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Compatibility of (co)actions and localizations
Zoran Škoda, zskoda@irb.hr

preliminary version

Earlier, Lunts and Rosenberg studied a notion of compatibility
of endofunctors with localization functors, with an application to the
study of differential operators on noncommutative rings and schemes.
Another compatibility – of Ore localizations of an algebra with a co-
module algebra structure over a given bialgebra – introduced in my
earlier work – is here described also in categorical language, but the
appropriate notion differs from that of Lunts and Rosenberg, and it
involves a specific kind of distributive laws. Some basic facts about
compatible localization follow from more general functoriality proper-
ties of associating comonads or even actions of monoidal categories to
comodule algebras. We also introduce localization compatible pairs
of entwining structures.

1 Introduction

1.1. (Notation and prerequisites). Throughout the paper k is a ground
field, but for most results it can be taken to be a commutative ring. The
unadorned tensor symbol means tensoring over k. We assume that the reader
is well familiar with adjoint functors and familiar with (co)monads ([3, 12, 18])
which some call triples ([1]). We will speak (co)modules over (co)monads for
what many call (co)algebras over (co)monads.

1.2. (Context and motivation). Apart from general purpose, this article
is aimed to create the preliminaries for a natural general theorem on recon-
struction of the structure of the noncommutative scheme ([13]) on the category
of equivariant quasicoherent sheaves over a noncommutative scheme which is
locally (in the sense of a cover by biflat affine localizations compatible with
(co)actions) of Galois type (noncommutative principal bundle). This theorem
involves the construction and exactness properties of various adjoint pairs of
functors ([13]), what asked for precise requirements and usage of the correct
and natural compatibility properties of localization functors with (co)actions in
such geometric setup. This is the main subject of our forthcoming paper [17].

1.3. (Localization.) ([6, 18, 13]) A localization functor is a functor which
is universal among the functors inverting a given class of morphisms in a domain
category. A continuous localization functor is a functor Q∗ : A → B having
a fully faithful right adjoint Q∗ : B → A (this implies that Q∗ is a localization
functor). This is equivalent to having a pair of adjoint functors Q∗ ⊣ Q∗ for
which the counit ǫ : Q∗Q∗ → idB is an isomorphism of functors. Consequently
the multiplication Q∗ǫQ

∗ : Q∗Q
∗Q∗Q

∗ → Q∗Q
∗ of the monad induced by this

adjunction is clearly also an isomorphism (“idempotent monad”) and the local-
ized category B is via the comparison functor N 7→ (Q∗N,Q∗(ǫ)) equivalent to
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the (Eilenberg-Moore) category of modules over that monad. One usually says
that B is a reflective subcategory of A (strictly full subcategory where the
inclusion has a left adjoint).

In Abelian categories, one usually considers (additive) flat (= exact and
continuous) localization functors: they may be obtained by localization at thick
subcategories (= full subcategories closed under direct sums, quotients and
extensions). The main example in the categories of modules is any Gabriel
localization (at a Gabriel filter) of the category of left modules over a unital
ring R. Even better subclass is the class of Ore localizations, which are of
the form Q∗M = S−1R ⊗RM where S−1R is the Ore localized ring, at a (say
left) Ore set S ⊂ R. In that case, Q∗ and Q∗ are exact, S−1R is consequently
flat over R and the component of the unit of the adjunction η : id → Q∗Q

∗ for
the ring R itself, namely ιS : R → S−1R, is a morphism of unital rings. The
multiplication induces an isomorphism of S-modules S−1R ⊗R S

−1R → S−1R

(because the monad M 7→ S−1R⊗RM = Q∗Q∗M is an idempotent monad).

2 Functoriality of actegories from comodule al-

gebras

2.1. Let B be a k-bialgebra. The category BM of left B-modules is a monoidal
category in standard way: the tensor product is the tensor product of the un-
derlying k-modules with the left B-action given by b(x⊗k y) =

∑
b(1)x⊗k b(2)y.

