12,1 for any pP€Supp(M)there exists
| - : <K
an arrow p'—» p where p' is an ideal from Ags™ (M), By hypo-
thesis p' is isomorphic to a maximal left idealJu . Therefore,
there exists an arrow JIA-—SP , and Proposition 7.1 implies
P= (/Vl:x) for some oc € ’(R) . In particular pL“/M. a
T ~
Corollary 2. ~Ass*(M)= Supp (M) for every M of finite
— - = INNACAUNNAN NN NN
length over an IE’-Noetherian ring,
T T aWa VaV, e W W A g e N N N e W
Proof follows immediately from Corollary 1 and Proposition

12.1., O

Proposition 2. Let R be an Ie -¥oetherian ring, M an R-
Mg Ve e e e N O

[ NN N D N e e e
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N\
module, p€ SPeCeR TheMww:mg properties are equivalent:

0 T W AN W N e AN W N U L WA N T U WA A e

T
X)) "Ags* M)=" .
S Gr? R((Z’g:p { C’TSTPP} 3

\ ~ N .
®) “AssT (g M Max{_me‘I&G@R\j m ¢ Ty
Grgrp P
(¢) p is a minimal ideal of As s"(M) (with respect to
PR NP W W W W W e " T a S N W e e
the preordering —>),
Lt S e W e W
Proof. (a b). If is an ideal from | R
_Ig__.“ (a) = (b) M ICG'S‘P
such that Jp_j“e 'IP , then —-76;3:9? by Corollary 1 of
Proposition 2.9.
(®)=>(c). Let ,pe Ass* (M), If p > p, then jl;‘(/us_ap.
- * -
Since Gr?p sends Ase*(M) into Agsc’r? ((,,3__ M)
(Proposition 41.1) and thanks to (b) G’?P Pis max:Lmal among
the left ideals ) of the ring GI?R such that ))¢

an
then Gg ,-[>—-?Gr3,- p 1sA1somorphlsm. But this n.mpl:.es ,P"'p

In fact,let (Gn}_ p: z)c(}r$,’> for some ZC 0(0,5 R),
and  an ideal of g‘p such that m«?CJP(R) Fix ye mxfp
and select 2,€ PP(R) such that j,(2,)=j,(y)Z, Then
Gh; <P=?y7=(6r'3=pp" jp(?y))= (Grg P 'jp(y)fz)'=

= (Gg Prad:jpy)= (Grg, Pt §p = G, (P:).

Slnce PQSFCQR and’ Y€ R~p - then b J)GSF('( R and
F =), Besides, [N (Grg, (PyN= (P )g = (P:y)
(Ye¥gcV for any radical filtre F  and any Ve L,R~F;
therefore V= Vg . if VE Sp/écek ~F).

This implies (pizy)c (Piy)—>-P.

(¢)=>» (a). By Proposition 11.1 every ideal M from
Ass (:-;- X M) is isomorphic to an ideal of the form C;[
where m¢g Ass (M) Therefore there exists an arrow m — P

whose ex:.stence is guaranteed by the existence of (;(spm—) GI}.PP .
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The minimality of p implies m =p . and therefore m= G@. p.a
()
Corollary. Let M be a module over an ];e" - Naetherian ring
—————— I e e N e N U U N R S, W) Rl S W Weg N N e
D I Gz M s GgR-module of finite length,then
p is a minimal element in SuPP(M) or, equivalently p is a
‘\/W\—'WWW\/V‘\ 4

NN

minimal element in Ass *(M).

2) It G’:F is an exact functor,then the con€tvary is
L e N e N T e N N

S L NPt WU Wie WIS NEEL, W N S

true: the minimality of p in Supp(M) means that GrT is a
NN NN P NAAN-

(.50 Y Y O W e e i e

Gre R =module of finite length if and only if it is ne’cheman.
sP 7N N VANV AN AN AN AN LA A
Proof. 1) If Gr,5 M is a Czs. R -module of finite length,
c
then AssGr R(G‘? ) que(’EFR by Proposition 1,and in
mrticular the conditions of Proposition 2 are verified.
2) By Pmp031tion 2 the minimality of p implies
}.
ASSG' R(Gr? M)C "Max{neTfGig R0 ¢ T T,
If Gr,}_ is exact the latter set coincides with “Max, GIS-
and it remains to make use of Proposition 1. 0O
Proposition 3. Let M be a module of finite length over a
T T T T T T T Y N N U N AN NN NN NN NN
ring R
ORI M |p € ~Ass (M)} is the reduced primary decomposi-
ANAANNANNNANNANANANANAN AN
tion of a zero submodule in M, This decomposition is minimal:
AN NN NN

0 S NN AN Ve e O 0 T VNP VAN

if {Q(p)|PE "Ass(M)| is a reduced primary decomposition
P NNANNNANNANANAANN AN

A Ve Ve U %0

RO M, then Fp M QY Lor every € "Ass (M),
2) F(pYM #0  for any p € Ass (M) where Fer=n{3,|

P'e Ass(MINEpYE; and

TAss (TEOMI={#Y ,  FGIMN FlpOM=0
when p # p', and the (direct) sum >~ FEIM is an
AN AN rPGNA‘-’-S(M) [V aVal

essential submodule of M.
AN ANNANNN

NN~

~ . . ; =t
) Torevery € TAss(M)  tre rrojection M- Msr yTM
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“
indjces an essential embedding
NS AN NN
Proof. 1) For any M such that
(#) if M' is a non-zero submodule in M,then Ass(M')+ &
A W W N W W DLW U U T il SR B g e N i

N{F M|peAss(M))=0

In fact,if A =N{F M|pc Ass(M)], then Annf-L> p
for any P € Ass (M) and $¢ N

For any PE€E S"‘PP (m) the submodule fFP M is
p-primary in M,

In fact, ffP M=#F M for every p€ S’upp(M) by definition

. . Fasd ' i
of support,and therefore by Proposition 1 Ace (3-'? M)#Q’
and belongs to “Max,R ., For any P’e Ase ('}’;M) there
exists an arrow pP'—> p 5  since 37;'/\/] is g;) -
free, and the maximality of p' implies p'sz

Therefore { M[$€“Ass(M)] is a primary decomposition
of Oin M, The fact that the decomposition is reduced and minimal
follow respectively from the modifications of Propositions 17.1
and 17.2 given in 19,

2) Since all the elements of “Ass(m) are maximal,the
statements of heading 2 of Proposition follow from Proposition
18.2 or more exactly from its modification given in Table 19,

3) Iet ,PEWASS(M) and N/?':-PM a simple submodule of
EEP'LM = M /EP M=+ Since N is a module of finite length, we
may make use of heading 2) of this proposition according to which

F(EOXMV$t0o and ?(—P)/Vﬂ’f M=0. Since 3'_ N = ?M and N/?M

is simple,this implies that F(pINVN — /V/ is 1somorphlsm‘.

s-m ie submoduie 0§ Ty'M
Since ?(&)Nc? M and /V/g.- M 1s,\arb1traryV’ghen we may clalm
that the image of the morphlsm U’M 3‘-({)/\4-9 3_1 con-

tains the socle of (F (l'euil that the socle of M' is the unique
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maximal completely reducible submodule Socc M’/ of M' which as
is easy to verify equals to the sum of all the simple submodules

in M'). Obviously. the socle of a module of finite length is its
essential submodule. Therefore D(;M: g?({,)M-—-)g;LM is an
essential monomorphism. O
Corollary. The canonical map Up s MDD SprM is an
=== = FaVa e e Yo VU N N ¢P€~ASS(M) aVa YW
essential monomorphism for any M of finite length.
L e e e e Ve Wa W Y Y P e N o W U N

N NN

Proof. Since F(pIMCF,,M when $ > P! are different

elements of "Ass (M), . U, induces the "diagonal" map

® F(pIM —> (? Trpi M whose image is an essential sub~

,.‘P

module in @ ?{é M (see the end of the proof of Proposition
S

18.3), since monomorphisms ?{’PM; ?(P)M —)SSPiM are essential
for every 4 € "Ass(M). O
Remark. In the commutative case the maps T(.P)M—% 3:;1/‘4

are isomorphisms for all 4 € “Ase (M) , if M is of

finite length and, besides, Ass(M)= SuPP (M), This

inplies that FEIMcs M md Up,: M O F M
(.P

are isomorphisms., O

21. One more subcategory of Rtngs. The requirement of

Ig-/\/netherianness of R in the statements of the last eleven
sections (whenever it is mentioned) can be replaced by the
following weaker condition:
+) {(m:x)(xekxn} possesses a maximal with respect to —> element
for any pair m, n of left ideals of R,
Denote angs(e) the full subcategory of Ra‘ngs formed
by all the rings R satisfying (4).
Proposition 1. Let R €08 Ringspy- Then for . any radical filter

-_—— T - - = = N N NN

F  of left ideals of R and arbitrary N € IL,R~F  there
AANNAANNANA NN SN NN NN AN



- 264 -

. ~
QELSER M € PpecoR F  much Bhat n— M.

Proof. Consider {hex)|{xeR \Vlg.-ff > and let (n:A)
be its maximal element, The maximality of (n: A) and the
identity ((n:A):x)=(n:xA) imply

[(n:)o )4 (h: ) 1 [xexe g1 [xethng 1 D)= (D g ],

This means by deflmtlon that (n:2) € Spece?R and
therefore (n:A)qg= (n ) e SPQC(R T, Clearly,
h— (h:A)g .0

Corollary. Let R € 0€ Rings ¢y. Then
T=Ni3.1me Speclk Ty fomaw redical fulvrs F

Clearly, Rmas(e) is a subcategory of Sekmgs
(see 4). In particular, SpecR = Spee R= f/us | me Spec R‘_{
if R € 08 Rings (¢y+

22. Associated ideals of Goldi rings. The passage from

Nopetherian rings to Rtng%a) does not induce (at least temporary)
any constructive modifications,since I do not know practically
anything about both of these two classes. However, notice that
'lsrequlredfor a ring; to belong to ngg(e) mostly in order
to get the following implications (see 19):
[M isanon-2ero module 1= [Ass(MY#Z T,
| F is a radical filtre and M # 37M1=>[A§s Yo+ 7],
Therefore if we restrict the class of modules (e.g., we'll
be interested in associated or % -associated ideals of R).
we can essential weaken the constraints,
Consider the following conditione on R:
(a) {(m N2 €ERS nﬂ, possesses a maximal with respect to —
element for any left annulator m of a finite subset of R
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and an arbitrary left ideal n,

(b) +the same condition for an arbitrary left annulator.
Clearly, (b)=> (a). By Proposition 4,1 any prime left
Goldi ring and any semiprime left Goldi ring with unit satisfy

(b)e
Proposition 1, Suppose one of the following conditions holds:

- - AN NN NN NN A NN

(1) R satisfies (a) and M is a non-zero submodule of a
P e P W g g g T W e O W e N U W e U P Vg W N Pt d

rrojective R-module ;

AN NN NN

(2) R satisfies (b) and M is a non-zero submodule of the
[ Ve W Ve 0 Tt Vo W NP e N e o W N W N e W W W W e Ve T T e T

Then Ass(M)#@  mnd AssT(M# 0, & F is 2 radical
Liltre of lefy ideals of R such thet M+F M,

Proof. 1) Suppose (1) holds. Then M can be identified with
a submodule of the free module R(ﬂz_ﬁ R. ILet F be a radical
filtre such that M £FM , and $e ;llef?M . The element ¥
is the form z%:; £2 where J is a finite subset of I (the
support of % ) and {3;lfea}cR. Obviously, Annj¥=(0:¥%)
is the annulator of § = {$:|{€3JY, By hypothesis the set
{(C°=¥)‘-17‘—‘(°:"\§)l7\€R\(O:?').}-} possesses a maximal with respect
to — element (0! A,§) . It is easy to see that (0:A.$)=
= AnnQ,§ € SPQC_?- R ; more generally for any m from
I,R~F a maximal element of {(m:X)|xe R~ m?} belongs to
SPec(e‘rR , see Proposition 10,2 .

