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0.1. In a work with my student M. Bašić, we had some progress in a program
of finding a correct category of ’groups’ for integration of Leibniz algebras. In
this section, k is a field of characteristic zero, but many intermediate statements
allow for a commutative unital ring. A right (left) Leibniz k-algebra is an k-
module L with a k-bilinear product [, ] : L ⊗ L → L such that the operators
adrl = [ , l] (resp. adll = [l, ]) are derivations for all l ∈ L.

Here is a short outline of our attempt to integration of Leibniz k-algebras.

0.2. (Background on LP-categories) ([3, 4, 2, 1]) Given a category V, the
category of arrows ArrV is defined as follows: the objects of ArrV are mor-
phisms of V and the morphisms from V = (V1

fV→ V0) to W = (W1
fW→ W0)

are pairs α : V1 → W1, β : V0 → W0 making the obvious square commutative,
fW ◦ α = β ◦ fV . If V is a k-linear abelian symmetric monoidal category, we
can view objects of ArrV as two term (= length 1) chain complexes in ArrV,
concentrated always in fixed degrees, say 0 and 1. The tensor product of such
complexes given by (V ⊗ W )n = ⊕iVi ⊗ Wn−i (with obvious differential) is a
3-term chain complex concentrated in degrees 0, 1, 2. Loday and Pirashvili ob-
served that if one truncates this tensor product leaving out degree 2 term, one
still has nice tensor product for good V; ArrV with this ”infinitesimal” tensor
product is an abelian symmetric monoidal category, which we call LP-(tensor)
category, VLP (and when V is understood, we will just refer to this category
as LP). If V = k-Mod (and for some other closed V) this category is closed:
inner homs Hom(V ,W ) = (hom1(V ,W )

p→ hom(V ,W )) are constructed as
follows: hom1(V ,W ) is the subobject of HomV(V1,W1) ⊕ HomV(V0,W0) ⊕
HomV(V0,W1) whose underlying set is formed by formal triples α + β + β̃
where fW ◦ α = β ◦ fV and fW ◦ β̃ = β; the natural projection p is forgetting
the lift β̃ (p is neither epi nor mono in general). Similarly, (n + 1)-term chain
complexes with a truncated tensor product form a symmetric monoidal weak
n-category which we call generalized LP-category VLPn.

Lie algebras in the LP-category (k−Mod)LP are simply objects (M
f→ g)

in (k − Mod)LP where g is a k-Lie algebra, with a g-action on M which is

making (M
f→ g) g-equivariant. The category of (say, right) Leibniz k-algebras

canonically embeds into the category of Lie algebras in (k−Mod)LP by

(L, [, ]) 7→ (L
pr→ LLie), LLie := L/〈[l, l], l ∈ L〉,

where pr is the natural projection of L to the quotient Lie k-algebra L′ =
L/〈l2, l ∈ L〉; moreover (L

pr→ LLie) has a canonical structure of a Lie algebra in
(k−Mod)LP. On the other hand, if M → g is any Lie algebra in (k−Mod)LP

then M has a right Leibniz bracket given by the right action of g on M , namely
[m,m′]M := mf(m′).

Similarly, an object f : M → A has a structure of associative algebra in
LP if A is an associative k-algebra, M is an A-A-bimodule, and if f is a map
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of bimodules. The category of associative dialgebras is canonically embedded
as a full subcategory of the category of inner associative algebras in LP. In
every symmetric k-linear monoidal category, there is a functor from associative
to Lie algebras (bracket is given by [, ] = µ ◦ (id ◦ id − τ), where τ is the
symmetry and µ the multiplication). In k-Mod, this functor has a left adjoint:
the enveloping associative algebra of a Lie algebra in LP. Loday introduces the
notion of associative k-dialgebra as a k-module with two associative bilinear
products, left a, and right `, satisfying 3 additional identities involving both
products. The underlying k-module of an associative dialgebra D is a Leibniz
algebra with bracket

[d, d′] = d a d′ − d′ ` d.

