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The majority of books on classical computer logic
and computation stop short of saying much about
logic itself and dwell on the Boolean algebra—the
main lattice model of classical logic—instead. Also
when books and papers on quantum computers elab-
orate on quantum logic they actually speak of a
Hilbert space algebra of quantum gates and circuits.
It nevertheless often appears as if it were tacitly as-
sumed that classical and quantum logics underlie
classical and quantum computers, respectively. Can
we really say that computers “run on logic?”

No, we cannot! Computers definitely “run on algebras” and noton logic.
Until recently, however, the difference was subtle. Only one class of ortho-
lattice models was known for either classical or quantum logic. Thus, for
example, the numerical values of the Boolean algebra—a Boolean algebra
is a distributive ortholattice—have been considered tantamount to truth val-
ues of logical propositions. Then in 1999 [1] we discovered that there is
another ortholattice model for both classical and quantum logic. The new
model for classical logic, e.g., is not numerical and logical propositions
that correspond to its elements are non-numerical—they canbe considered
neither true nor false. Such an ortholattice obviously doesnot underlie today’s com-
puters and therefore logic in general also cannot be considered to underlie computers.

An ortholattice (OL), is defined by
means of the following conditions:
(1)a ∪ b = b∪; (2)(a ∪ b) ∪ c =
a∪ (b∪ c); (3)a′′ = a; (4)a∪ (b∪ b ′) =
b ∪ b ′; (5)a ∪ (a ∩ b) = a; (6)a ∩ b =
(a′ ∪ b ′)′. We define thegreatest
(1) and least (0) element of the lat-
tice: 1 def=a ∪ a′, 0 def=a ∩ a′, ordering:
a ≤ b

def
⇐⇒ a∩ b = a, classical implica-

tion: a →0 b = a′ ∪ b, quantum impli-
cation: a →1 b = a′ ∪ (a ∩ b), equiva-
lences: a ≡0 b = (a →0 b) ∩ (b →0 a),
a ≡ b = (a ∩ b) ∪ (a′ ∩ b′). Now,
an OL is an orthomodular lat-
tice (OML) if: a ≡0 b ⇔ a = b
a Boolean algebra (BA) if:
a ≡ b ⇔ a = b , a non-orthomodular
weakly-OML (WOML) lattice if
a →1 b = 1 ⇒ b′ →1 a′ = 1 , and a
non-distributive weakly-DL (WDL)
lattice if
a ≡0 b = 1 ⇒ (a ∪ c) ≡0 (b ∪ c) = 1
We discovered WOML in 1998[1] and
WODL in 1999[2].

Quantum logic (QL) contains the connectives
→, ↔, ≡, ∨, ∧, ¬ which we represent with
their lattice counterparts:→, ↔, ≡, ∪, ∩, ′. Its
axiomsare: (1) ⊢ A ∨ B ≡ B ∨ A; (2) ⊢ A ∨
(B ∨C) ≡ (A∨B)∨C; (3)⊢ A ≡ ¬¬A; (4)⊢
¬A∨A ≡ (¬A∨A)∨B; (5)⊢ A∨(A∧B) ≡ A;
(6) ⊢ (A∧B) ≡ ¬(¬A∨¬B); and therules of
inference(R1)⊢ A ≡ B ⇒⊢ A ∨ C ≡ B ∨ C;
(R2)⊢ A ≡ B & ⊢ B ≡ C ⇒⊢ A ≡ C; (R3)
⊢ A ≡ B ⇔⊢ ¬A ≡ ¬B; (R4)⊢ A ≡ B ⇒⊢
B ≡ A; (R5)⊢ ¬A∨A ≡ B ⇔⊢ B, where⊢ A
means “A is provable,” i.e., “A is a theorem.”
Classical logic (CL) has theaxioms: (1) ⊢
A∨A →0 A; (2)⊢ A →0 A∨B; (3)⊢ A∨B →0
B∨A; (4)⊢ (A →0 B) →0 (C ∨A →0 C∨B);
and therule of inference(Modus Ponenes) (R1)
⊢ A & A →0 B ⇒ ⊢ B.

In 1999 we proved thesoundnessandcomplete-
nessof QL for both of their ortholattice mod-
els: orthomodular OML and non-orthomodular
WOML and ofCL for bothof their ortholattice
models: distributive BA and non-distributive
WDOL [2,3,4].