2.2. Given a k-bialgebra B, a left (right) B-comodule algebra is a pair
(A, ρ) of an algebra A and a left (right) B-coaction ρ : A → B ⊗ A (resp.
ρ : A → A ⊗ B) which is an algebra map. We use extended Sweedler notation
ρ(e) =

∑
e(0) ⊗ e(1) ([11]).

2.2.1. BM acts on kM in a trivial way: on objects just tensor the underlying
k-modules; bialgebra B lives in the category of k-modules, and its meaning is
related to the tensor product in kM. Thus this distinguished defining or base
action is however important, because in noncommutative geometry it is natural
to consider actions of BM which are geometrically admissible. These are
the actions of the type ⊳ : C × BM → C on an abstract category C equipped
with a direct image functor U : C → kM such that U ◦ ⊳ = ⊳0 ◦ (U × Id

BM),
where ⊳0 is the base action ⊳0 : kM × BM → kM. Such actions may be
called lifts of ⊳0 along U . Lifts to C = EM where E is a k-algebra are in a
bijective correspondence with the distributive laws between the base action and
monad E⊗k on kM )[14, 19]. Such distributive laws are generalizations of Beck’
classical distributive laws between two (co)monads.

2.2.2. The distributive law with components lM,Q : E⊗(M⊗Q) → (E⊗M)⊗Q
given by e⊗ (m⊗ q) 7→

∑
e(0) ⊗m⊗ e(1)q where e ∈ E,m ∈ M, q ∈ Q, where

M ∈ kM and Q ∈ BM induces thus a right action of BM on EM lifting the
base action. More explicitly, for N ∈ EM, N ⊳ Q is N ⊗Q with left E-module
structure e(n⊗ q) =

∑
e(0)n⊗ e(1)q.
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We want to describe in this section the functoriality of this and various dual
constructions. We often call monoidal category D together with a (left or right)
D-action on some category C a (left or right) D-actegory.

2.3. (Comonad for the relative Hopf modules). B is a comonoid in the
monoidal category BM. Therefore the strong monoidal action of BM on any
category sends it to a comonoid in the category of endofunctors (in our case also
additive). The underlying endofunctor G : EM → EM in the category EM of
left E-modules on objects M in M is given by the formula G : M 7→ M ⊗ B,
where the left E-module structure on M ⊗B is given by e(m⊗ b) := ρE(e)(m⊗

b) =
∑
e(0)m ⊗ e(1)b where e ∈ E,m ∈ M, b ∈ B. The comultiplication ∆B

on B induces the comultiplication δ = id ⊗ ∆ : G → GG on G with counit
ǫG = id ⊗ ǫ making G = (G, δ, ǫG) a comonad (cf. the coring picture in [5]).

It is well-known that the category (EM)G of G-comodules (coalgebras) is
equivalent to the category EM

B of left-right relative (E,B)-Hopf modules; thus
we say that G is the comonad for relative Hopf modules. Left-right relative
(E,B)-Hopf module is a m left module (N, νN ) where νN : E ⊗ N → N is
a left E-action, equipped with a right B-coaction ρN : N → N ⊗ B such that
ρN (ν(e, n)) = (ν ⊗ µB)(id ⊗ τB,N ⊗ id)(ρE(e) ⊗ ρN(n)) for all e ∈ E, n ∈ N ;
here τB,N : B ⊗N → N ⊗B is the flip of tensor factors. Morphisms of relative
Hopf modules are morphisms of underlying k-modules, which respect E-actions
and B-coactions.

2.4. We will work in part of the article not only with maps of comodule
algebras over a fixed bialgebra, but we will also allow variable bialgebras. Thus
let φ : B → B′ be a map of bialgebras, (E, ρ) a B-comodule algebra and (E′, ρ′)
a B′-comodule algebra. Then a map of underlying algebras f : E → E′ is a
map of comodule algebras over φ if ρ′ ◦ f = (f ⊗ φ) ◦ ρ : E → E′ ⊗ B′.
Alternatively, one says that the pair (f, φ) is a map of comodule algebras over
varying bialgebras.