(If (m: 2,) is maximal in {(m'.ﬂlle R‘"”J;&
and ((m:X.): )P (mi},), then ZA,€ mg; i.e.
2€ (Mmo12e)=(mida)g )

Similarly, for any $€ M~{oY a maximal element of
{ AnnS l A€ R~Ann ?73 belongs to Sp/éc R .
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2) Any submodule of the product of a family of projective
modules is identified with a submodule of the product of a certam
number of copies of R. This immediately implies that the an‘nilator
of any non-zero element of M is a left annulator of R. Further
repeat the arguments of the first step of the proof. (1

Proposition 2, Let R be a semiprime. left Goldi ring with

““““““““ [ g W N N N N e g W U el S W B B W N v
unit, M a non-zero submodule in the product of a certain number
e e S B N N NI W e N T T P U N, W, U S U e U S g e S P U e W

1) Ass(M)£ @ and Ass(M)c Ass(R).

2) Ivery ideal from Ass(M) is Isomorphic to 8 unigue
prime . ideal and therefore "~Ass(M) is identified with a
ONNNAANANNANANA NV NANNANANNNAANAANN ANANANNANANANANAANNNT

subset of Spece R ﬂSpec R .

3) ~Ass(M) is finite and M possesses a primary decom os:d::.on
Proof. 1) As had been already noted,semiprime left Goldi

rings with unit satisfy (b) (see above) and therefore Proposition
1 is applicable to them, Hence Ass(Mm)# &,

Bésides’. Ann § is a proper left annulator
of R for any }'6 M~ 0} (see step two of the proof of Proposition.
1). Let Ann'gpe SF:ECQR and Ann‘;=(b:'x)gf\ for a subset
xc R. The ring R satisties by Corollary 1 /lemma 5.1 the
minimality condition for left annulators with respect to inclusion}

in particular, {0:Ry| y 1is a finite subset of Oc'} has

a minimal element (O: Ry,) . Let us show that (0:Ry,)=(0:Rx)
or, equivalently, (0% Ry,)c(0:Ra), In fact, if (0: Ry, )¢ (0! R'x)’
then (O: Ry°)¢(o:Ry) for a finite subset Yy C X ; but then
(o: R(yUyO))E (o: Rye) , contradicting to the minimality of
(0: Rys)

By Corollary 2 of Lemma 5.1 (0! Ry, )=(0:y,) and (0:Rx)=
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~ (0sXD), implying that C(o:y,)E€E Splzcek and that
(0:x) < (oty) is an isomorphism in Ig’k.
Let Yo={Yoi ) €I} where Canol(T)<oo. Then

(0t yoe)Y=(0:y) for some i€ T,
In fact, if (0iy,; ) 4> (0ty,) for all (eI, then since
(0:,)€ Spec,R and I is Pinite the inteérsection n(o- Yor) 3fs0 be-
ongsto T ory® DUt N{(0: yot)lier{=(sy,) and (a.y°)¢
8y de§initlen of Froyy |
Thus, (O!Yx)=(0:y,)for some (€ T and therefore
(01 Y%= (0:x)= Anng,

2)For any left amnulator M of R there exists o € fP(R)
such that (m:nc,.)=(m:R)= mg (Corollary 2 of Lemma 5.1); there-
fore m & mg ., If mMmE Sp/e\cek, then mg=(m:x,)€
€ SP/;CCR NIR= SP/e\ceR nSPecR. The uniqueness is obvious ,
since [{n,n'ycTR, n=n'ISH[ hg= n‘ 7.

3) Since Ass (M)C AQQ(R)/-by heading 1 of this
proposn:lonao see that Caﬂd( ASS(M» it suffices to verify that
Canel (~ Ass(R))< o=, among the

For any cPe"'Agg(R) select a maximallleft ideals Y of
R such that "Ass (?)'—'{«P}, and denote it R(p) (see the begin-
ning of n.18). If P, p' are different elements of ~Ass(R)
(Which can be identified with Ass(R) (1 SpecR ),  ‘then
Ass(RNRGY)= . By Proposition 1 this means that
REIYNR(FDI=0 (see Proposition 18.1 and its elucidation in
Table 19).

Theref Z - t
herefore e Ass (R)Qﬂ is the direct sum of non-zero lef

ideals of R. Since R is a Goldi ring,this sum cannot be infinite.

For every 4 €~ Ass (M) select a submodule Q(p) maximal



- 268 -

among the submodules Q' of M satisfying “Ass(Q/)= Ass(M)~{p}
(its existence is guaranteed by Proposition 9.4). Clearly,

Mss(N QE@))=¢, and by Proposition 1 this means that
PEAss (M)

N{Q@)|pe~ass(m)j=0. Therefore {G(p) |+ € ~Ass(M)]
is the reduced primary decomposition of M; see Proposition 17.1

and its modification from Table 19. 0
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9. Morphisms.

1. Radicals and localizations in Abelian categories.

We will find out the conditions_ under which a ring mor-
phism R — R'! induces a morphism of localizations
G—?R——)CT‘%R" in terms of the abstract torsion theory.
Recall the main notions of the theory in a convenient form.

Let &4 be an Abelian category. A radical in A
(or an inherited radical) is a left exact subfunctor k
of the identity functor Ioldq such that k(x/k(x))’s_o,
A radical k is called an idempotent one, if k% = k;
ice. it k (kM= k(x) for any xe 08 54,

Example. Let .,4: R - mod . Any topologizing
filter F determines a radical kq— assigning to
every module M its ¥ -torsion FM. On the other hand) e a ra-

dtca4 Rk in R-mod the set of left ideals of R corresponds
each of which is the annihilator of an element of a module
of the form kM; Thus constructed maps F > Kf; and
ks._y T(k) are inverse to each other, if we confine our-
selves to radical filters on the one hand and the idem-
potent radicals on the other one (see Ch. 16 in [ 27]).
Fix a radical k in & and define a full subcategory

T of k-periodic objects setting

08T, ={x € 08| k(x)=x]}
and the full subcategory Sk of k-semisimple objects setting

08 S| ={x €084 | k(ax)=0T. |

Besides distinguish a family mk of the morphisms
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§:oc—— Y such that the Ken & and Cok § belong
to Tk .

An object w of & is called k-injective, if any
pair of arrows We—s——'x-——g-% N with 3€mk extends

up to a commuting diagram
e ___ﬂ____? N

~N

w

If h is uniquely determined, then w is called strictly k-
injective.

It is not difficult to verify that a k-injective
object is strictly k-injective if and only if it is k-
semisimple. The full subcategory of \}4‘ formed by
strict k-injective objects will be denoted by \fq‘(k)

A k-localization of an object x of J& will be
called an object Q)X of (k) such that there
exists a universal arrow Mx: X—> th i.e. any
morphism X-—»>Y, where y€ OGﬂ—(h), uniquely factors
through /le . As always in a similar situation’ the map
XL—)Q‘RX uniquely extends up to a partial (i.e. deter-
mined on a subcategory of \54— ) functor with values in
ACR). This functor is everywhere defined and left adjoint
to the embedding &ﬂ—(k)c—aﬂ» when & is the Grothen-
die:k category.

Recall that the Grothendie:k category is an Abelian
categor& with coproducts and generators such that
(Sgpa;)ﬂ6=3(:«p(0;n8) for any directed family of sub-
objects {Q;‘l {€IY of an object x mnd any subobject
bes x.
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Example. If 4 = R-moof and k= kg-‘ for a radical
filter of left ideals ¥,  then it is easy to show thatl
Ak = R‘W'Odgr . Therefore the h}_—localization coin-
cides with the F -localization of modules. O

It is natural to crown this short list of notions with
the following fundamental fact which connects them all:

—_——— —— - —

category ; XEOQ\A; R the ring dual to the ring of
AN ONNANANANANANANANANNANANANANS

endomorphisms of X hox the functor & —» R-mod
ANNANNANNNANNNN ANANANANANN

determined . .on objects Y and morphisms f from A by
ANNANANANANANAANANNNANAAANNN a2 Val ~o

the formulas
NN NN

RS (V)= AKY), hG)=A(1x,$)
witb an chvious Rmodule structure on (X, Y)- fhe fol-
D)X Ig g generater of S
20 h% tsguttand reienru;

3) he induces an equivalence of categories A R-mod (k)

NN i e W e Uz U

where k is the maximal of the radicals k' in R-mod such
NN VY Y4 Y2 Vo W W W Ve Ve W W Yl W U W W W2 ~r I e e e

° - —o * 3
that k% (V) , YEO8H, are strictly k'-injective.
Proof see in [ 27 or [727].

2. Morphisms of localizations. Tuwrna family of pairs

(ﬂ,k), where ‘99( is an abelian category (Homsﬂ— belongs
to a fixed univers ), k a radical in .)4, into a
"localization" category L A8 as follows: the morphisms

from (&, k) into (.ﬁj, k') are the functors F‘.\ﬂ'—*«ﬂ':
such that Fxe d‘\!( k') for every XxE€ A (k) , with
the natural composition. We are interested here in the sub-

category Gr A8 of LAb formea by the objects (#,k) such
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that A& is a Grothendlek category and k an idem-
AR —E5 (A k) F
potent radlcal, and . morphlsms i such that/\possesses

a left ddjoint

Note the main for us property of morphisms in &LAE:

Let (A , k) and (A, k') be categories with radi=-
cals such that the embeddings (k)< A and A'(R)es A
possess left édjtﬁhffunctors Qh and Q R’ respective-
1y, and (&, k) _.£~>(3q>" k') a morphism in &£ A8 . Then
for any X€ OQ&Q’,){GO@&Q and any arrow %! x-— Fy
there exists a unique morphism *kh' Qpix — FQRy
for which the following diagram commutes

X ———3——>Fy

S | | Eme
QNX—E—%—a FQyy

Proposition. Let k and k' be radicals in abelian
—————— lava%™ N [ YV S W e Ve e Ve Ve VE
. / . ‘
categories A and A respectively, F:éi=dt g funcror
with left adjoint F&,
(e Y e N N N N e
1) For the following propertles we have (S BLY=> ()
[ el W N W o W NI N U U P U O
(2) F&(T ,)C'T'k and F4se mh for any monomorphlsm
lac s AN NANNNANANNVN
fe mko s
(®) F4(mpdc My;
. . I
() F is a morphisn (s, k) — (A, k').
2) If the embedding HA(k)cs 4 Dpossesses a left adjoint,
[a Y S W e W W Van W JaVa Wa W e W e WL W e § \/\/\
then (c)=(b).,
Proof. (@Q)=p(b). Let §: x— Yy Dbe an arbitrary
arrow from YY1 k! - The functor = is right exact

(thanks to the fact that it possesses a right xdjo?nt) and in
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particular, sends an exact sequence xiéy — Coks - ©
into the exact sequence F%x —F—Li> FLy———>F'LC'ok§~—> 0.
By hypothesis Cok§€ T | and therefore CokFLS-e'T'h.
To the factoring of f into the composition
X —> x/kev‘&}i-) N the commuting diagram with exact
rows corresponds:
Féker§ —s Féx ——5 FS (X /e ) —> ©
fdl 1‘ I I (2)
Ftker§ — Ker F&s — Ker F48 —> 0
By hypothesis {FLkep§’KQrFL§ Y1Cc 08T . Recall the main
properties of the radicals:
Lemna. Doz any exact seguence 0—>X—>y—2 —2 0
in A the following Implications hold:
(i) [{x,yxcO08TRLI=>{yec08T,1;
(i1) [ye 08 T 1=>[{x,21C 08 TR 1.
In particular, if in an exact sequence X — Y —> 2 5O

NN NN P O e N et T an ] .

the objects x and z are k-periodic,then so is y.
NS - ~ L e e N A Ve Ve Vo
To see this 1t suffices to look at the commuting

diagram with exact rows:

0~—> kx— ky— kz

I I I (3

Therefore the exactness of the lowest row (2) and the
k-periodicity of F# KQV‘S- and KerF4$  implies the
k-periodicity of Kev FL:S‘.

