
International Journal of Theoretical Physics, Vol. 37, No. 8, 1998

Quantum and Classical Implication Algebras with
Primitive Implications

Mladen PavicÏ icÂ1 and Norman D. Megill2

Received November 30, 1997

Join in an orthomodular lattice is obtained in the same form for all five quantum
implications. The form holds for the classical implication in a distributive lattice
as well. Even more, the definition added to an ortholattice makes it orthomodular
for quantum implications and distributive for the classical one. Based on this
result a quantum implication algebra with a single primitiveÐ and in this sense
uniqueÐ implication is formulated. A corresponding classical implication algebra
is also formulated. The algebras are shown to be special cases of a universal
implication algebra.

1. INTRODUCTION

It is well known that there are five operations of implication in an

orthomodular lattice which all reduce to the classical implication in a distribu-

tive lattice. (Kalmbach, 1983). It was therefore believed that implication

algebras for these implications must all be different and such different algebras
have explicitly been defined in the literature (Clark, 1973; Piziak, 1974;

Abbott, 1976; Georgacarakos, 1980; Hardegree, 1981a). The systems were

restrictive and uniquely determined a particular implication in an orthomodu-

lar lattice model.

In this paper, we show in Section 3 that one can formulate an implication

algebra which can be modeled by either a bare orthomodular or distributive
lattice only after choosing the representation of implication by means of the

lattice operations. We arrive at such a formulation of implication algebra by

using a novel possibility, obtained in Section 2, of turning an ortholattice
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into either an orthomodula r lattice or a distributive lattice by defining the

join in the same way by means of either quantum or classical implica-

tions, respectively.

2. UNIFIED JOINS IN LATTICES

Definition 2.1. An ortholattice is an algebra OL 5 ^ Lo, ’ , ø & in which

the following conditions are satisfied for any a, b, c, P Lo:

L1. a # a ’ ’ & a ’ ’ # a
L2. a # a ø b & b # a ø b
L3. a # b & b # a Þ a 5 b
L4. a # 1

L5. a # b Þ b ’ # a ’

L6. a # b & b # c Þ a # c
L7. a # c & b # c Þ a ø b # c

where

a # b 5
def

a ø b 5 b, 1 5
def

a ø a ’

Also

a ù b 5
def

(a ’ ø b ’ ) ’ , 0 5
def

a ù a ’

An ortholattice is orthomodular (OML) if the following conditions are

satisfied for any a, b P L 8 .

L8. a ® i b 5 1 Þ a # b (i 5 1, . . . , 5)

and an ortholattice is distributive (DL) if the following condition is satisfied

for any a, b P L 8 (PavicÏ icÂ, 1987)

L9. a ® 0 b 5 1 Þ a # b

where the implications a ® i b (i 5 0, . . . , 5) are defined as follows:

a ® 0 b 5
def

a ’ ø b (classical)

a ® 1 b 5
def

a ’ ø (a ù b) (Sasaki)

a ® 2 b 5
def

b ø (a ’ ù b ’ ) (Dishkant)

a ® 3 b 5
def

((a ’ ù b) ø (a ’ ù b ’ )) ø (a ù (a ’ ø b)) (Kalmbach)
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a ® 4 b 5
def

((a ù b) ø (a ’ ù b)) ø ((a ’ ø b) ù b ’ ) (non-tollens)

a ® 5 b 5
def

((a ù b) ø (a ’ ù b)) ø (a ’ ù b ’ ) (relevance)

Theorem 2.1. (i) The equation

UJ(i). a ø b 5 (a ® i b) ® i (((a ® i b) ® i (b ® i a)) ® i a)

is true in all orthomodular lattices for i 5 1, . . . , 5 and in all distributive

lattices for i 5 0; (ii) an ortholattice in which UJ (i) holds is an orthomodular

lattice for i 5 1, . . . , 5 and a distributive lattice for i 5 0.