2.5. For any algebra map f : A→ A′ we use geometric inverse image notation
for the extension of scalars f∗ : M → f∗M = A′ ⊗AM for the categories of left
modules, though this implies that f 7→ f∗ is a covariant functor.

2.6. Theorem. There is a canonical 2-cell

EM× BM
f∗

×φ∗

//

⊳

��

E′M× B′M

⊳′

��
EM

f∗

//
E′M

��
��

DL
α

that is a natural transformation α = αf,φ : f∗ ◦ ⊳⇒ ⊳′ ◦ (f∗ × φ∗).
Proof. The components

αM,Q = α
f,φ
M,Q : E′

⊗E (M ⊳Q) → (E′
⊗E M) ⊳′ (B′

⊗B Q)
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of the natural transformation α, where M ∈ EM and Q ∈ BM are defined as
k-linear extensions of the formulas

αM,Q(e′ ⊗E (m⊗ q)) =
∑

(e′(0) ⊗E m) ⊗ (1B′ ⊗B e
′
(1)q).

One checks that αM,Q is well defined (it is well-defined before we quotient to
⊗E; consider values on e′e⊗ (m⊗ q) and

∑
e′⊗ e(0)m⊗ e(1)q and calculate that

both give the same) and that αM,Q is indeed a morphism in E′M.

2.7. Consider now the comonad for Hopf modules G = (G, δ, ǫ) on EM.
Corollary. There is a 2-cell

EM
f∗

//

GE

��

E′M

⊳′

��
EM

f∗

//
E′M

��
��

?GαB

which is in fact a morphism of comonads.

2.8. Theorem. 2-cells α paste correctly with respect to composition of comodule
algebra maps over varying base. In other words, for components at B, the pasting

EM
f∗

//

(gf)∗

""

GE

��

E′M

GE′

��

g∗
//
E′′M

GE′′

��
EM

f∗

//

(gf)∗

<<E′M

��
��

?Gα
f,φ

B

g∗
//
E′′M

��
��

@Hα
g,φ′

B′

equals the two cell

EM
(gf)∗

//

GE

��

E′′M

GE′

��
EM

(gf)∗
//
E′′M

��
��

=Eα
gf,φ′φ

B

where the symbols for canonical invertible 2-cells g∗f∗ ∼= (gf)∗ are ommitted.
Similar diagrams hold for other components.
Proof is an easy direct calculation.

2.9. Now we use the transformation α to induce the map for the categories
of Hopf modules EM

B → E′MB′

. It is known that EM
B ∼= (EM)GE

so this
procedure is standard.

Let M ∈ EM and ρM : M → M ⊗ B be a coaction making M a relative
Hopf module.

Proposition. The extension of scalars f∗ : EM → E′M′ lifts to the functor
f∗B : EM

B → E′MB′

between the categories of relative Hopf modules, which is
at objects given by f∗B : (M,ρM ) 7→ (f∗M,αM ◦ f∗(ρ)).
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3 Compatibility for comodule algebras

3.1. (Compatibility of coactions and localizations).
Let (E, ρ) be a right B-comodule algebra. An Ore localization of rings

ιS : E → S−1E is ρ-compatible ([16]) if there exist an (automatically unique)
coaction ρS : S−1E → S−1E ⊗ B making S−1E a B-comodule algebra, such
that the diagram