(b)=>(a). Clearly, an object x of & is k-periodic
if and only if 0, € mh . Therefore (b) implies
[x€ 08T 1> (o€ M A= [0 = FAoNeEM IS [FReofr, T,
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L4
(b)::';(c). let Xx—>Yye€ mkc, f:X— Fw
an arbitrary morphism, VYx w the conjugation isomor-

phism ‘A.'(x,!-‘w)_f:_, A(Fex,w) . 1f we 08A(k),

then there exists a unique arrow 3: F‘:y-) w such that
_ L
Pu,w )= F
This means that g’o(‘): S for the unique arrow g’,

3l:t‘{;:w (ﬂ) . Therefore, Fw € 08 A(k'),

(c) == (b) (when the embedding HA(k)cs# possesses
a leftadfeint functor Qh) Let @:x—Yy Dbe an arrow from
M /. The strict k! -injectiveness of FQ kFLx - im-
plies the existence of a unique arrow y—g-eFQhF‘x such
that the diagram

X—-—-———-)Y

J"‘ va pL(/WN/Q

FQy Féx
~ -1
commutes. To the "adjoint" morphism = (@) F5 —
, 9 %,QhFx d v
—————)Qb_F X a unique arrow g’: G\hFL_y—-»QkFLx
corresponds for which the following diagram commutes
FL
tx ¥ S F4y

l/l

Qhrl'x (—-—— QkFL
The standard uniqueness considerations imply that g’is
inverse to QkFan . Now notice that an arrow f from &
belongs to W1} if and only if Qp¢ is invertible. D

Corollary 1. Let T anda @ be radical filters
(aVa

e e - L N e A N N i

of left ideals of R and R respectively. The follow1ng pro-
I WL Woen g N B, W, W,

e S N N T P S g AN NN NN

perties of a ring morphlsm (p R— R’ are equivalent:

P N B N R i SR S N NN e e N e
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1) The change of base functor P is a morphism
Ve W N N N L WL P\ o [0 VW e Ve Ve W W

(R'-mod k%)-—)(R mool kg-)
(¥) [(meF )= [(R,emNEYT;
(3) I is @2 submodule of an R-moaule N and F(Mm)=7m,
then the kernel of a natural morphism RIQRM — R'%N

A Y e vl A R Y
belongs to ‘I’
_Ifggof The functor ¢, * R'-mod — R-mod pos=-
(€8]
sesses the left adjoint ‘-f’ = R U)@ - where R’

is the ring obtained from R by accruelng the unit. It is

not difficult to see that (Y) is equivalent to k“’d-
periodicity of the Rl-module R%\M'for any k? -periodic
R-module M'. Therefore (¥) and (&) is a speciali-

zation of condition (a) of Proposition 2.

Remark. Consider the following properties:

(¥1) (neTR, ¢'neTI=>[neyl;

(¥2) [MEOCR'-mod , P ME T J=>[Me Tk

(§2) (5 Homp( (M, M) 9y 5 €My T [ 5e My, T;

(81) For any me F the kernel of the canonical morphism
R'®Rm—) R’ belongs to Tkg.— ;

(32) For any m € F the R-module ’T'o'zi (R', Ry, is k%'
periodic.

(83)If an R-module M is k -periodic, then the Rimodule

F
] . . .
'T'O't.i(R,M) is k% periodic.
It is not difficult to verify the equivalence of
conditions (¥&) , (&) for i=14,2,3 to conditions

(X) and (8) of Corollary 1 respectively. O
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Corollary 2. Let F and %)  be radical filters

— - - = - - [N mo. Y aVaVe WP Va Vol We Vol
of left ideals of R and R'reSpectively; ¢: R — R’ a
/0 S0 Y Ve W N NV o e T e Wi W VR D0 T T Y VIR W N e e ) ~

morphism satisfying the equivalent conditions of Corollary
e e e Sl Vo P U L NP gy
l,and ME 08 R-mod, M€ OB R-mod.

Thep any R-module morphism §: M —> @ N e

s

termines the unique R-module morphism : —>

TGy M such that the disgran

M5 Px vV

JS’,M p L (F*J'q’”
3,49
commutes. In particular, there exists a unique ring mor-
AN NAANNANNNANANN NAANNAANANAANANANAN NN
phisn gyt GgR—> GgR fox which the
following diagram commutes
NANANNANNANNNNANANANANNNAAN
P '
R——>R
l 97,9
(
FR—>GyR

Before we leave the radicals in Abelian categories
and confine ourselves again to radical filters of left
ideals, note that the results of the first headings of
(Theorem 1 and its "geometric" corollaries) may be re-
formulated in terms of radicals in Abelian categories
and related notions,constructing therefore a "geometriza-
tion" of Abelian categories. This point of view is an
abstract expression of the fact that the main object of the
study in non-commutative (algebraic) geometry are not ring
spaces but spaces with category of quasicoherent sheaves of

modules over them,
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3. Morphisms of 1l -semischemes. Denote Rﬁse
the category whose objects are the pairs (R, F ), where R
is a ring and F  a radical filter of left ideals of R%
the morphisms (R,‘}’)—; (R',Qj) are the ring morphisms
@:R—>R' ~satisfying the conditions of Corollaryl in2, with
the natural composition,

Let (R , T) and (R', T') bve 1l -semischemes.
A morphism (R, T)——> (R', T is a pair (¥,¢),
where is a precositi morphism T — _U_-' (i.e.
a monotonous function Y ! T'— T such that W('}'J_L‘%'):
=yYFLYY, yF=({yF lieT} for any {F,YYyc J'
and any cocovering {?c_.) ¥F: |ieI 3 € ?’ ) and
@ (R’,'J) —= (R, ¢F) a morphism from RiT__gsl. It is
easy to verify that for any pair of morphisms (R,J’)-(—‘f—’—ff—)»
__>(R‘,'J")M(R", T") the pair (q:iqz, (Potp') is a morphism,

Therefore a composition is defined which tuyrms

the collection of 1l -semischemes into a category which
we will denote by LL-Shy.

Proposition. Let (¥, ¥): (R,TV— (R T') be a

L (v,@>  uniguely determines a ringed precositi
nozpnisn (¥, ¢ : (T, R7)—> (T, RG) . e correspons-
ence (¥,@)+> (P, ¢2)  is functorial.

°) Simpose s0a% for ony PE Spec®,T) a4 Fe T
the ideal (P“P belongs to 3_, ,5: PE I‘J?. %

1oV Ve W2 e Vg Y (4 Ve Vo VRN \Pe )
- . . Sep o
mi— @ 'm w\s/ a continuous map ¢ S’oece (R,T) —

T Ve

— Spec,(R',T')  yhich uniguely extends up to 2 nor-

phism of ringed spaces (see 4.10)
AN LNAANNANNANANN AN

(S({, , qu): (SPQCQ(R’T), g;)&(ﬁpece(k',j't)’m?‘).
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Proof. 1) The definition of arrows in Ji-She shows
that (@, @) determines a morphism (W,{(Pg-}): (7, RJ.)—-;
____)(I' , R:_]_‘) to which in turn, the morphism
((v,(?a):(-l—,k})—s,cl—l’ R‘.;.) corresponds. The functorial
property of the correspondence ((F,(p > (!{1, (p“) is
obvious.
2) Let pE€ gpece(p,:r); F and ¢ be filters
from T/ such that (P-'pe FiLY . Definition of
a morphism implies that (R,(e(fe"P)) and therefore p
belong to YW(TUY):=YFUY'Y (see Remark after Corollary 2 im1, com-
dition (¥1)). since pe€ SPQQC(R,)T)’ then p € ’(V‘S'U‘QJ‘%.
By hypothesis this implies le-'P c FU Qd . Therefore we
have established that the map m > (@ 'm
induces the map of sets $(p | ec, (R, TY)— e i
P ‘F SP e( ) ) SPece (R’ J— )o
This map is continuous. The preimage of any closed set V(IF)=
=Spec€(k',ﬂ")ﬂ? coincides with V(q: F) . Finally, S¢
extends up to a morphism (’t{o, (Pq) of ringed spaces

uniquely determined by the commutativity of the diagram

Q
(T, RN C Dy (g0 ga

7\ (¢, \

(Spece(R,T), R% )" (Spec (R, T, R

The details of the proof of this fact (passage to the limit)
are left to the reader. O

4, Morphisms of rings and left spectrum. In the com-

mutative case any morphisms of unitary rings induce mor-

phisms of the corresponding affine schemes. Passing to
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non-commutative rings and left affine (quasi)schemes com-
plicates the picture. The responsibility for this compli-
catedness takes the same category Ig R.

Denote Rin’\ése the subcategory of Rings formed by all
the morphisms @: R — R' such that the map m > @ 'm

satisfies

(1e) [reSpec, RumeTR!, moap! T=>[om— ¢ p'].

Proposition. Let ¢ ' R — R' be a morphism ¥rom
~ T T T a%a% NN
Rings¢. Then the map m (f"m induces the maps
NNANNAANAANAANAS
NN~ ANV TN A ) —~ he ]
Po Ue(@RR) > SPQCQR and P, %(?(R»ASPQQR continuous,
Proof. 1) Let P'€ Spec,R'  and n€I,R.
Since ?"(P':Q(ﬁ)=(q"p':\y) for any yc R, then

[ (¢ 0) > ¢7'p! ror any %€ P(r)T= [ (p": peo))fp’
for any x€ P (Y} [Ryem) — p/ 1=
= [¢'R @)= @'P' IS [ h - Cf"'p']

Ir p'e SP’EQQR , then for any x € JP(R)
[CgP:x)4 P/ 1> [B't @) p/ 1= [ @) pls
lxcqg'pl; ie. @ p'e Sp?ce RU{R}.