This ’underlying Leibniz algebra’ functor has a left adjoint, the universal en-
veloping dialgebra of the Leibniz algebra. Finally, if we start with a Leibniz
algebra then we define its “envelope in LP” by first taking a universal envelop-
ing dialgebra and then consider this dialgebra as an associative algebras in LP;
or one can first embed the Leibniz algebras as Lie algebras in LP and then take
the enveloping algebra in LP; with isomorphic result. Other important construc-
tions are given: the (internal) symmetric algebra S(V ) and the (internal) tensor
algebra T (V ) generated by any object V = (V1 → V0) ∈ VLP . If k is a field of
characteristics zero then one has a PBW-theorem for Lie algebras in LP and a
version of Ado’s theorem. Namely, the inner end End(V ) = Hom(V , V ) is an
associative algebra in LP (by general nonsense on inner homs); one can therefore
form a Lie algebra in LP out of it. This internal Lie algebra is denoted gl(V ).
Ado’s theorem in LP ([2]) says that, if chark = 0, every Lie algebra M → g in
LP with finite dimensional M and g is an internal Lie subalgebra of gl(V ) for
V = (V1 → V0) with finite dimensional V0, V1; the proof uses the usual Ado’s
theorem (crucial in classical approaches to the proof of Lie-Cartan’s theorem on
the existence of a Lie group whose tangent Lie algebra is given).

0.3. We would like to construct a nice category generalizing Lie groups (or
algebraic groups) to integrate finite dimensional Lie algebras in LP-category
over k = R or C. As a Lie algebra in LP M → g is a usual Lie k-algebra g
with a g-equivariant map from a g-module M and a usual Lie algebra integrates
to a Lie group, one may target some category of Lie groups with an additional
structure, say involving a G-equivariant sheaf of O-modules M and a map
of O-modules M → O. But to get some feeling of what kind of sheaves and
integration should be involved we try first developing an algebraic group version.

0.3.1. First we consider the category AffLP,k of ”affine schemes in LP”, which is
simply the opposite to the category of commutative associative algebras in LP.
To have change of base, one needs to consider LP-categories over different bases
k; in particular over integers where one talks about commutative associative
LP-rings. The very definition of AffLP,k has built in the fact that the tensor
product in LP was used in defining the internal associative algebra. However,
the categorical coproduct of internal commutative algebras V → A, W → B, is
still formed using the usual V ⊗W → A ⊗ B, rather than infinitesimal tensor
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products of underlying objects; this implies a recipe for the fibered products in
the category of affine LP schemes. However, we are interested in noncategorical
fiber product which corresponds to the opposite of internal tensor product of
algebras in LP (hence infinitesimal tensor product of underlying objects).

0.3.2. Next one considers some notion of Zariski topology to glue affine schemes
in LP. The most sensible approach would be to take the Rosenberg’s spectrum
of abelian category of modules in LP over a commutative algebra in LP; for
Rosenberg spectrum there is a standard choice of Zariski topology. We however
so far considered only a weaker, naive topology: localization with respect to the
classical Zariski topology of the usual bottom algebra (if M → A is a commu-
tative algebra in LP, we consider the localizations of A, induced localization of
M → A, and its effect on the category of internal modules over M → A) . Then
we glue the schemes from affine schemes in this topology.

0.3.3. In the category of LP-schemes which we obtain, we can extend the fiber
product from AffLP,k as in the classical case: gluing the fiber products of affine
covers. This may be done for categorical fiber products as well as for the LP-
fiber products described above. LP-group schemes are the group objects in
the category of LP-schemes (in classical Zariski topology of bottom algebras)
with respect to the LP-product.

0.4. Affine examples of LP-group scheme may be constructed from any Hopf
algebra in LP (notice that the dualization changes the directions of arrows;
bad dualizations and nonprojective objects are often a trouble in this context).
Regarding that we know a Lie algebra gl(V ) in LP, we would like to have
also an LP-group scheme GL(V ) whenever V in LP. I have constructed a good
candidate for GL(V ) at IHÉS in 2007, and M.B. is studying this example now.
The construction is very simple and follows Manin’s approach to linear quantum
groups. One first constructs the inner end of the symmetric algebra S(V ) in LP
of V ; this inner end is a bialgebra in LP, which we denote O(M(V )); in suitable
basis this algebra is rather easy to construct very explicitly. Then one looks
for a Hopf envelope in LP; to this aim one introduces additional generators
forcing existence of the antipode (in LP sense), similarly to the construction
of general linear groups in various familiar categories. The new relations look
cubic, but case by case examination in a base shows that they actually cut out
an ideal in a linear way. The quotient is denoted O(GL(V )). However, the
structure of O(GL(V )) is relatively complicated and we still do not see exactly
the correspondence with gl(V ) at the tangent level.