E
ρ

//

ιS

��

E ⊗B

ιS⊗B

��
S−1E

ρS // S−1E ⊗B

commutes. It is easy to check that this is equivalent to an effective criterium
that for all s ∈ S, (ιS ⊗ idB)ρ(s) is invertible in S−1E ⊗ B. If the Ore local-
ization is ρ-compatible, ρS is called (the) localized coaction. The elements
u ∈ S−1E satifying ρS(u) = u⊗1 i.e. the coinvariants under the localized coac-
tion are called localized coinvariants. It is a basic and important observation
that the localization and taking coinvariants do not commute: the subalgebra
(S−1E)coB ⊂ S−1E of localized coinvariants typically contains some extra el-
ements which do not naturally belong to the k-submodule ιS(EcoB); moreover
typically ιS restricted to the subring EcoB ⊂ E is not underlying a ring local-
ization U−1EcoB with respect to any Ore subset U in EcoB.

3.2. Theorem. Let B be a k-bialgebra, (E, ρ) a B-comodule algebra, G a
comonad from 2.3, and ι : E → Eµ a perfect (e.g. Ore) localization of rings,
which happens to be ρ-compatible.

The k-linear map

lM,P : Eµ ⊗E (M ⊗ P ) ⇒ (Eµ ⊗E M) ⊗ P, e⊗ (m⊗ b) 7→
∑

(e(0) ⊗m) ⊗ e(1),

for m ∈M,p ∈ P, e ∈ E, where P is a B-module and M a E-module is a well-
defined morphism of left E-modules. All lM,P together form a mixed distributive
law between the localization monad Q∗Q

∗ and the categorical action of BM on

EM.
Proof. This is a slight generalization of the case P = B which gives the

distributive law between the localization monad Q∗Q
∗ and the comonad G

which is proved in [18]. The general proof is analogous.

3.3. Proposition. Given any continuous localization functor Q∗ : A → Aµ and
a comonad G together with any mixed distributive law l : Q∗Q

∗G⇒ GQ∗Q
∗,

1) Gµ = Q∗GQ∗ underlies a comonad Gµ = (Gµ, δ
µ, ǫGµ) in Aµ with co-

multiplication δµ given by the composition

Q∗GQ∗

Q∗δGQ∗

−→ Q∗GGQ∗

Q∗GηGQ∗

−→ Q∗GQ∗Q
∗GQ∗

and whose counit ǫGµ is the composition

Q∗GQ∗

Q∗ǫGQ∗// Q∗Q∗
ǫ // IdAµ
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(where the right-hand side comultiplication ǫ is the counit of the adjunction
Q∗ ⊣ Q∗).

2) the composition

Q∗GM
Q∗(ηGM )

// Q∗Q∗Q
∗GM

Q∗(lM )
// GµQ∗M

defines a component of a natural transformation α = αl : Q∗G ⇒ GµQ
∗ for

which the mixed pentagon diagram of transformations

Q∗G
α //

Q∗δG

��

GµQ
∗

δµQ∗

��
Q∗GG

αG // GµQ∗G
Gα // GµGµQ∗

commutes and (ǫGµQ∗) ◦ α = Q∗ǫG. In other words, (Q∗, αl) : (A,G) →

(Aµ,Gµ) is (up to orientation convention which depends on an author) a map
of comonads ([15, 20]).

3.4. Theorem. Under assumptions in 3.2, there is a unique induced con-
tinuous localization functor QB∗ : EM

B → Eµ
MB between the categories of

relative Hopf modules such that UµQ
B∗ = Q∗U where U and Uµ are the forget-

ful functors from the category of relative Hopf modules to the categories of usual
modules over E and Eµ respectively.

Proof. We have stated this theorem and given direct proof in [19]. The more
general results from the previous sections make it a special case of 2.5.

3.5. Corollary. Let E = B and k is a field. The only ∆-compatible Ore
localization B → Bµ is the trivial one.

This is an analogue of the statement that the only G-invariant Zariski open
subset of an algebraic group over a field is the whole group.

Proof. The compatible localization functor induces in this case a localization
functor QB∗ : BM

B → Bµ
MB. By the fundamental theorem on relative Hopf

modules the domain of this functor is BM
B ∼= kM. But kM is just a category of

vector spaces over a field which does not have nontrivial continuous localizations
with contradiction.