2) The mep @ * Up(Q(RI-3Spec,R ig continuous with
respect to oo

In fact, let WC Spec,R be closed in the topology

Tos e X3 SpeceR and p— p' for some
peW]lLp'€WT. Ten @, W  coincides with the
set itself:

[{p',pYC U@, PP, ¢ heWI> [¢ps@p,
epewl>[e'pew]. -
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3) (,( is continuous with respect to § . More
e e e T

exactly, (()Z'(Vé(«)):'ve'(o(‘e)ﬂvé((e(m) for any « € TR,
where & =(R',(P(o(), R') 1is the two-sided ideal generated
by ().

In fact,
P (VeO)=1{Pe U (p(R)|xc ¢ p'Y={p'| (R} ) = p'Y.

~~~~r
Since (F is a morphism from Ringse’then

[«c@'p, p>P’, bE Spece R I [t o @ b 1> [wc @ ple
& L (RYwE))c p’l.

In particular, if p€ Spec,R’, then [xc ¢ 'p]=>

S [(R,QeNc (p:rz)  for a1l ze PRI =

-»7[(;1',@@,) RDcpl. In other words, c&“({} )=
-V(“@ﬂUc(‘e(R)) This and Proposition 1.6 imply the

required identity ?e (V(o()) V(O‘(f)nU((ﬁ(‘R»

5. Some subcategories of RlngSQ.
by "‘:hg
5.1. Denote,SRings the family ofsmorphisms (p: R —» R’

—

such that
There exists a finite chain ROC Ric A Rk«u.
of subrings R' such that R; is a two-sided ideal in Rjsq»
/
<tsk R ‘f(R) and Rku R
It is easy to verify that the composition of mor-
phisms from Srings belongs to SRings and therefore
SRings 1is a subcategory of Rings.

Proof. Clearly, it suffices to verify that ring epi-
morphisms and embeddings of two-sided ideals belong to
Rings. We have already verified the latter in heading b)

of the proof of Proposition 5.9.
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Let @: R— R'! be an epimorphism {m,n%c T, R’
and msn. If (m:x)c h for some X€ P(R') and x is

an element of J°(R) such that 3 = (x), whose exist-

-
ence is guaranteed by epimorphicy of ¢, then (@ m:ix)=
= LP"(M:’TC)C ({;“n_ . Therefore the map M ‘P._‘/“
is a functor I{R'-——) IgR and therefore

Ye Hbm R{"\éjse-

5.2. Category Ringspand left normal morphisms. Denote
Ringse the subcategory of Rings formed by all the ring
morphisms (P! R—> R such that m +— <("m is a
functor Ig'R‘ — Ig- R .

As we have just verified,all the ring epimorphisms
belong to Ringse. Let us give much more subtle "estimate
from below" of this category.

For an arbitrary ring morphism L& R — R' set
Nol@r={ze R [pexrze (R} p(x)) for any x € R},

A morphism @:R—>R " will be called left normal
if (P(R) and /Ve((fl) generate R'.

It is not difficult to verify that left normal morphisms
form a subcategory of Rings which we will denote by NE Rings.

Proposition. Afp Rings W/\NM Ringse.

Proof. Let (! R—» R’ be an arrow from A, Rings;
{n,m";CIe R! and (n:y)c: m  for some y€ PR,
Let us show that there exists a finite subset w €« R such
that either qv"nc(p"m or (q?"n:w’)c tp"m.

1) First notiée that (('Vc: ({J"(v:z)
for any ZG/VCC?) and any left ideal v of R'.
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2) Suppose that a Z-module y is generated (over Z) by
an element weg R' and consider different possibilities.

a) If u € Ny (@), then 1) implies ¢ 'h < @ 'm .

b) If U=@Q(x) 2 where ZEMN(P), then (N:u)=
=((n:2): Q(x)) and therefore .
(('"(n:uk(('((n:z): @)= (¢ (n:iz):x)> (¢ n:x).

c) If U=z2ECX) where 2€ M (@), then
e =@ (CnipaN:2) > ¢ (n: @)= (@ h: ).

d) Possibilities (b) and (c) and the standard induction
yield that if u is the product of several elements of the
form €@(x;);...,@(cK) by . ' elements 2, ,...,%
from A/C (tp) (the ~4a¢tors are arranged in an arbitrary
order), then (F_‘(‘n:u): ((p"n : :x:i"'x[k) where [1,..., Zk
are numberslof 4actowg in the order of appearing of (((’xj)
in the expression of u (from left to right). Extend (P
up to a morphism tPi: R“)-—-—a R’E’i)

(e) Since ¢, is a morphism from /Vekinss, then
any element u € R' is of the form U, +.,*U, where
each summand is the product of elements from (P(Rm) by
elements from /\/C(G(Ji). Therefore for every u; there
existsatr;ord(m:) to (d) an element ;€ R(‘ﬂ such that

-

i -
(¢, h:x)c @,'(niu) . Therefore

-1 - -1 -1 -1 .
@ (>N @ (riu) o N (Prnia)= (@, n:{x; |1=isy).
-~ I1sc=S .7 1€ (S 9S. -

3) This clearly implies that for any finite family u

of generators of the Z-module y there exists a finite sub-

set x of elements from R such that t(.n n((e‘:q:xjc ((,“'(n:u).u
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5.3. A ring morphism (p: R — R' is called a
central extension if its centralizer Z(tp)f‘—:"{z eR'|
e(x)z=2@(x) for every x € R and ff’(R) gene-
rate R'.

Clearly the central extensions form a subcategory
of AMgRings

Besides,the map P+? ('O"p induces a continuous map
a(P SPec R'—y SPQCR,if (() is a central extension.

In fact, if p'e Spec R’ and {«,pBY¥CcIR, then
(xtpc @ 'P I L@@ @(BICP/ IS
= [@eO@(R) + PO PRIZ(@IP(BI=(PEO,RIP(pIcp’ 1=

3 feither @@= p’  or @(pdI=p’I.

The verification of the identities “(("(V‘ (o = V(o(,(,),

0(¢e=(R’, ‘-(?(o(),ll'), for any o« € IR is left to the

reader. O

6. Morphisms preserving Spec R . Denote by R?nﬁse
the subcategory of rings formed by all the morphisms
. ‘ - ""
& R = R' such that wad, (¢'ndc ¢ zacfy(n)
for any n € Ie R',

"
tn

33QC_ R«“ngse .

Proposition. 1) R
2) For any morphism ¢$: R— R from Ringse
[ A " Y . . NN
the map m P—*(F-‘h’l induces a continuous map
F a2 Va Ve W . A A YA VA Ya Ve Ve Ue W Ve W U U 04
© : U (e(RY— SpecR .

Proof. 1) By Proposition L m o——->(€"m sends
SPQCQR‘ into SPeQeR U{RY and in particular,
(-P-i\/é(hﬁc'\%(((r'\)(/{k’] for any n € T, R' when

(P € Hom R,{:ése . Therefore (P"mde(n): n{(e-cpl‘
preverm s Niplpe V (¢ ')y = 2addy(¢n).



- 284 -

2) Now let @:R — R’ be an arrow from Rings,.
(a) 70‘0‘9((?-'P)=((€—‘P)s= ‘e."éade(p) for any
P € SpecgR’ . In ract, ¢~'(p)=@ p N (p:R")C
S @ RN @ (PreRN=¢PN(Y P:RIZ (¢7'p); -
On the other hand, ("'p)sC @ '(Ps), since pg=tad (p),
(¢'P)sc 2aol,(¢"'p) and by hypothesis
g (¢7'p)c @ ade (p).

b) It follows from (a) that ¢~ 'p = 2aol, (¢ p)
for any p € S’S—EE R,

It remains to show that the ideal (p~'p of R is
prime for any p c SF?C R; i.e. LC ((('p:gc) implies
& < ?"P for any o® € T R and x ER~§p,

Since & is a two-sided ideal,then
(e (@pix)= ¢ '(preoN =[x 'zaa/e (‘e-'(p @YY =
= ¢ '2ad, ((p1 00 = @' (p: (R, ) 1.

This means that t)((,f,al‘;‘s (R',(P(d), Rc (p: (PCQO) . Since
by hypothesis (P(x)¢ p and p is prime then o< p and
therefore « < (p”‘p as required.

3) Clearly C? : G(Ce(kﬂ —> Sp-e-c R is con-
tinuous, since‘ |
¢t (T ={pe T(@RNotc ¢'p {=V ) NU(@RY)
for any ®* € TR. @

. T~ 4 -— 4 .
7. The categories Rlngsc and Rings, . For any ring mor-

phism @! R— R! and left ideal n of R denote by
K‘f n the kernel of the natural morphism R'ORn-—) R',
?

Proposition. Consider the following properties of (P:R"’ R/
A Ve Ve Ve Ve Ve Ve Ve Ve e Y YV W We Ue Ue

— e - - [ Y YA Vo Vg
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() q € HomRings,  and Kgi=FKy,n for aw
pefpecek' and hGG_‘e—IP ;
() fox any peDpecg R the functer @ of

"restricting of scalars" is a morphism
NANNANAATAN -

(Rimod, ke ) — (R-mod, kg )
() g5 any clorea awact W < (SpeceR 5 To) K

functor (.P* defines a morphism
ANV ~ ANANNANANANNANAN
(R'-mod E__S:_W)__} (R-mod ) ‘Zg:‘e-aw);

(3) @€ Hom Rings ,  and 2ady(n)c @ t2ad, (AnnY) sor
mhelep and %e KL(’,V\. 3

(b) for any P € SpeceR  the functor (@ deter-
nines & erenisn (R-mod, kg [y (R-mod, ke ) where
?(pl) -{neIeRLms Pfor any/ﬂGV(h)} (5.5. C)

) g g (Rimod, by -
-——-)(R-mod, k;—wu))w X € IR, (4

The following implications hold:
[ Ve Ve Ve Ve VA"V aVe e W el Wa ¥ Vel

(e (e @ = (e (e (),
Proof. (3’)(_—_::?('1;), Clearly, ”((’(‘ Hom R:Gl-és{’may be

expressed in the form

{

() [hEIQR <( he?-v] =lhe S"P] for any
pE€ Spece

This condition is a specialization of the condition
(Kj_) from Remark to Corollary 1 of Proposition 2 for
the fllters ? '}'((, p and all p € SPQ%R'

' .

identi K for all and € ~ ‘re

&Y ?PK% p€ Spec, R Fop a
the correspondlng family of specializations of condition (J1)

from the same remark. Therefore, Corollary 1 of Proposition

2 implies that (3)<¢>(b).
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(’5)<:_—..> (). Clearly, (/) implies the following
statement S
[e'neFyw= N{Fpp lpewiI=ne Fy Tl
for any WCSPeceR‘ and n € I, R
-\ -
NIf heFe'p, then Fo Ky, =Ky forall pew
by (a), and therefore 9:W K‘e,n = K‘(’;”’ .

Now obviously (;)<?=> ('E’) follows from Corollary 1 of
Proposition 2 ‘in the same way as in the above step of the
proof.

(a) &> (c).

- -1
Clearly, the condition ?ad,(@n)c@ 2acl,(n) ror a1l ne T,R’
(the fact that <€6 Rim}se ) is equivalent to the con-
e, . . { ~
dition that,if « €IR, n€ T, R and @ 'n¢ ’.F%(d),
then N € ?V'e(o()'

Similarly, the second half of (&) allows the fol-
lowing reformulation:

T\/e(u‘e)K(p,nzi‘CLe,n for any o« € TR
and n e ?Ve Gx.) .

Therefore (a) is equivalent to

(e) Py  determines a morphism (R- moo() k? V—
—-=>(R~mod R ) £ of Ve(oe)

) 3-%(00 or any €TIR .,

(€Y => (c). Obvious.

(c) &> (b). As we showed in 5.5.C, ?(p): U{T-vé(u)'“qu.ﬁ,
On the other hand, Fng(yy= O { Fpylpe T (e
for any X € TR . Therefore (Z), (b) imply similar
conditions relating ?(Pﬂ ".}-‘(.PS and (.F. a

Morphisms from Rings satisfying the equivalence con-
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-~ (o
ditions (a) - (e¢) form clearly a subcategory that we will
~e

. — 4 .
denote by Rlngse% Denote by Rlngst the subcategory of Rings

formed by all the morphisms L{J with one of the equi-
valent properties (a) - (c).

Corollary. (1) The map Rt-)(Spec R.°G,) extends up to a
_—— - AN €7 TR AN~ AN
i

T~ 40P .