Proof. (i) For i 5 1, . . . , 5, the proofs are tedious, but straightforward
expansions of the definitions, using the Foulis±Holland theorems extensively

throughout. The following equations summarize the important intermediate

results:

UJ(3).1a. (a ® 3 b) ’ ù (b ® 3 a) ’ 5 0
UJ(i).1a. (a ® i b) ù (b ® i a) 5 (a ù b) ø (a ’ ù b ’ ), i 5 4, 5

UJ(i).1b. (a ® i b) ’ ù (b ® i a) 5 a ù b ’ , i 5 3, 4, 5

UJ(i).1c8. (a ® i b) ’ ø (b ® i a) 5 a ø b ’ , i 5 3, 4

UJ(3).1c. (a ® 3 b) ù ((a ® 3 b) ’ ø (b ® 3 a)) 5 (a ’ ù b ’ ) ø
(a ù (a ’ ø b))

UJ(4).1c. ((a ® 4 b) ’ ø (b ® 4 a)) ù (b ® 4 a) ’ 5 (a ’ ø b ’ ) ù
(a ’ ø b) ù a

UJ(5).1c. (a ® 5 b) ’ ù (b ® 5 a) ’ 5 (a ø b) ù (a ø b ’ ) ù (a ’ ø b)

ù (a ’ ø b ’ )

UJ(i).1. (a ® i b) ® i (b ® i a) 5 a ø (a ’ ù b ’ ) i 5 1, 2, 3, 4

UJ(5).1. (a ® 5 b) ® 5 (b ® 5 a) 5 a ø b ’

UJ(i).2. (a ø (a ’ ù b ’ )) ® i a 5 a ø b, i 5 1, 2, 3, 4

UJ(5).2. (a ø b ’ ) ® 5 a 5 a ø (a ’ ù b)

UJ(3).3a. (a ® 3 b) ’ ù (a ø b) ’ 5 0

UJ(5).3a. (a ® 5 b) ù (a ø (a ’ ù b)) 5 (a ù b) ù (a ’ ù b)

UJ(i).3b. (a ® i b) ’ ù (a ø b) 5 (a ® i b) ’ , i 5 3, 4

UJ(5).3b. (a ® 5 b) ’ ù (a ø (a ’ ù b)) 5 a ù (a ’ ø b ’ )
UJ(i).3c8. (a ® i b) ’ ø (a ø b) 5 a ø b, i 5 3, 4

UJ(3).3c. (a ® 3 b) ù ((a ® 3 b) ’ ø (a ø b)) 5 (a ’ ù b) ø (a ù
(a ’ ø b))

UJ(5).3c. (a ® 5 b) ’ ù (a ø (a ’ ù b)) ’ 5 (a ø b) ù (a ø b ’ ) ù a ’

UJ(i).3. (a ® i b) ® i (a ø b) 5 a ø b, i 5 1, 2, 3, 4
UJ(5).3. (a ® 5 b) ® 5 (a ø (a ’ ù b)) 5 a ø b

For i 5 3, 4: UJ(i).1c follows from UJ(i).1c8. For i 5 3, 4, 5: UJ(i).1
follows from UJ(i).1a,b,c and the definition of ® i. For i 5 3: UJ(3).3c follows
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from UJ(3).3c8. For i 5 3, 5: UJ(i).3 follows from UJ(i).3a,b,c and the

definition of ® i. For i 5 4: UJ(4).3 follows from UJ(4).3b,c8 and the definition

of ® 4. For i 5 1, . . . , 5: UJ(i) follows from UJ(i).1, 2, 3.
For i 5 0: The proof follows in a trivial way from the distributivity

property and we omit it.

(ii) The nonorthomodu lar ortholattice O6 (Fig. 1a) is violated by UJ(i)
for i 5 1,. . ., 5. Each UJ(i) is therefore equivalent to the orthomodula r law

by Theorem 2(iii) of Kalmbach (1983, p. 22).

Nondistributive OM6 (Fig. 1b) (Abbott, 1976) is violated by UJ(0). One
easily shows that UJ(0) is equivalent to the distributive law. n

Theorem 2.2. The equation

UO(i). a ’ 5 a ® i 0

is true in all orthomodular lattices for i 5 1,. . . , 5 and in all distributive
lattices for i 5 0.