4 Compatibility for entwinings

4.1. (Localization-compatible pairs of entwinings.) Let A be a k-algebra,
C a k-coalgebra, ι : A → Aµ a perfect localization of rings, and ψ : A ⊗ C →

C ⊗A, ψµ : Aµ ⊗C → C ⊗Aµ entwinings. We say that (ψ, ψµ) is ι-compatible
pair of entwinings if the diagram

A⊗ C
ψ

//

ι⊗C

��

C ⊗A

C⊗ι

��
Aµ ⊗ C

ψµ // C ⊗Aµ

6



commutes.

4.2. Define comonad G on AM as usual: G(M, ν) = (C ⊗M, (C ⊗ ν) ◦ ψM ).

Proposition. Given a ι-compatible pair (ψ, ψµ) of entwinings, the k-linear
map ψµ ⊗M : Aµ ⊗ C ⊗M → C ⊗ Aµ ⊗M factors to a well-defined map of
A-modules

lM : Aµ ⊗A GM → G(Aµ ⊗AM).

Proof. Consider the diagram

Aµ ⊗A⊗ C ⊗M

��

Aµ⊗(C⊗ν)◦(ψ⊗M)
//

µ⊗C⊗M
// Aµ ⊗ C ⊗M //

ψµ⊗M

��

Aµ ⊗A GM

lM

��
C ⊗Aµ ⊗A⊗M

Aµ⊗(C⊗ν)◦(ψ⊗M)
//

C⊗µ⊗M
// C ⊗Aµ ⊗M // G(Aµ ⊗AM)

(1)

where the rows are equalizer forks and the left vertical arrow is the composition

Aµ ⊗ E ⊗ C ⊗M //
Aµ⊗ψ⊗M

Aµ ⊗ C ⊗ E ⊗M //
ψµ⊗A⊗M

C ⊗Aµ ⊗A⊗M

If the left square in (1) sequentially commutes, then clearly the right vertical
arrow factors to a well-defined map l.

In the following two diagrams we omit the tensor product sign ⊗k; by abuse
of notation we denote by m both multiplications (in A and Aµ).

AµAC

Aµψ

��

AµιC
//

mC

**
AµAµC

mC
//

Aµψµ

��

AµC

ψµ

��

AµCA
AµCι //

Aµ

��

AµCAµ

ψµAµ

��
CAµA

CAµι //

Cm

44CAµAµ
Cm // CAµ

(2)

This diagram clearly commutes and when we tensor the whole diagram with M
from the right we see that the upper left square in (1) commutes.

AµACM

AµψM

��

AµψM // AµCAM
AµCν // AµCM

ψµM

��

AµCAM

ψµAM

��

qqqqqqqqqq

qqqqqqqqqq

CAµAM
CAµν // CAµM

7



This diagram commutes by naturality, and shows that the lower left square
in (1) commutes.

We conclude that the map l is well-defined. We need to check that it is a
map of A-modules. But again, the commutativity of the diagram (2) shows that
ψµ ⊗M : Aµ ⊗ GM → G(Aµ ⊗M) is a map of left A-modules (in fact it is a
map of Aµ-modules simply by the pentagon for ψ and m); hence a fortiori the
induced map on quotients respects A-module structure.

4.3. Proposition. lM above form a distributive law.
Proof. Direct check.

4.4. Theorem. Every localization compatible pair of entwinings induces a
continuous localization Q∗

ψ : CAMψ → C
Aµ

Mψµ
between the categories of entwined

modules for the two entwinings such that UµQ
∗
ψ = Q∗U where U and Uµ are

the forgetful functors from the categories of entwined to the categories of usual
modules over A and Aµ respectively.