To prove thesoundnessof QL andCL for both WOML
and OML and for both WDOL and BA, respectively, means
to show that all axioms as well as the rules of inference
(and therefore all theorems) fromQL andCL hold in both
WOML and OML and in both WDOL and BA, respec-
tively. We carried out the proof in detail in 1999 in[2]
and reviewed it in[3,4]. The task of proving thecomplete-
nessof QL andCL is the opposite one: we have to impose
the structure of both WOML and OML and of both WDOL
and BA on the set of formulae ofQL andCL, respectively.
We also carried out the proof in detail in 1999 in[2] and
reviewed it in[3,4] but will still discuss some points here.
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1It is well-known that an OL is an OML
if and only if it fails in O6 lattice (ben-
zene ring, hexagon) shown in the figure
on the right. BA is orthomodular and
it also fails in O6. However, neither
WOML nor WDOL fail in O6. More-
over, in 2005, following our elaboration
carried out in[2], E. Schechter proved[5] that O6 alone can
serve as a model for classical logic. We use O6 in the com-
pleteness proofs ofQL andCL for WOML and WDOL,
respectively—O6 will filter out all orthomodular lattices.

The reasoning behind our unexpected proofs of soundness andcompleteness of quantum and classical logics for non-orthomodular and non-distributive ortho-
lattice models is the following one. When a theoremA holds inQL or CL, i.e., whenA is provable inQL or CL, then it is valid in one of their models (M),
i.e., in our ortholattices, and that means thata = h(A) = 1 for valuations on the modelM. We often write that as�M A or simply� A.
So to prove the soundness it would actually suffice to map all logical axioms and rules of inference toa = 1 conditions. However, the algebra we would obtain
would be very weak—it would not be even an ortholattice. Therefore we use ortholattice OL instead. Thus we first mapQL axioms 1-6 toa ≡ b = 1 to OL.
Sincea = b ⇒ a ≡ b = 1 holds in any OL it follows from OL 1-6 conditions that theQL axiom mappings hold in OL. Then we map R1-R5 in the forma = 1
and arrive at WOML[2]. The standard approach uses OML which is much stronger then required. We apply an analogous procedure toCL to arrive at WDOL.
To prove the completeness ofQL we have to impose the structure of WOML on the setF◦ of formulae ofQL. For that we first defineO6 as the set of mappings
that do not let the orthomodularity through. Then we define the relation of equivalence asA ≈ B def= Γ ⊢ A ≡ B (∀o ∈ O6)[(∀X ∈ Γ)(o(X) = 1) ⇒ o(A) =
o(B)] and prove that it is arelation of congruence in the algebraF , whereΓ ⊆ F◦. We also define theequivalence class |A| = {B ∈ F◦ : A ≈ B}. We denote
F◦/≈ = {|A| : A ∈ F◦}. The equivalence classes define the natural morphismf : F◦ −→ F◦/≈, which givesf (A) =def |A|. We writea = f (A), b = f (B),
etc. Now, The relationa = b onF◦/ ≈ is given by: |A| = |B| ⇔ A ≈ B, and theLindenbaum algebra A = 〈F◦/ ≈,¬/ ≈,∨/ ≈〉 is a WOML, i.e., the
conditions (1)-(6) and WOM condition hold for¬/≈ and∨/≈ as′ and∪. Next we prove that in the Lindenbaum algebraA, if f (X) = 1 for all X in Γ implies
f (A) = 1, thenΓ ⊢ A and we obtain thecompleteness: Γ � A ⇒ Γ ⊢ A. Analogous completeness we obtain forCL for its WDOL model.

Hence, we can prove all theorems fromQL andCL in OLs that are much weaker than OML and BA, respectively, i.e., from WOML and WDOL and we can
recover all these theorems again from WOML and WDOL (OM does not hold in the Lindenbaum algebraA). Are WOML and WDOL special? Are there
other such models?No, they are not special. We have shown in[6] that there are other OLs between WOML and OML and between WDOLand BA for which
soundness and completeness ofQL andCL can be proved. Possibly infinitely many of them.Actually we can say that logics arevaluation-nonmonotonic [6]
in the sense that their possible models (corresponding to their possible hardware implementations) and the valuationsfor them drastically change when we add
new conditions to their defining conditions.Hardware implementations? With, e.g., 6 possible values for propositions as in O6?Well, it would not be difficult
to make such logic gates. It is only a question whether such computers could find an application.
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