functor from Rings, i1nto the category of preringed spaces,
IWWWWVWVW

laVaa Ve Ve Ve 0 A e
— >~ a
(2) The nap Re>(SpecR, BF)  xkends to 2 functor
10p

from Rings into the category of ringed spaces.
AN ANANANNNANANAN AN T

e

Proof. The property (c) characterizing the arrows from

Rings means that

(¢, 1Ty = Fepw |WESY)
is a semischeme morphism (R ,{H"WIWG'S'OR?S)"> (R’,{G‘W‘IW’G'SOR'Q

This obviously implies (1).

Similarly, the property (¢) of the arrows from Ringsel'
L L ]

f —
means that every morphism (p ! R — R $rom Rlngse

induces of 1l -semischeme morphism
) . { !
(R, {F, lvesRY) — (R, {F,, [v'e TRY)
which in turn defines a preringed space morphism

(%, @"): (Spec R, Br)>(Speck ,By). Clearly, the cor-
_ = —— 40
respondence ((’H((e,‘fh) is a functor from Rings: pto the

category of preringed spaces. In the second heading of

Corollary we are speaking about the composition of this

functor with the sheafication functor. [
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Appendix

§1. Left radical, l-systems and Levitzky's radical.

1. l-systems. Fix an associative ring with unit
R. A subset cPRwill be called an l—systém if for any t€ S
there exists afe?(k)such that Sa{i‘c S , e, '("af‘t GS

for any t'e S,

Obviously’ any multiplicative subset ,S’ of T(R)
(i.e. such that ste § for any (s,t)E S xS ) is
an l-system. Another series of examples of l-systems is pro-
vided with the following

Lemma. A left ideal p of R belongs to SpeclR if and only

‘;&:;)fxﬂ/\ﬁv\/\fv NAANANNNAN AN A
2 Bp=VTRI~P(p) iz an losysten.

Proof. By definition p belongs to S'P/e\ceR if and only
if (p: s)=» p for anys€ Sp . This means exactly that
(p:ass):qp;s);asjc p for some aSGfP(R), Clearly,
[(p:q s‘)c p]éﬁ;[ S as © Spj' a
_____ AAAANANIN A A~
={ne1ealﬁ(cmme¢¢ wxeﬁ’(mﬁm.
Proof. Let m ¢ FS ,neF’S o{m3, ie. MnyWNS 2
for any yeP(m) and P((m: NS+ & for any xe P(R),
We should demonstrate that P(n:x))NS * & for
any X € T(R).
Let s be an element of S such that s$x € T(m),
element of J°(R) such that gqss c g‘
Since a sx € (PCM), there exists t€ S  such that
tagssx < n; i.e. tags € P((n:s)).
But by conjecture tasse §. 01

2. Levitzky's radical. A ring R' is locally nilpotent

if every finite subset of its elements X generates a nil-

potent subring. This means that there exists N = N(X)>O
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such that o ., .- xN:-o for any (x,_,,,.,'x,v)exgwxx.

Ideals are called locally nilpotent if so they are as
rings.
The following facts take place ([5], Ch. 8,§ 3):

1) A two-sided ideal generated by a left or right locally
nilpotent ideal is locally nilpotent;
2) the sum &L (R) of all the locally nilpotent ideals
of R is an (obviously, two-sided) nilpotent ideal.
£, (R) is called the Levitzky radical of R.
Proposition. The following properties of a left ideal m of

————— NANNANNNNNNANNNANUNANNANANNANNANNNNANNNAN A

R are equivalent:
VA Y e Vo e e N, U VN

(a)[s is an l-system and SNPEI#ZF T[{oye S 15

(b) 5 i o miltiplicative ubset fn  (R) and
SOP#F 1= [{o1€g]

grgof. (a) => (b), Since any multiplicative subset of
P(R) is an l-system.

(b) =>» (c). It is not difficult to see that m is locally
nilpotent if and only if for any t€P(R) there exists N=N(t)
such that t”:{o};i.e. {o%e (f)dzd{tk [k17,

(¢) =2 (a). Let S be an l-system andt€Pm)NS,By definition
of an l-system there exists afeﬁ‘(p\) such that Saf'f CS,

In particular, ta,te S" Gactlacte S, ..., ta,tO)keg

for all k>4 . Since o, té€ PlCmD together with
t,then’by hypothesis there exists ko>,1 such that (O(ff)h‘b :{o'i,‘
Therefore {OB:‘t(ayt)""’eS. |

Corollary. A left radical of an arbitrary associative
- N N L e o )

— e -

ring contains Levitzky's radical.
B g e N o W, ey B i e N

AN TN
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Proof. Let m be a left ideal of R such tat mqfv{a\ole(k)‘
This means exactly that md P or, equivalently, J)(m)ﬂsp#,@’
for some PpPE SPQCC R » If m were locally nilpotent
this would imply (by Proposition 2 and Lemma 1) {o}ssp which
is impossible by definition of Sp. Therefore for an arbitrary
left ideal m of R we have EM¢rgd£(R)]=>[m¢£(R)j;
so that L(R) < V‘/G\Lol_e(R). |

Thus we have improved the estimate from the low for the
left radical: have passed from (Lq (R V‘,a\ole (RYcT(R)
to  L(R)c rad,(R>< IC(R),

Our nearest aim is to improve the estimate from above.

3. The upper nil-radical. A ring R’ is called a nil-

ring if every its element is nilpotent. The ideals are called
nil-ideals if they are nilrings. The following fact holds
([5], see ch. 8,§1):

the sum K(R) of all the two-sided nilideals of R is
a nilideal, the greatest two-sided nilideal of R.

K(R) is called the upper nilradical or the Kethe radical,
as by the way all the other radicals involved here is a
torsion (see 5.15); i.e.

a) There is no non-zero two-sided nilideals in R/K(R)
or, equivalently, K(R/K(R))=0;

b) £(K(R))< K(£f(R)) for any ring morphism

c) Ko ) =k NK(R) for any two-sided ideal o
of R.

Proposition. Left radical of an arbitrary associative

""""" [a Ve Ule W Wive N V. Yo " Ve We Ule g W NN

ring is contained in its upper nilradical.
P RN e Ve i 0 Ve e T ) e T T e e Wiie e

Proof. Obviously, it suffices to show that PQO‘{eR(K(R))=K(R7

- = .

for any R. Let be a two-sided ideal of R. There exists
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a natural isomorphism tz/z\de(R/,()Q:, zadea("()/a( :

which follows from the bj ectivity  of the map Vj @ )—»
""sPe(’—eR/g( ,ﬂe—»’/ﬂa,(l’roposition 5.9). Therefore ['Lao(ep(o()—_-
=« Jep (%4, (R4 )=0) and,in particular, %ad ?(K(R)k K(R)
iiand only if R/K(R) is ’zc/x\o(e -semisimple. Since
'Zaa(e and K are hereditary ' with respect to two-
sided ideals and  in particular, e&‘de(RkRn'za\ol{(R‘“), K(R)=

= RDK(R“‘), we can(and will)assume that R is with unit. |
Thus, we should show that the ring with unit R=R/K(R) is

tgdzsemisimple. The following fact takes place (16, Theorem
6.1.1.):

fen R'I+1 12 gemtotmpie.

™~
Since 'zao(e < T, " this theorem implies that
o™

N\ (and
'Zade(R['t"ﬂ=O, where as above, R = R/K(R) .

Now notice that the natural embedding R < R[f"&
is a central extension (9 , Example 3) andﬂ:herefore) the

map M (.-—5/13 N R is a morphism from

Ig’ R Ct'} into ‘]:; R 5 and,in particular’ the correspond-~

~
ence M > M NR sends SPQQ€ R[] into
SPQ\QQR . Therefore ’Za\o(e(E)c E N Qa\d{ (§[t3)=0. g
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4, Left radical and Levitzky's radical. Let us perform

the last step. Pass from the estimate o&L(R)C V'G\O(Q(R-)C
c K(R) to the equality f‘a\de(R)L‘ L (R).
The arguments of the preceding section hint how to perform
this.

Consider the polynomial ring R = R[t;,t,,t ,.Jin
infinitely many non-commuting variables.

1y
Lemma. If R has no non-zero local nilpotent 1deals
- —— - ~ \/\/\/\/\/\M AN e

then Re h2s 1o piontzero nil-ideals, L. K(Rwy=0.

Fintte
Proof. Denote by /VS the set of,\order'ed sets of

positive integers; for every J ={i;,..,(k }6/\/& denote ‘t[’:.,.'f[k
by 3 Suppose K(Rw)#o and leta_éaJtU be a non-zero element

of KRy)(here E is a finite subset of A ). First of all

let us show that the subring of R generated by {Q3 (7€ E}

is nilpotent.

In fact, by hypothesis, x(z aj't) is a nilpotent

element of R oo for every xGRoo . For x take T kq
where ko is the index not encountered among the elements
of J, JEE; i.e. consider Z q3fk 17 instead of 2 a; tJ,
JEE JeE
Then the VY-th power of 3> qd‘fh tJ vanishes for some V2> 1.
v JGE ) -
Since (Z aJ'tkt:T) az; ... g, tkf ’f,‘, ‘tk't” then
\) (31,11 9 v)g EX.\ E
(Za th t3) if and only if C(:r e -0 for all (I,_,. LIp)E Ex. xE,

Now let us show that the left ideal generated by
{03‘36 E']I is locally nilpotent. In other words, we should
o%
show that for any set {8 ‘seE} of elements,R the subring gene-
rated by {aa,ejaﬁ]_ejés nilpotent.

Select positive integers ko7k3,16 E, so as all ‘QJ
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were different among themselves and different from ko7and
neither ko nor any of k:x is encountered among the in-

/ . .
dices of the sets J for J'eEe . Consider the linear

form tk+ PR eUth . By hypothesis §-=(fh;*Z gjtk )(Z a]t:r)
° JEE 3 JeE 37 Jee
is an element of H(Rm) . As we have Jjust shown,this implies

that the set of coefficients of the polynomial

§ =35 q .ty tI+ = é.a.t, t’
JTEE 3tko (3,3,)EExE I kji

generates a nilpotent subring in R. Obviously’ if a set of
elements of R generates a nilpotent subring) then so does
any its subset, in particular, {Qj, é5a, '3€E’E' a
Proposition. V‘/r;o(e (RY=L(R). *W R.
Proof. Since we have already established that L(ROc V"a"le(R),
it only suffices to verify inverse inclusion. Taking the
quotient of R modulo &(R) .wilekf;;r?oposition 5.9, we
reducelthe desired statement to tﬁé following one:
If R has no non-zero locally nilpotent ideals, then
T‘é\\de(R): 0. |
Proof of this fact follows the scenario of the proof
of Proposition 3 with Rlf]being replaced by R = Rty ts,... 1.
The natural embedding R <> Roo is a central ex-
tension and,therefore, the map M= MNR sends the
ideals from Sp/e\czRoo into the ideals from SF/ECCR ]
Therefore V‘/(;O(e RYc RN V‘/a\de (R oo) . But '?ét\o(e (Qw)c I{(QD‘)
by Proposition 3 and,as the above lemma claims, K(Rw3=0

if £(R)=0; and therefore Y‘Qde(R):o_ O
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Corollary. For any associative ring R the set SPQC R
—————— [ 5 Y W N N\ R Ul e e W W W O VO e g g

