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Classical computers are based onbits that correspond to two
states of classical logic gates that are in effect just switches
for the current passing through a computer: 1 (open) and 0
(closed). Quantum computers are based on infinitely many
superpositionsα|1〉+ β|0〉 of two basic states (|1〉 and|0〉) of
quantum bits—qubits, i.e, quantum systems (photons, elec-
trons, atoms,. . . ). As opposed to digitalized classical compu-

tation and their exponentially growing2n gate passages forn bits, quantum
computation can make use of that infinitely many possible states of a single
qubit to speed up calculations exponentially. But so far that has been suc-
cessfully devised only for specially designed algorithm for some problems.
Can we find a general quantum algebra that would correspond tothe Boolean
algebra of classical computers?

Well, we do not know yet. We know that we can
start with a very general algebra calledortholattice and
then add axioms until we obtain an algebra calledHilbert
lattice which is isomorphic to aninfinite dimensional
Hilbert space in which we can describe any quantum
system. If we add more axioms we shall getmod-
ular lattice isomorphic to afinite dimensional Hilbert
spaceof spin systems in which we can describequbits
as they passquantum gatesin any quantum circuit, i.e.,
quantum computer. Eventually, by adding the distributivity we get the
Boolean algebra, i.e., distributive lattice. Now, every classical digital-
ized calculation can be implemented into a quantum computerbecause
any Boolean algebra is modular. But with quantum calculation we might
achieve much more, if we succeeded in approximating Hilbertlattices by
modular lattices, i.e., substituting finite dimensional Hilbert space for in-
finite dimensional one. Hilbert space infinite dimensionality stems from
space continuum, e.g., positions of electrons, protons, and neutrons in
molecules. Hence, such an approximation would enable us to directly sim-
ulate molecules. In our approach to this program we find new lattice con-
ditions and new infinite series of them that could eventuallysubstitute for
the standard definition of the Hilbert lattice. (Standard definition cannot be
implemented into a quantum computer because it contains quantificators:
for all andthere existswhich have no operational meaning.) If successful,
we would consider cutting off series at particular points and carrying out
the afore mentioned approximation.

A single axiom definition ofortholatticesby means of theSheffer stroke(|)
reads[1]: (((b|a)|(a|c))|d)|(a|((a|((b|b)|b))|c)) = a.
Standard operations can be defined as follows:disjunction: a ∪ b =
(a|a)|(b|b); negation: a′ = a|a; conjunction: a ∩ b = (a′ ∪ b′)′; clas-
sical implication: a →0 b = a′ ∪ b; in any orthomodular lattice there are
five (G. Kalmbach, 1974) quantum implications: a →i b, i = 1, . . . , 5, e.g.,
Sasaki implication: a →1 b = a′∪ (a∩ b))—all five reduce toa →0 b when
we add the distributivity to an ortholattice, i.e., in a Boolean algebra. We
also havea ≤ b ⇔def a ∪ b = b; 1 =def a ∪ a′; 0 =def 1′.

Here are some “old” definitions. Anortholatticein whichdistributivity (D), modularity (M), orthomodularity(OM),

D : a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) , M : b ≤ a ⇒ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) , OM : b ≤ a & c ≤ a′ ⇒ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) ,

hold is aBoolean algebra(BA), modular lattice(ML), orthomodular lattice(OML), respectively.

In 1987[2] we discovered that an ortholattice in which

a →0 b ⇔ a ≤ b , a →i b ⇔ a ≤ b ,

holds is aBA, OML, respectively, and vice versa.

In 1990 Malinowski proved that or-
thomodular lattices do not admit
the deduction theorem. So, do we
need operations of implication at
all? Let us define equivalences:

a ≡0 b = (a →0 b) ∩ (b →0 a)

a ≡i b = (a ∩ b) ∪ (a′ ∩ b′), i = 1,.., 5

Yes! In 1993[3] and 1998[4] we proved the conjec-
ture: an ortholattice in which

a ≡0 b ⇔ a = b , a ≡i b ⇔ a = b , i = 1,.., 5

holds is aBA, OML, respectively, and vice versa. In
any OML a ≡i b = (a →i b) ∩ (b →i a), i = 1,.., 5

hold. (This agrees with 1930 J. Herbrand’s result that
we can do without the deduction theorem in classical
logic/lattices too.) In 1999[5] we also proved

a ≡ij b ⇔ a = b , i, j = 1,.., 5

wherea ≡ij b = (a →i b) ∩ (b →j a), i, j = 1,.., 5

In 1985 L. Beran proved that there are 96 one and
two variable expressions in any orthomodular lattice.

In 2001 [6] we devised algorithms which enabled us to express two vari-
able expression by means of all other five expressions of the same cate-
gory in an identical way. We also constructed algebras whichhave the
same axioms of an identical form for all five operations. For example

a ∪ b = ((((b →i a) →i (a →i b)) →i b) →i a) →i a , i = 1, . . . , 5

In 2002[7] we have discovered that all 80 one and two variable “quantum”expressions in any orthomodular lattice are fivefold defined. They all reduce to
classical counterparts (16 altogether) in BA. So even constants (0,1) and variables (a, b) are fivefold defined. One of “quantum”1’s is, e.g.,((a ∩ b) ∪ (a ∩

b′)) ∪ ((a′ ∩ b) ∪ (a′ ∩ b′)) because this expression reduces to1 in BA. ((a ∪ b) ∩ (a ∪ b′)) ∩ ((a′ ∪ (a ∩ b)) ∪ (a ∩ b′)) is one of “quantum” variables because
it reduces toa in BA. We also found algorithms which express both quantum and classical operations by means of any other in an identical way. For example

a ∪1 b = (a ∪i (b ∩i (a ∪i (a ∩i b))
′)) , i = 0, . . . , 5 Note that nowi includes 0 as well, i.e., we can have identical expression of, e.g.,a∪1 b by means ofa∪ b,

a ∪1 b,. . . ,a ∪5 b. We used this result to define algebras with such “merged” operations. We also obtained several other new algebras in 2003[8,9].

From 2000 till 2008[10,11,12,13]we worked on generation of infinite series of equations in Hilbert lattices and obtained several important new results for
Godowski’s and Mayet’s equations and completely new infinite series ofgeneralised orthoarguesian equations(nOA). We definenOA equations as follows:

(a1 → a3) ∩ (a1
(n)
≡a2) ≤ a2 → a3 where a1

(3)
≡a2

def= ((a1 → a3)∩(a2 → a3))∪((a′1 → a3)∩(a′2 → a3)) a1
(n)
≡a2

def= (a1
(n−1)
≡ a2)∪((a1

(n−1)
≡ an)∩(a2

(n−1)
≡ an)) , n ≥ 4 .

Previously known (Day’s, Greechie’s, Godowski’s) orthoarguesian equations (“laws”) are either our 3OA or 4OA. Using our algorithms and programs that run
on our clusters we proved[13] thatnOA are strictly stronger than(n − 1)OA for n ≥ 7. Some new recently obtained results will be published soon.
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