Computers Do Not Run on Logic
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The majority of books on classical computer log No, we cannot! Computers definitely “run on algebras” andarotogic.
and C_OmIOUta“O” stop short of saying much aboftl Until recently, however, the difference was subtle. Onlg atass of ortho-
logic itself and dwell on the Boolean algebra—thg | lattice models was known for either classical or quantuniclo@hus, for
main lattice model of classical logic—instead. Als@ | example, the numerical values of the Boolean algebra—ae@oochlgebra

- When books and papers on quantum computers elg§l] is a distributive ortholattice—have been considered raotant to truth val-
orate on quantum logic they actually speak of g| ues of logical propositions. Then in 1999 [1] we discoveteat there is

Hilbert SEace algebra of quantum gates and circul another ortholattice model for both classical and quantwgicl The new
It nevertheless often appears as If it were tacitly abq model for classical logic, e.g., is not numerical and lobmapositions

sumed that classical and gquantum logics under thahcorres ond. tq Its elements ar% nlon:numerical—the eamnslideregl |
classical and quantum computers, respectively. CRu| NeIther true nor false. Such an ortholattice obviously underlie today’s com-

we really say that computers “run on logic?” puters and therefore logic in general also cannot be comside underlie computers.

Quantum logic (QL) contains the connective!
—, <, =, V, A, = which we represent with
their lattice counterparts-, <, =, U, N, . ItS
axiomsare: (1) AVB=BVA, (2 AV
(BVC)=(AVvB)VC;(3)FA=—--A,(4F
—AVA = (mAVA)VB; (B5)F AV(AAB) = A;
6)F (AN B)=—=(—-AV-B);and therules of
iInference(R1) - A=B=FAV(C=BVC(,
(R2)FA=B&FB=C=FA=CC;(R3
FA=B < -A=-B;,(R4)F A= B =F
B =A;,(R5)F -AVA =B <+ B,where- A
means ‘A Is provable,’ 1.e., ‘A Is a theorem.”
Classical logic (CL) has theaxioms (1)

An ortholattice (OL), Is defined by
means of the following conditions

(MaUb = bU; 2)(aUb) Uc =
aU(bUc); (3)a" = a; (4)aU(bUb") =
bUb": (5)aU(anbd) = a; (6)andb =
Ea’ U b'). We define thegreatest
1) and least (0) element of the lat-

tice: 1%qUd, 0%an o, ordering:

0 <b<L anb=a,classical implica-

tion: a —¢ b = a' U b, quantum impli-
cation: a —; b = a’ U (aNb), equiva-
lences: a =) b= (a —g b) N (b —¢ a),

To prove thesoundnes®sf 9L andCL for both WOML
and OML and for both WDOL and BA, respectively, mea
to show that all axioms as well as the rules of inferen
(and therefore all theorems) fro@£ andC.L hold in both

WOML and OML and in both WDOL and BA, respec
tively. We carried out the proof in detail in 1999 |@]

and reviewed it ir}3,4]. The task of proving theomplete-
nessof QL andC/L Is the opposite one: we have to Impos
the structure of both WOML and OML and of both WDO
and BA on the set of formulae @£ andC/.L, respectively.
We also carried out the proof in detail in 1999[k] and

reviewed it in[3,4] but will still discuss some points here.

— N ®

a =b=(anb U (dnNV). Now, It Is well-known that an OL Is an OML

an OL IS( an >Ort|'gomodukar | at- AVA —g A (2) - A —y AVDB,; (3) - AVEB —y If and Only If it fails In O6 lattice beﬂ- 1

tice (OML) iff |a=yb < a=0>b BV A;(4)F (A —¢B) = (CVA—,CVB); zene ring, hexagon) shown in the figure 4, /
a Boolean algebra (BA) if and therule of inference (Modus Ponenes) (R1) on the right. BA is orthomodular and L)
a=b < a=0, a non-orthomodularfh\.—- A& A —¢ B = B. it also fails in O6. However, neither < Y
weakly-OML ~ (WOML) lattice If WOML nor WDOL fail in O6. More-
a—1b=1=0—1d=1, and a | In1999we proved theoundnesandcomplete- 8 over, in 2005, following our elaboration 0

nessof OL for both of their ortholattice mod-
els: orthomodular OML and non-orthomodul
WOML and ofCL for both of their ortholattice
models: distributive BA and non-distributive
WDOL [2,3,4].