(of the points of the base space of the affine (quasi)
AN NANANANAN NN NN AN U AT

scheme of R) consists of all the primary ideals P such that
NN AN [ Y e Ve W

I Ve Ve Ve [0 % Ve S N N - N \.r\i/\/\.
R/ has no non-zero local nllpotent ideals.
P MINANNANNAANAANNANS AN

Proof. By Proposition 5.9 Padz(Q/P)—mﬂle(P)/‘) .
If R/p has no non-zero local nilpotent ideals,then rﬁo(e (Q/P):
= g@(g/p): O and,therefore, r‘ac!e(p’)= P . The latter
equality is the definition of membership p € SP?Q R, . Con-
versely, if pg SP—QE R, then x(R/p"):V‘/a\O({(Q/P\)Zv‘adC(P on.ﬂ

Now it is the high time to compare the left geometry
with the right one. First of all, r&\ol (R)=£(R)=Y‘20( (R)
for any associative ring R, where r‘ao( (R} ﬂ{plpe SPQCPR}
and SPQC R is the obviously deflned right spectrum of R;
in partlcular, r‘ao( (0(3 r‘ao{ (o() for any two-sided
ideal 93 in R.

This (or Corollaries of Proposition 4) make it clear
that SEFCCRZ SPQ—C’V‘R Therefore the difference between
left and right (quasi)schemes manifests itself in the struc-
tural sheaves, the base spaces are the same.

The corollary of Proposition 4 suggests to call the space
gfg?ceR:Sf;EE, R nameless so far the Levitzky spectrum
of R.

Finally, we notice with satisfaction that Y‘/(;ale—re—
duced left schemes =-- the first pretenders for the role of
non-commutative (left) algebraic varieties--are the left
schemes (X ,67 such that for every x€ X the stalk

, 1y . .
@x of (@ at %« has no non-zero 1ocal/\);111potent ideals.
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§ 2. Coherent sheaves and locally trivial bundles.

In this Section R is an associative ring with unit, and
all the modules are unitary.

1. Categories {F¥Y® . Localizations of projective

modules. Pix a radical filter J and denote by {Flg a full
subcategory of R-mod formed by all the R-modules M such that
the canonical morpl.zism XZ: GrgR ®RM _— Gr?.M is
an isomorphism.

Eroposition. 1) Gemsider the following oomditions:

a) there exism ¢ %vmm

NN NN NN N
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P onto M such that C’rH-'LP is an epimorphism;

AT N AT
f) for any R-module epimorphism Y M— M the
AANAANANANAN AN ANANANNALAN lava
e Oy ¢ feeinerehion
¢) the canonical arro ' : . M
is epimorphism;
AN NN AN

d) M belongs to the category {’}Jﬁg
AN NN A A AN

These conditions are related as follows:
NN NN N NN N M AT A A N T S TN

D ) )& d),

If M is finitely generated then a), $) and c) are equi-

valent.
Pa®2"aa "

If M is finitely presentable then all the four conditions
INNNANNANANNNSNNNNANANANNNANT NN NN ANANANN AN

are equivalent.
ANNANAINAN A

;\g F is a filter of finite type then a)-d) are
N\N\M/\/\NVV\N\/\NVWV\/\N\’

equivalent for an arbitrary R-module M.
AN INNANNANANNNNANNANCNNN- AN

2) {Trﬂ is closed with respect to finite (and if F
@ [ g Y Ve W W e U e VoW W e W We W Be Y Y Y a W U S

is a filter of finite type then with respect to arbitrary)
IINNNANNANANNNANNANACANANANNNAAAUNNUT AN AN LN AAANNN AN

coproducts and with any module contains all its retracts
AN ANV NN

(a mp V=>M is a refraction if there exists

PNW ANNANANANSANNANT NN AN
M —>V  such that Foo(:-(AO(M ).

e S e e Ut ¥
3) {9'-15 ® contains all the projective modules of
ANNNANANNN N AN N NN NN

finite type. If T is of finite type then {3:2_[9 con-
INANANNANASAN NANNANUNNNANNNAANAANANANAN ravVa
tains all the projective modules.
ONANNNANNNNNANNNANANANUND T

Proof. 1) Clearly, b) = a) and d4d)=p» c).

a) == b). Let P— M be a morphism spoken about

in a), @ AN —>»> M and arbitrary R-module epimorphism.

Since P is projective, ‘(triangle thee  exists a Commuvavl‘i(fsl

P
e N
W._E___*,M
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‘ Since GT g (P = (‘)rg-‘:()c GTEF X the epimorphicy
of G’I?‘F implies that of Gy Y’ .
¢) ==» b). Let Y: A/ —3>M be an epimorphism. Then
in the commuting diagram
Crp ¢
R
the diagonal is epimorphism thanks to the epimorphicy of

G?RQRM —)%M. Therefore 673:‘9) is also epimorphism.

b) ==—> c¢) for a finitely generated M. In fact, in
this case there exists an epimorphism of a free module R(I)
of finite rank (i.e. QCI) is the direct sum of I

copies of R where Canol(T) <2 ) onto M. Since Gr
)
commutes with finite coproducts, G'Ig: R @ RG)N(& R)(

Therefore in the commuting diagram
Gig RET) = Grg M
ST / T

1)
GreR ®R R> — > GigR ®RM

the diagonal is also epimorphism (this time thanks to the
epimorphicy of the upper and left arrows) and therefore the
right arrow is epimorphic.

c) == d) for a finitely presentable M. By definition

there exists an exact sequence

R@) 5 pOd_5 m—o0

RCZ)

where and R T) are free modules of

finite rank. Thus we have a commuting diagram
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CrgR By G RT) 5 Gig

ST J| T Xz o

: &) (T) -
CigR &R Gy RE R (R & M—0

with exact horizontal rows and two isomorphic vertical arrows.
This clearly implies the monomorphicy of 2;2:.

If F is a filter of finite type then ChGF
commutes with arbitrary coproducts. Therefore for an arbit-
rary R-module M we can draw diagram (1) with infinite, in
general, sets I and & in which the two left vertical arrows
are isomorphisms as earlier. This implies the monomorphicy
XZ;: GCFR®RM ——3(716‘./\4 . Now the equivalence of the con-
ditions a)-d) is obvious.

2) The closedness of {95'%® with respect to finite
(or arbitrary if F is a filter of finite type) coproducts
follows from the fact that Cng: commutes with finite (resp.
arbitrary) coproducts. Clearly if ©€ ¢ M m is a
retraction then in the commuting diagram (‘C e R = Ed;4.)

g M52, 6 M BT s, G !
Z'z\f T / T%W T X/\f/
GrgRB Mbh—p C’l?R®RM-——’>>GT?R®RM’

ei is monomorphism and e, is epimorphism. The mono-
morphicy of e, implies the monomorphicy of ﬁgw,
and the epimorphicy of e, implies the epimorphicy of XM'-

3) follows from 2) and the fact that R belongs to {FJ g
which we have already used during the proof. O
During these simple arguments we have established two

facts deserving to be mentioned specially (see implication

c)::i)d»:
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1) if M is finitely presentable, then for any radical
fitter F the canonical morphism X;}:‘Z Gyg:R®RM—)
--)C,,S.M is monomorphism;

2) if a radical filter F is of finite type, then

%i is monomorphism for any M.

These facts imply

Corollary. Let §  be a radical filter and M an R-
(Y%

----- TN T NN

module.
NN
. ! s - s '
DI g MM T o Ropdule roponorpnian At M
i ini is also mono-
le finitely presentable then 1g, p &, ¢ s 2lso mong
morphism.
NN N

2) If ¥ is of finite type then stcR is a
N\ AN NN TN

flat right R-module.
NN e NN

Proof. In fact, let (.e: M'— M be an R-module
monomorphism. Consider the‘vcommuting diagram

Cr «
¥ 2)
{
Cr g R®, M > GryR @M

Since GTSF is left exact, Cna_-cf 1s monomorphism.
If M' is finitely presentable or F is of finite type,
. F
then 7(2:, is monomorphism. The monomorphicy of XM'
and C"g‘ (() and the commutativity of (2) implies the
i &
monomorphicy of LG,&_R R(f’. |

2. Local and global properties of finiteness. For any

family T of radical filters denote by T® the
intersection of the categories {?}@ ’ Fc T’ and by
e a
ngpl the full subcategory of the category of left R-

modules formed by the modules M such that X/\:::G'?R%M-—}
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_ G'S"M is epimorphism for F € T

Proposition. Let T be a finite family of radical
NN

Py ’\,\_\\'\,\’\,’\_\,\,—\\,’\ A AL T

filters of left ideals of R such that

N N N N O T el
n{?(?é T‘ﬁ = SLR} and M a left R-module,

1) Suppose every C’fg:'M Fe T; is a Gr R -

P Y e Vi Ve W Ve Y a Wa
module of finite type and one of the follow:Lng condltlons
AN

AN U W e VS NN N N PN S W SO e

holds:

N N N

(i) All the filters of N are of finite type;
AN A NN AN AN NN
T epd
® °

Then M is an R-module of finite type.
ANA AN N NNANANNNANANNNANANAS

(ii) M belongs to
NNANANAAN-

2). If ME O@ T@ then M is a finitely present-
e~ LAY % AN AN AN

able module if and only if G1 R -module 673: M
ANNNANN

0 2 S T e N e e W Wi W

is finitely presentable for every 3’6 T
ANANANNNANA LN AN

NANANNANS

submodules M such that U{/V;X ey =M.,

Proof. 1) Let {/Vo(’“E @(} be an ordered family of

(i) If all the filters of T are of finite type
then by 2, Gy M= U{G gty lx € acdl
for every F of T . Since Grg: M is a

CT?P\ - module of finite type then (373_. M=
= GTSF A/‘,(,; for some o(,}_e (¢ . Making use of the finite-
ness of T we can choose X, € O{ that majorizes
all g, FE€T . Then Croe M= G’g' /‘/0(9 for all
Fe T . The identity n{ylf}'e T’S: {R}
and Theorem 4.1 immediately imply - that /\/o(o =
(which is also easy to prove directly).

(ii) Now suppose that (ii) holds and (,P is an
epimorphism of a free R-module R(I) onto M. Present R(r)

as the union of andirected family {i“ l X € 0{73 of
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free submodules of finite ring. Let A/, = Cp(xd) be
the image of i‘* in M for any x € B¢ . Fix Fe T
‘ - (> ; , T .
Since ((;13.[2> :U{G(S_-Ija([decf-‘(?) and Q(M is
an epimorphism by hypothesis G;TM:U{GIS:(P(O:?id)[o(EO{}’
Since C’TF M is a G]S_-R -module of finite type
there exists g€ G( such that GT?‘FIC’TS:IO(&— is an
epimorphism. And so it is for any F € § . Choose some 4
majorizing all o(g_- and denote by (KOO(o the restric-
tion of the epimorphism (F onto oﬁo( .

(-]

The epimorphicy of G1$ (Po(o in the commuting diagram
G o " Gg Ny,
? o(O % L