Proof. The proof is straightforward and we omit it. n

3. QUANTUM AND CLASSICAL IMPLICATION ALGEBRAS

Many authors have given various systems of implication algebras. For

example, systems for the Sasaki implication were formulated by Clark (1973),

Piziak (1974), and Hardegree (1981a, b), for Dishkant’ s by Abbott (1976) and

Georgacarakos (1980), and for the relevance implication by Georgacarakos

(1980). In this section we give a system which is formulated by means of a

primitive implication as the only operation. In doing so, in formulating
definitions and theorems, we shall mostly follow Piziak (1974), Abbott (1976),

and Georgacarakos (1980).

Definition 3.1. Let P be a nonempty set. We designate an element in

P and call it 0. Let ® : P 3 P j P. Let 1 5
def

0 ® 0. Then the triple 8! 5
^ P, 0, ® & is called a universal implication algebra provided the following

Fig. 1. (a) Ortholattice O6, (b) orthomodular lattice OM6.
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axioms and rules of inference R1±R4 are satisfied for all a, b, c P P.

The triple 4! 5 ^ P, 0, ® & is called a quantum implication algebra provided

the following axioms and rules of inference R1±R5q are satisfied for all
a, b, c P P, and a classical implication algebra #! 5 ^ P, 0, ® & provided

A1±A4, R1±R4, and R5c are satisfied for all a, b, c P P.

Axioms.

A1. a ® ((a ® 0) ® 0) 5 1 & ((a ® 0) ® 0) ® a 5 1

A2. a ® ((a ® b) ® (((a ® b) ® (b ® a)) ® a)) 5 1

A3. b ® ((a ® b) ® (((a ® b) ® (b ® a)) ® a)) 5 1

A4. a ® 1 5 1 & (a ® (a ® 0)) ® (((a ® (a ® 0)) ® ((a ®
0) ® a)) ® a) 5 1

Rules of Inference.

R1. a ® b 5 1 Þ (b ® 0) ® (a ® 0) 5 1
R2. a ® b 5 1 & b ® c 5 1 Þ a ® c 5 1

R3. a ® c 5 1 & b ® c 5 1 Þ ((a ® b) ® (((a ® b) ®
(b ® a)) ® a)) ® c 5 1

R4. a ® b 5 1 & b ® a 5 1 Û a 5 b
R5q. (a ® (b ® 0)) ® (((a ® (b ® 0)) ® ((b ® 0) ® a)) ® a) 5

1 & a ® b 5 1 Þ b ® a 5 1
R5c. (a ® (b ® 0)) ® (((a ® (b ® 0)) ® ((b ® 0) ® a)) ® a) 5

1 Þ b ® a 5 1

Theorem 3.1. Let + 5 ^ P, ’ , ø & be an orthomodular lattice OML. Define
in + the following operations:

1 5
def

a ø a ’D1.

0 5
def

1 ’D2.

a ® b 5
def

a ® i b where i 5 either 1 or 2 . . . or 5D3.

Then the system +4! 5 ^ P, 0, ® & is a quantum implication algebra 4!.

The same is valid for a universal implication algebra 8!.

Proof. The proof follows straightforwardly from Definition 2.1 and
Theorem 2.1 and the following property of an orthomodular lattice (Pavi-

cÏ icÂ, 1987):

L10. a ø b ’ 5 1 & a # b Þ b # a n
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Theorem 3.2. Let + 5 ^ P, ’ , ø & be a distributive lattice. Define in +
the following operations:

1 5
def

a ø a ’D1.

0 5
def

1 ’D2.

a ® b 5
def

a ® 0 bD3.

Then the system +#! 5 ^ P, 0, ® & is a classical implication algebra #!.

The same is valid for a universal implication algebra 8!.

Proof. The proof again follows straightforwardly from Definition 2.1 and

Theorem 2.1 and the following well-known property of a distributive lattice:

L11. a ø b ’ 5 1 Þ b # a n

Theorem 3.3. If + 5 ^ P, 0, ® & is a quantum implication algebra 4!, then

+4!*
5 ^ P, ’ , ø &

is an orthomodular lattice OML, where ’ , ø are defined in + as follows:

a ’ 5
def

a ® 0D1.

a ø b 5
def

(a ® b) ® (((a ® b) ® (b ® a)) ® a)D2.