5 The case of module algebras

5.1. We say that the left action ⊲ of a bialgebra H on an algebra A is Hopf or
that (A, ⊲) is a left H-module algebra if h ⊲ (ab) =

∑
(h(1) ⊲ a)(h(2) ⊲ a). Let

ι : A → Aµ be an Ore localization and (A, ⊲) a left H-module algebra. We say
that ι is compatible with module algebra structure if there is a Hopf action ⊲′

of H on Aµ such that ι ◦ ⊲ = ⊲′ ◦ (H ⊗ ι).

5.2. The monoidal category of right H-comodules has a canonical action on the
category of modules AM over a left H-module algebra A. Again, A is a monoid
in that category so we get in particular a monad T on AM.

The action is induced by the distributive law with components lM,P : A ⊗

(M⊗P ) → (A⊗M)⊗P given by the formula a⊗(m⊗p) 7→
∑

(p(1)⊲A⊗m)⊗p(0).
One should check that one indeeds get an action. For simplicity of notation

we do it for P = H ; that is we check that T is a monad. General case is almost
the same.

Define the endofunctor T on the category of left A-modules

T (M,⊲M ) := (M ⊗k H, ⊲TM ), M ∈ A− Mod;
Tf := f ⊗ 1H ∈ HomA(TM, TN), ∀f ∈ HomA(M,N).

where the A-action ⊲TM on M⊗kH is given by k-linear extension of the formula
a ⊲TM (m⊗ h) :=

∑
((h(2) ⊲A a) ⊲M m)) ⊗ h(1).

We have to check that ⊲TM is indeed an A-action:

a ⊲TM (a′ ⊲TM (m⊗ h)) = a ⊲TM ((h(2) ⊲A a
′) ⊲M m)) ⊗ h(1)

= ((h(2) ⊲A a) ⊲M ((h(3) ⊲A a
′) ⊲M m)) ⊗ h(1)

(⊲A is a Hopf action) = (h(2) ⊲A (aa′)) ⊲M m) ⊗ h(1)

= (aa′) ⊲TM (m⊗ h).

8



1 ⊲TM (m⊗ h) = ((h(2) ⊲A 1) ⊲M m)) ⊗ h(1)

(⊲A is a Hopf action) = (ǫ(h(2))1 ⊲M m)) ⊗ h(1)

= m⊗ h.

We also check that Tf is indeed a map of left A-modules:

(Tf)[a ⊲TM (m⊗ h)] = (Tf)[(h(2) ⊲A a) ⊲M m⊗ h(1)]
= f((h(2) ⊲A a) ⊲M m) ⊗ h(1)

= (h(2) ⊲A a) ⊲M f(m) ⊗ h(1)

= a ⊲TM (f(m) ⊗m)
= a ⊲TM [(Tf)(m⊗ h)]

Define the natural transformations µ : TT ⇒ T and η : Id ⇒ T by

µ(M,⊲M )(
∑

i

mi ⊗ hi ⊗ gi) :=
∑

i

mi ⊗ higi,

η(M,⊲M )(m) := m⊗ 1.

Here we have to check that µM := µ(M,⊲M ) and ηM := η(M,⊲M ) are indeed
maps of left A-modules.

a ⊲TTM [(m⊗ h) ⊗ g] = [(g(2) ⊲A a) ⊲TM (m⊗ h)] ⊗ g(1)
= [h(2) ⊲A (g(2) ⊲A a)] ⊲m m⊗ h(1) ⊗ g(1)
= (h(2)g(2) ⊲A a) ⊲M m⊗ h(1) ⊗ g(1)
µM
7→ (h(2)g(2) ⊲A a) ⊲M m⊗ h(1)g(1)

= a ⊲TM (m⊗ hg)
= a ⊲TM [µM ((m⊗ h) ⊗ g)].

Now we have a straightforward

5.3. Proposition. Compatibility of Hopf action with localization induces a
distributive law between the induced monad T defined above and the localization
monad.
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