Grg M

implies the epimorphicy and hence isomorphicy of the embedding
—> =

Grg-' /V;(o Grg_-M . Therefore G[TA/;(o GGIM for any

5'_€ T and therefore (see the last sentence of the head-

i i f f = i.e.

ing (i) of the proof) M /\/‘0(0 i.e (Po(o

is epimorphism.

2.1) Clearly, the finite presentability of an R-module

M and the fact that M belongs to {‘}' ?} ® imply the

finite presentability of the G?R -module Grg: M.
2.2) Now let M be a module of U_® such that

every Gr&_R -module C"(F M is finitely presentable.

This in particular implies as we have just proved that M is

a module of finite type, i.e. there exists an exact sequence
0O— K — X -—i—> M — o

where SC is a free R-module of finite rank.



- 302 -

Recall the following fact (see [3]) Ch.I, 2, No.8,
Lemma 9).
If A is a ring and E a finitely presentable A-module

then for any exact sequence

O—F —>>0CG >E—oO0

where G is a module of finite type, the module F is also of
finite type.
In particular, the exactness of the sequences
0— C’rg:-m _ G(g:'x "E’rig;)C’T&-M'_) O
yields that the Cy;;R -module (JT?H: is of finite
type for any FE€ T . The exactness of the horizontal

line in the commuting diagram
c.,:_,keoRK ————)GrSTR@RgC—eG,&_RQéM—» 0
x¥ \G[ { N )
yields the epimorphicy of Xi ‘ GI?R®RR—-> GTS: K,
Therefore 1), (ii) of the proved statement implies that the

R-module X is of finite type as required. O



3. Discussion. Therefore, the notions of the finite-
ness of type and of finite representability of modules are
invariant with respect to Gabriel functors G‘-,}_ (when
modules belong to {F¥g ) and "local". By
of language these notions are “geometric',' since without
any obstructions could be extended onto (semi)schemes.

Is it possible to say the same on projective modules of
finite type? More exactly, our question runs as follows:

Let J be a finite set of radical filters such
that N{FIFeT i ={rY, M an R-module of finite
type from (‘TQ and G,-?M a projective Gfg.R—module
for every FeJ . Is M a projective R-module?

Conjecture. In general, the answer is negative even

if J  consists of radical filters of the form

qfve‘(d;) = n{g'_p \ PEUAC‘X)‘S , X EIR.

As we will presently see the answer is positive if
we confine ourselves to the modules that we will call
normal ones.

4. Normal modules. Let E_—.{gt |teTy ©be a set of

elements of an R-module M , @ ={Q; |ie T} a set of ele-
the set {reR| ?:qzwe:-_-.o’}
ments of R. Denote éy RG s . 1t is easy to verify that
2
-~ % is subring R.
Rq"} a g

Definitions. 1) A subring A of R will be called left

—————— NN/
r)\o/r\rﬂefl\ if Sup{Aﬂm;\teIk:A for any family {m(HEI}
of left ideals of R such that S“P'{m;\ieﬂ;: R (see Example
3.2|"’)-
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2) A set of generators ¥ ={%5.1i€I3} of a module

M will be called normal if for any set a={a;|(€ I}
A~
with finite support such that Z'GI a. $;,=0 the
L .
subring Rag is left normal.
?
3) A module M is called normal if it possesses a

AN

normal set of generators. O faeR [a} € Ra ”§

Example. For every element « € R denote by uR the set F—/
Clearly, R is a subring of R. If N{, R|Z€ T}
i

is a left normal subring for any finite subset {Q; e I]j,
then any family of generators of an arbitrary module is
normal, as is easy to verify. O

This example shows that over the rings that possess
some properties of "generalized commutativity" all the
modules are normal., The following example is much more
essential for us and,therefore,deserves specials,'\“sgction.

5. Symmetric modules and Artin submodules. Let N be

an (R, R)-bimodule. The centre ZR(Af) of N is by defini-
tion the set {oc eM|xd=xx for every A€ R’] . A bimodule M
is called an Artin bimodule (in honour of M. Artin) 1f it
is generated as a one-sided module by its centre. Clearly,
R is an Artin bimodule. The category GER of Artin
R-bimodules is closed with respect to coproducts. In parti-
cular, it contains 4ree bimodules =-- direct sums of several
copies of R.

A set of generators ‘; = {%l {ceI} of an R-module M
is symmetric, if 2 a,A$§.=0 for every set a-= {a”[e‘['lxc

AN AN CET ¢

c R with finite support such that Z2_ a(~§(.-: o, Ahcl

ler
for all A € R; i.e. Rz 3 =R . A module M
’ -
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is symmetric if it possesses a symmetric family of
NN
generators.
Therefore all the symmetric modules are normal. Denote by

reg the functor from the category of (R,R)—bimodules

into R - mod forgetting the right R-
action.

Proposition. The following conditions on a left R-
- - - - = = fa W W N il T P W N W N N U e (e U e e N
module M are equivalent.
~N (0.2 e N e e e 2
~ ~
1) M=res, M for an Artin bimodule M;
2) M is symmetric

. . . T
3) there exists an epimorphism of a free module Q( )
I e i e N e e N W W e U e W s U W U o W

RCI)

onto M whose kernel is a subbimodule of the bimodule
g LSV T W e Wt il T Pan e B N e e W o U W WV e Ve Ve

—_—

Proof. 1) = 2). Let M be an Artin R-bimodule, §

a family of generators of the 3 (R)-module ZR(M) .

Clearly, } is a symmetric family of generators of the
left module res, M,
. = A< i f i
2) => 3). Let % {_‘SL‘(G I'k ()be a symmetric family
T . .
of generators of R-module M; (f?? R*>> M an epimorphism
sending an element €. of the canonical basis of the

R(I)

free module into '}2 y and K:i- the kernel of (f’g
Due to symmetricity of E-_— {‘g; |Ce1‘73 we have

[:ZGIO.;QEE Ks ]@f‘_ZQIY‘e;E K? for any r€ R\,

This exactly means that 5 is a subbimodule of R(I)
(we denote by the same symbol a free bimodule and its image
with respect to the forgetting functor ré%,_).

3) =» 1). Follows immediately from the following

fact: if M —> M’ 1is a bimodule epimorphism and M
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an Artin bimodule, then so is M'. O

6. Flat and locally flat normal modules. Let

E:{'gt [t€ Ty be a family of elements R-module M , c{)?—
the morphism from R(n into M sending the element €;
of the canonical basis into % , and K‘g the
kernel of kf)g . For any u ~%CLQ e R(I) denote by

Kg u the set of elements of the form Zczi.v‘\e.~ re R,
2

o 7
i ¢

belonging to I{g .

Proposition. 1) If M is a flat R-module F a
- =T - - = = AN NN s

~ ?

NN NN

radical filter and MEO@{G’}g , then CygmM is

a flat C)'SFR -module.

[ S Ve ¥

2) L’{%‘, 9 be a family of radical filters such that
{ NN NN AN

D{TITE TY= {R} M a _module from Tgp‘ such
A Y ava e
that

Gr(F M. is a flat Gr}-R -module for any F € T;
NNNNANS [ T e e W Ve Ve

b) there is a normal family of generators $={%,| e'[}

NNANANANNANNANANNNNANNANANANNNNN

in M such that for every element u=2_a.e. from K = the
~ AN AN AN AN ¢ CU A~ ? V2% %

set Kz . is contained in a finitely generated submodule
~ ?.,u P S e 2 YO U N NN U e NN NN

of K:g.
Then M is a flat R-module.
AN Ve Y Ve e e Vel NN

Ergof. 1) This is a particular case of the well
known (see e.g. [ 3]}, Ch.1,62, No.7, Corollary 2) and
very easy to verify fact:

If M is a flat R-module and R — A a morphism
of rings with unit then A ®RM is a flat A-module.

2) As the main tool in the proof of this statement

we will make use of the following
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Proposition. (Villamayor). }31\: A be a ring and
- = - - = = [ S e W W e e

0—>K —>L —>N— 0

an exact sequence of left A-modules, where & is free.
[0 50 " Y Vo W WiV e Wl e e Vi P Ve U Vo e Y V0.5 Y T Ve e N

Then the following statements are equivalent:
NN NNN NN

-

a) N is a $1at medute ,

b) For any u € KK there exists an A-module morphism
AN AN ANN A AN NN

0: L —> K  such that 6(ul=u.

c) For any U, ,..., U there exists a morphism
ANAANAANA n AAANANANANNANANANANAANANANS
6: L — A such that  B(ug)=uU;  for (=1,..,R.

Proof see in [2], v.I, Ch.11, No.27. 0O
Let an R-module N satisfying the conditions of heading
2). We will show that for an arbitrary U = %CI; e,
there exists a morphism 6&: R(n—) K‘; such that O(u)=Uu,
G‘-?r_ R is a submodule of G?(R(I)> for any radical
filter F i.e. Z(Z-(I) is a monomorphism. If ;(M

is an epimorphism,then,as is clear from the commuting

diagram with exact horizontal lines

(™
Gy R @K — GgRP— Grg k@, M—>0

[
243

0 —>Crgk —>Gig(RM) —— Gz M,

the restriction G,»&,..tei onto 6(3_. R (D is an epimor-

phism and, therefore,K the sequence

0 — G KN G?R(I)—% G@R (ﬂ-.———) GgM— ©

is exact. (Notice that GriFK N GrstR(I) is the image
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¥ g .
of X K) . Let K, be a finitely generated submodule

of K 'g containing K? u . By Villamayor cri-
?
terion ()& e) ) there exists an Cng:R -module morphism
@ .
6 Gn}—R =G, Kn(:qg_. D eor every FE€ T such that j(u')=

(and,in particular, for all

:GT(}?(u')) for all u'€ K

u'e K 'g ,u ). Here j,; = j,}., R (D) is the canonical
morphism R (I — &?(R(n) . Set }u={:el‘la‘.#o}. The
morphism 6? (as any other morphism from Gr.}- R(I))

is uniquely determined by its values on the natural basis

~ . F ~
{ezzigr(e?ﬁtEI and we may assume that U; = GTCE;) ’

when [¢ Ju - Since }u is finite there exists

an ideal mg_G T such that every l);,c‘r is the image
o~

of a (uniquely determined) U’.g_EHomR(m? , FL) with
¢

respect to the coprojection m 1 . The
P proj HomR( ¢ TK)> GgK
equality 6 (j?(u«)):jscu') means exactly that the morphism 6$(j3__(u'))—_-
T . ~ —— . ~ 3

= Z@ v from (m :{86; jlggu'}) ——n{(m : 0. )l“JJ in FLRK
sends every x into - CPT(‘M )= Zx@ @T(e ),
where (p (PR(I) is the canonlcal morphlsm