0.5. Of course, to get to the tangent level one needs the theory of invariant
differential operators. For a general LP-scheme the study of regular differential
operators is in progress. We tried to understand the analogue of the Weyl
algebra, as presumably the local case first. It is not enough to consider the k-
derivations of an algebra A in LP: derivations form just a usual Lie k-algebra.
Instead, we consider the module of derivations of A as a k-submodule of the
inner end End(A), where we cut out the inner derivative submodule in LP in a
categorical way. In “components”, this is equivalent to the following definition.
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Definition. Let A = (M
f→ A) be an algebra in LP. A lower derivation

of A is a pair d = (dM , dA) of a k-linear maps dM : M → M , dA : A → A, with
f ◦ dM = dA ◦ f , such that dA is a derivation in the usual sense, dM (am) =
dA(a)m + adM (m), dM (ma) = mdA(a) + dM (m)a where (a ∈ A,m ∈ M), and
f ◦ dM = dA ◦ f . Lower derivations form a k-submodule Der0A of end(A) An
element b = (bM , bA, bφ) in the upper part end1(A) of the inner end End(A)
(cf. 0.2: this means that bM : M → M , bA : A → A, bφ : A → M , f ◦bM = bA◦f
and f ◦ bφ = bA) is the upper derivation if (bM , bA) is a lower derivation
and bφ ∈ Derk(A,M) (where M is understood as an A-bimodule). The upper
derivations make a k-submodule Der1A of hom1(A,A). The inner object of
derivations is DerA = (Der1A

p→ Der0A) where the natural projection is a
restriction of the natural projection in End(A) (hence it is neither injective nor
surjective in general).

DerA is naturally a Lie algebra object in LP. For A = S(V ) the projection
p is not injective (for general V ), and M. Bašić has determined ([1]) a basis
of DeriS(V ) for i = 0, 1; there are 6 combinatorially distinct types of upper
derivations and 4 distinct types of lower derivations. The inner Weyl alge-
bra in LP is the smallest inner subalgebra in EndS(V ) which contains S(V )
and DerS(V ); conjecturally all relations are of the commutation type (hence
quadratic; all quadratic relations have been computed in [1]); however the proof
that there are no high order additional relations relies on a small combinatorial
conjecture which we did not resolve so far. It is not known if the Grothendieck
style definition of differential operators in this context would give the lower part
of the inner Weyl algebra as we defined it.

0.6. For a (commutative but not cocommutative) Hopf algebra (H : H1 →
H0,∆) in (Veck)LP we (tentatively) define an invariant part of the internal
endomorphism algebra End(H) of H in LP. Denote the components of the
coproduct by ∆0 : H0 → H0 ⊗ H0 and ∆1 = ∆1l + ∆1r, where ∆1l : H1 →
H0⊗H1 and ∆1r : H1 → H1⊗H0; denote idi = idTi , i = 1, 2. Let Ti : Hi → Hi,
i = 1, 2 be components of an endomorphism T of H. Then T is invariant if
∆1 ◦ T1 = (id0 ⊗ T1 ⊕ id1 ⊗ T0) ◦ ∆1 and ∆0 ◦ T0 = (id0 ⊗ T0) ◦ ∆0. Let
Tφ : H0 → H1 be a k-linear map such that T ′ = (T1, T0, Tφ) is an element of
end1(H). Then we proclaim T ′ invariant if T = (T1, T0) is invariant. One checks
that the invariant part of End(H) is a Lie algebra in LP.

Thus one could in principle check if the inner Lie algebra of derivations in LP
of our inner Hopf algebra O(GL(V )) has the invariant part isomorphic (as a Lie
algebra in LP) to the Lie algebra gl(V ) defined by Kurdiani in [2]. If this is so,
the Ado’s theorem in LP ([2]) could help us reduce integration of other finite-
dimensional Lie algebras in LP to the special example (via subalgebra/subgroup
correspondence which needs separate treatment in LP), and the construction of a
spectrum of O(GL(V )) in the category of LP-schemes could give us geometrical
integration.
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