The reasoning behind our unexpected proofs of soundnessoamoleteness of guantum and classical logics for non-ordutular and non-distributive ortho
lattice models Is the following one. When a theordnholds InQL orCL, 1.e., whenA Is provable InOL or CL, then it is valid in one of their models\l),
l.e., in our ortholattices, and that means that h(A) = 1 for valuations on the mode\1. We often write that as,; A or simply= A.

So to prove the soundness it would actually suffice to mawglthl axioms and rules of inferenceda= 1 conditions. However, the algebra we would obte
would be very weak—it would not be even an ortholattice. €hme we use ortholattice OL instead. Thus we first mapaxioms 1-6 toa = b = 1 to OL.
Sincea =b = a=b=1holds inany OL it follows from OL 1-6 conditions that ti& axiom mappings hold in OL. Then we map R1-R5 in the farm 1
and arrive at WOML2]. The standard approach uses OML which is much stronger gmenred. We apply an analogous proceduréf£ao arrive at WDOL.
To prove the completeness @i we have to impose the structure of WOML on theBébf formulae of QL. For that we first defin@6 as the set of mappings

that do not let the orthomodularity through. Then we defireeréhation of equivalenceasA ~ BE '+ A= B (Vo € O6)[(VX € I)(o(X) = 1) = o(A) =
o(B)] and prove that it is aelation of congruence in the algebraF, wherel' C F°. We also define thequivalenceclass |A| = {B € F°: A ~ B}. We denote
Fe/~={|A| : A€ F°}. The equivalence classes define the natural morpliisth® — F°/ =, which givesf(A) =% |A|. We writea = f(A), b = f(B),
etc. Now, The relationa = b on F°/ ~ is given by: |A| = |B| & A =~ B, and theLindenbaum algebra A = (F°/ ~, -/ ~,V/ ~) iIs a WOML, i.e., the
conditions (1)-(6) and WOM condition hold fer/ ~ andV/~ as’ andU. Next we prove that in the Lindenbaum algebtaif f(X) =1 for all X in I"implies
f(A) =1, thenl' - A and we obtain theompletenesd’ = A = I' - A. Analogous completeness we obtain fat for its WDOL model.

non-distributive weakly-DL  (WDL)
|attice If

a=ob=1= (aUc)=(bUc)=1
We discovered WOML in 1998l] and
WODL in 1999(2].

carried outin2], E. Schechter provdé] that O6 alone can
serve as a model for classical logic. We use O6 in the cc
pleteness proofs oL andCL for WOML and WDOL,

respectively—O6 will filter out all orthomodular lattices.

Hence, we can prove all theorems frap andC.L in OLs that are much weaker than OML and BA, respectively, frem WOML and WDOL and we can
recover all these theorems again from WOML and WDOL (OM daashold in the Lindenbaum algebrd). Are WOML and WDOL special? Are there
other such modelsRo, they are not special. We have shownfdhthat there are other OLs between WOML and OML and between WBQILBA for which
soundness and completenessXdi andC.L can be proved. Possibly infinitely many of theActually we can say that logics aweluation-nonmonotonic [6]

INn the sense that their possible models (correspondingetoppbssible hardware implementations) and the valuafmmn#hem drastically change when we ac
new conditions to their defining conditiondardware implementations? With, e.g., 6 possible valueprapositions as in O6Well, it would not be difficult
to make such logic gates. It is only a question whether suntpaters could find an application.
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