Moreover, a ® b is determined as one of a ® i b, i 5 1, . . . , 5.

Proof. We first write all expressions of the form a ® 0 as a ’ . Then we
recognize all the a ø b expressions. Next, we write down all a ® b 5 1

expressions as a # b (which easily follows from R4). We are left with L1±L7

and L10, i.e., we obtain an orthomodular lattice. Hence, a ® b from R4

must be one of a ® i b, i 5 1, . . . , 5, as given by L8. n

Theorem 3.4. If + 5 ^ P, 0, ® & is a classical implication algebra #!, then

+#!*
5 ^ P, ’ , ø &

is a distributive lattice DL, where ’ , ø are defined in + as in Theorem 3.3.

Moreover, a ® b is determined as a ® 0 b.

Proof. We first write all expressions of the form a ® 0 as a ’ . Then we

recognize all the a ø b expressions. Next, we use R4 to write down all

a ® b 5 1 expressions as a # b. We are left with L1±L7 and L11, i.e., we

obtain a distributive lattice. Hence, a ® b from R4 must be a ® 0 b as given

by L9. n
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Theorem 3.5. If + 5 ^ P, 0, ® & is a universal implication algebra 8!, then

+8!*
5 ^ P, ’ , ø &

is a distributive (an orthomodular) lattice, where ’ , ø are defined

+ as follows:

a ’ 5
def

a ® 0D1.

a ø b 5
def

(a ® b) ® (((a ® b) ® (b ® a)) ® a)D2.

and where ® maps into ® i in the following way:

a ® i b 5 a ® b; i 5 0 distributive (i 5 1, . . . , 5 orthomodula r)

Proof. We first write all axpressions of the form a ® 0 as a ’ . Then we

recognize all the a ø b expressions. Next, we use R4 to write down all

a ® b 5 1 expressions as a # b. We are left with L1±L7, i.e., we obtain

an ortholattice. Then, depending on whether we choose a ® b from R4 to
be either a ® 0 b or a ® i b, i 5 1, . . . , 5, we obtain either a distributive or

an orthomodular lattice. n

4. CONCLUSION

In Section 2 we showed that an ortholattice, when the axiom UJ(i)
defined in Theorem 2.1 is added to it, turns into an orthomodular lattice for

i 5 1, . . . , 5, i.e., for the so-called quantum implications, and into a distributive

one for i 5 0, i.e., for the classical implication. The axiom UJ expresses join
by means of all these implications in a formally identical way.

In Section 3, in Definition 3.1 we employed the so expressed join to

formulate quantum and classical implication algebras 4! and #!, respec-

tively. We have chosen the axiomatization from (PavicÏ icÂ, 1987) because each

expression of its axioms and rules of inference contains ø and ’ at most

once, and introduced join ø and orthocomplementation ’ expressed by means
of a primitive implication following UJ and UO from Theorems 2.1 and 2.2,

respectively. In that way we obtain a quantum implication algebra which

uses a single primitive implication. Hence, the main difference between our

and all previous quantum implication algebras is that each of the latter

corresponds to a particular quantum implication (one of five), while ours

does not. (Besides, to our knowledge, only for three of five implications,
implication algebras have been formulated so far.) As soon as we define the

lattice operations on the algebra, by means of D1±D2 from Theorem 3.3, we

open the orthomodular lattice possibility to express the primitive implication

on the algebra by means of any of the five quantum implications, but this is
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exactly the sense in which the obtained quantum implication algebra 4!
generalizes not only orthomodular lattices, but also all previously obtained

quantum implication algebras.
As also shown in Section 3, the two generalized quantum and classical

implication algebras can themselves be generalized by dropping the rules R5

from Definition 3.1. The obtained universal implication algebra 8! (see

Theorem 3.5) contains algebras 4! and #!, depending on how we choose

to represent the implication. It would be interesting to investigate what other

systems the algebra 8! can give under different definitions of the lattice
operations.

NOTE ADDED IN PROOFS

A step by step proof of Theorem 2.1 the reader can find at the following

address: www1.shore.net/ , ndm/java/augl/mmexplorer.html
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