R(t) 3 q_‘A_R(I')

(ii). For better understanding we first complete the
proof in a simplified situation. Namely, suppose that K
is an F -torsion free module for all Fe€J (e.g. R
is a left F -torsion free module for all F ¢ T),
Since ﬂ{'}‘[g‘e ‘TR:{R}, then SMP{m,&,IL’FGT'}z Rj
and since R is a ring with unit then S“P'{""(;‘TG T'r=R
for a finite subset T'c T. Thanks to the normality of the

set of generators E:{% ][EI”‘I the subring R~§=
{;\\za A%, =0%= {MZQ Ae: e Ky



- 309 -

is left normal. In particular, Sup {ms._,nga,§‘g-€ ’I’}: R&,? ,

or, equivalently, for every Fe T/ there exists )?G

Cm NR. - such that = _Az=4 . Now set Uj =
a,y Fe T! ‘
= Z >F(a ), and let © be the map RCI)-—s K
Fe T/ ¢ ¥
sending 2 @.e; into X @ 6.U: .
ier JE€3u 4
The morphism © preserves wu = 32 Q; €.:,
. ey ) .
since {‘Z CI‘-»Ag;e:ISFGT BCK?,M and (”’y'{a;l}-"é Ful)=
= R , and, therefore |
= _ o ¥
6(za;e)=2a;u; —Z 'Za g =2 e 2 (225 ) ()=
=2 Za;lze; ——Za (ZA3:76~ ——Za e;

FeT! ¢
(iii) General case. Flrst of all, embed 3-1({ into

H. K= e‘w\ Hom 5 (m, ). For every € M_ there exists
I LT F

an ideal '))Tg F such that z?@c) is the image of

P -\
an R-module morphism U’C?(x,)«): Vf-ﬁf{, 2 v‘:gr(x,z .

T ¥
Clearly, V¥ = >_ YV, X is an ideal from To{mgr}
. X EM
and therefore V?E F . The following copies of impli-

cations of step (ii) take place:
[N{FIFeTY={rYI=> [sup{vFIFe T/'1=R
for a finite subset J'c T] = [ there exists )\3_67}?{)

- ‘ -
OR“§,'}'€T such that % - ,}_ 1] . Every Aqg

represents (in general non-uniquely) in the form 2 \\/’r %
xem
F

where }/"TEV and Caro({x\y,x:#o”ﬁ<°°. Set

o= Z 2 ()’» (x, _y D) and let 0 be the map
¢ FeT' x€ m.}-
RO __, KK assigning to every 2 §; €. the

element ng . of K. The verification of the equality
i€
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O(uw)=u is performed in approximately the same way as
in the particular case considered in (ii). The details
are left to the reader. D

Corollary 1. (of the proof). }31: T W

radical filters such that N{FIFeT}={R} anan

a normal module from T SP¢ . If the (r_R -module
Grg M lgprojective for every FeT, then M i flat.

Proof. Select a normal system of generators §={gc [ce I}
of M and the corresponding to this system exact sequences
similar to the considerations of step (i) of the proof of
Proposition: -

0— K‘; —> RV

¥
oO—> G?Kgn G(EFR(I‘)-——?—?G? R(I)__> G"}_M — 0

Since ng:R ~-modules G;g_.M are projective fov FE€ T,
there are morphisms O G R (I such
that ue';"bf‘?: fo( . Now we can repeat the arguments of
the main part of the proof word for word. O

A module M will be called finitely connected if there

exists an exact sequence

O—->K—>L—>M—0

where £ is free and K is finitely generated.
Eergagk_. Unfortunately, this term nice per se is

one more homonym. For instance, in [ 271 by finitely

connected and finitely representable modules the same

thing is denoted. O

Corollary 2. Let T be a family of radical filters
- — - - N FaVa VeV N e U Ve T S eV e Ve W VI T
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h that = ad M finitel ted
such that N{ % $e Ty ={Ry 2nd M 2 finitely comected

normal R-module. Consider the following properties:
[ Y Vo s I S e W N O e W N N i e, e P

1) M is projective;
(2 T W WP N W, W
e -~
2) M is projective and belongs to %P‘3
[ Y 0 ¥ Ve We W e W We Uia W e Ve VU W a Vel
ep’ .
M belongs to and is a flat -

module for every F& T .
NS

The following implications hold: 1) é:_—_ 2)e=—> 3)
/\/\/\./\/\/\/\_g/\_/\g\/\, U A U >

fI\{‘ M is a module of finite type and all the filters
[ e N N N N N U W N N L W N

by ini 1 2).
e T azeof finite type,then V) <& 2)

Proof. 2) —=» 1) is trivial.

2) —=> 3). Every projective module is flat as is
known. Therefore it suffices to show that the projectivity
of M and its membership to {?F'_'}gt imply the flatness of
the Gfg:R -module Gr?M,

Let (P be the epimorphism of a free R-module R(I)
onto M., | and 0: M — R its right

inverses VAR :-.[o(M . Consider the commuting (thanks to

the functorial property of 7(?: ) diagram
Gy (RD) «2F0 (o
F F
: X
(1) XR@T o osFRE I %
(Jlgn z'GIgR®RQI <———Gr3-R®RM
We see that since X?

M
of Grg_.e is contained in the free submodule Gr?-

is an epimorphism, the image
RCI)
of G‘,J(Q(I)) (we identify GT?RCI) with its image in G;:F(R(r))).
Therefore G'g_-M is the ntvaqt of a free GryR-module.
3) => 2). It is known([ 2], v.1, ch.11, No.30)
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that any finitely connected flat module is projective (this
is a direct corollary of the Villiamayor criterion). Since
Me 08 GE;P:, then the finite connectivtgy‘ of the R-module
M implies that of the G.g__Q_ modules Grg.M for all
Fe T . Since by hypothesis Grg-_/\/l_ are flat, they
are projective and it remains to make use of Corollary 1.

The last statement follows from Proposition 1.0

7. Characterizations of normal projective modules of

finite type. Actually we continue the list of corollaries
started in the preceding section.

Proposition. Let M be a normal R-module. The following
el v NN AN I Y Y Ve A Y Ve T W

VY 0

properties are equivalent:
NN AN AL A NN

1) M is a projective module of finite type.
/\/\/\/\/\/\/V\/\/\/\/\/'\/\/\/\/NW\N\/

2) M is a finitely representable module and there
A YA YA VA Ve Ve W W o W e W eV e U W e S VN S

exists a family of radical filters Q. such that
N{Ylage QY= {rY 20d the CreyR- module

C"‘QAM is flat for all %YeQQ
AN ” ’
3) There exist families of radical filters g?
10 % Y T W NN N A U L WL U U U e U e O

and T such that N{Y(YeQRY={R1=N{FIFe T},
the fanily T i finite, MeE 08(TUQ)S

the CF;R,—module Ck3;A1 is finitely representable

[ 4% g Vg e WP [ Y W U W 1 Vo e \ile e W Urg o
for_ every ¥€ T and the  GrgR -module CGrgm ig Dat

for every ‘4ele.

4) There exists a finite family T " of radical
I S S Vo Ve Ve 1 T Vg Wan e Wl e W A Y Ve U V)

rilters such that N{¥|Fe Ty ={RY, me 06 T 7

I Y Vo Vg W

and the  GrgR-module GrgM i Rrojective for

svery  FeT,
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Proof. 1) = 2). It is known ([3], Ch.1, § 2,
No.8, Lemma 8) and easy to verify that any projective
module of finite type is finitely representable. By
Proposition 1,if M is a projective module of finite type,
then MGOQ{EF]S@ and G‘ng is projective (and,there-
fore, flat) C’rg-R -module for any radical filter.

2) = 3). Take T = {{R1},

1) = 4). Similarly.

4) = 3). Obviously.

3) —> 1). By Proposition 2 applied to M and T

we deduce that M is a finitely representable R-module.
It follows from Proposition 6 that M is a flat R-module.
As had been noted above,K this implies the projectivity of
M. 0

corollary 1. The folloving properties of the nommal

eps
2) M bel to th bcat
) M heRones fo b swbearegery { Fu [ e Max R

wlhe  Gg R -modde Gy M is fat for svery

There exists a finite set T of radical filters such

[a Ve e We WWa W Wa S W\ e AN A A AN
epc _ . .

that M€ 0Tg" and the GypR -module GgM  is finitely

reRzeentabls oer svery ¥eq.

Proof. The statements of corollary differ from the
corresponding statements of the Proposition (1) and 3))
only by specification of G . Therefore we are only to

verify the triviality of the intersection ﬂ{‘}‘ﬂ \J‘A eMaKeRB.
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By definition [ve ﬂ{ /ME: /Vlcu RY 1@{ Ve pm
for any M € Max, Q} . This 1mpllcat10n can be extended:
:7[))9{_/4,( for every/uGM«x’eR._]_Since R is a ring with unit,
there is only one left ideal which does not belong to any

maximal left ideal: R itself. QO

Corollary 2. Let M be a normal R-module. Suppose there
- = o~ f\/\/‘\/\/’\/\a NN TN

exists a subset XC-S\OPt such that ﬂ{{}' lpeXi={RY;

AN

then the follow:mg conditions are equivalent:
A e S R T P g U B Y T e e N P e

1) M is a projective module of finite type,
[ S\ N g

2) G'&—PM is a flat G(S.PR -module and for any peX |
[ Y N e N N e N

1 YV Y Sl g

there exists a finite family T of radical filters
e e Wi W W W e W \Ia W W e W Ve e \Pa RN AN NN

h : i @ =4 1 fini -
such that MOIQeTiRand GrgM s a finitely represent
able Gr,, R -module for every € € T.
[ Ya e ed NN NN NN

Proof. By definition SP@;(R consists of the points P
of the left spectrum such that {3—‘_, '138,: R- moo{ . There-
fore we are under the conditions of Proposition with

= {s.p \PG—X)S- u

Corollary 3. Let R be a left hereditary ring. Then

[0 %0 Ve Y Wa Wg e W e Vo U e U e U a W U e U VaVaVa

the following properties of a normal R-module M are equi-
AN ANNANANANA AN AN AN AN AN

NN

valent:
N

1) M is a projective module of finite type.

R e e T Y e S AT Y

2YG.,. M is a flat Gt -module for any
There exists a final family T of radical filters
[a S0 0 S e e e U e O T U oW e e
such that (WF|FeTy={R} and the GrgR -moqule  GrgM

is finitely representable for every Fe T,
AN NN AN
3) There exists a finite family g of radical
ANANUNNNANUNNNNUN

AV VAV VAT U v

filters such that ﬂ{T\iFeTE {R"g i/n\c/i G‘Z-F M is a

[a AU Ve W U e A P i g
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projective module of finite type over G; for every Fe 7.

[ Y A T UV S W U W UL VA VW e Wa Ue Ve b [ 5 W Wi 2 2
Proof. If R is left hered1tary7 then {’}"3®: R- moo(

for every radical filter F (see 2.2, property 6)).

The implications 1) < 2) require less; it

suffices that {?/*‘ISQZ R-med for every M€ MaxeR .

The implications 1) €<= 13) follow from the heading 4)

of Proposition, O
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