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Identity Rule for Classical and Quantum Theories
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It is shown that the identity ruleÐ a rule of inference which has the form of
modus ponens but with the operation of identity substituted for the operation of
implicationÐ turns any ortholattice into either an orthomodular lattice (a model
of a quantum theory) or a distributive lattice (a model of a classical theory). It
is also shown thatÐ as opposed to the implication algebrasÐ one cannot construct
an identity algebra although the identity rule contains the operation of identity
as the only operation.

1. INTRODUCTION

PavicÏ icÂand Megill (1998a) have shown that binary orthologic becomes

either quantum or classical logic when nothing but the modus ponens rule

is added to it, depending on the kind of the operation of implication used.

In lattice-theoretic notation (a lattice being a model of a logic and therefore
of a corresponding theory) the result reads as follows:

Theorem 1.1. An ortholattice in which the following modus ponens rule

a # b & a ® b # c ® d Þ c # d

holds is an orthomodular lattice for ` ® ’ being one of the five quantum

implications and a distributive lattice for ` ® ’ being the classical implication.

An obvious disadvantage of this rule for inferring theorems in varieties

of quantum logic is that one does not know which of the five implications

one should choose. Therefore it would be interesting to find a unique operation

for a rule analogous to the one from Theorem 1.1. To arrive at such a rule,
let us examine the proof of the above theorem. We obtained it by connecting
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the operation of implication and the relation of implication in the follow-

ing way.

Theorem 1.2. (PavicÏ icÂ, 1987). An ortholattice in which

a ® b 5 1 Û a # b

holds is a distributive lattice for ` ® ’ being the classical implication and an
orthomodular lattice for ` ® ’ being one of the five quantum implications.

Now the following theorem holds:

Theorem 1.3. (PavicÏ icÂ, 1993). An ortholattice in which

QL a [ b 5 1 Û a 5 b

holds is an orthomodular lattice for the identity being defined as follows:

Definition 1.3.1. a [ b 5
def

(a ù b) ø (a ’ ù b ’ ).

Therefore we could conjecture that the identity and equality can be

substituted for the implication and inequality, respectively, in Theorem 1.1.
In the next section we prove the conjecture.

2. THE IDENTITY RULE

Our conjecture on the existence of the identity rule meets an apparent
counterargument in Theorem 3.2 of PavicÏ icÂ(1993). We shall therefore first

show that the theorem is only partially correct by proving the following

theorem.

Theorem 2.1. An ortholattice in which

CL a [ c b 5 1 Û a 5 b

holds is a distributive lattice for the identity being defined as follows:

Definition 2.1.1. a [ c b 5
def

(a ’ ø b) ù (a ø b ’ ).

Proof. In PavicÏ icÂ(1993) we proved that an ortholattice to which CL is

added is orthomodular. From Fig. 1 it is obvious that, in the orthomodular
lattice OM6, a 5 b does not follow from (a ’ ø b) ù (a ø b ’ ) 5 1.

Therefore CL violates OM6 and this means that an ortholattice with CL is

also distributive (Abbott, 1976). n

Our main theorems now read as follows:
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Fig. 1. Orthomodular lattice OM6.

Theorem 2.2. An ortholattice in which the following identity rule

a 5 b & a [ b 5 c [ d Þ c 5 d

holds is an orthomodular lattice and vice versa.

Proof. To prove the first part of the theorem, we choose b equal to a
and obtain a [ b 5 1. This yields

c [ d 5 1 Þ c 5 d

and by Theorem 1.3, the orthomodularity.

To prove the vice versa part, we start with the premises a 5 b and

a [ b 5 c [ d. But, by Theorem 1.3, a 5 b is equivalent to a [ b 5 1,
and therefore c [ d 5 1. Thus, again by Theorem 1.3, we obtain the

conclusion, c 5 d. n

Theorem 2.3. An ortholattice in which the following identity rule

a 5 b & a [ c b 5 c [ c d Þ c 5 d

holds is a distributive lattice and vice versa.

Proof. Using Theorem 2.1, we prove this theorem in complete analogy
to the the proof of the previous theorem. n

3. IDENTITY ALGEBRA CANNOT BE FORMULATED

PavicÏ icÂand Megill (1998b) have shown that join and negation in an

orthomodular lattice can be obtained in the same form for the classical and

all five quantum implications. Starting from this result, they formulated
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a quantum implication algebra with a single primitiveÐ and in this sense

uniqueÐ implication. A natural question which in the light of these results

springs from the above theorems is whether one can express join and negation
by means of the two above-defined operations of identityÐ which are by

definition unique, i.e., whether an ª identity algebraº can be formulated. By

the following theorem we are going to answer to this question in the negative.

Theorem 3.1. Orthocomplementation in an orthomodular lattice can be

expressed as a ’ 5 a [ 1 5 a [ c 1. Join, meet, and implications in an

orthomodular lattice cannot be expressed by means of either quantum or
classical identity.

Proof. Free orthomodular lattices with two generators (expressions with

two elements) can be represented by the direct product OM6 3 24 (Beran,

1985) Denoting the elements of the Boolean algebra 24 by b1 5 (0, 0, 0, 0),

b2 5 (1, 0, 0, 0), . . . , b16 5 (1, 1, 1, 1), we can write down all 96 elements
of the lattice in the form (ai, bj), i 5 1, . . . , 6, j 5 1, . . . , 16, where ai are

the elements of the orthomodular lattice OM6 (Fig. 1). We can easily check

that (ai, b12) through (ai, b15), i 5 1, . . . , 6, are exactly all six implications

(five quantum ones and the classical one) and join, while (ai, b2) through

(ai, b5) are their negations (which include meet).

We prove the theorem by checking that bk [ bl 5 (bk ù bl) ø (b ’
k ù

b ’
l ), k 5 1, 6, . . . , 11, 16; l 5 1, 6, . . . , 11, 16, cannot yield any one of

b2, . . . , b5, b12, . . . , b15. For, we should start with either a [ b 5
(0, b8) 5 (0, 1, 0, 0, 1) or a ’ [ b 5 (0, b9) 5 (0, 0, 1, 1, 0), etc., and arrive

at either a ø b 5 (1, b12) 5 (1, 1, 1, 1, 0) or a ù b 5 (1, b2) 5 (0, 1, 0,

0, 0), etc. However, that would mean that starting with b’ s containing two

unities we shouldÐ applying (bk ù bl) ø (b ’
k ù b ’

l ) on themÐ arrive at a b
containing either one or three unities, which is clearly impossible. (For

example, the first meet can give one unity and then the second meet of the

orthocomplemented elements also gives one unity and the final join yields

two units. Looking at all other combinations, we always arrive at an even

number of unities and zeros.) n

4. CONCLUSION

It is well known that quantum logic lacks a suitable rule of inference

mainly because it does not have a unique operation of implication. In Section

2, we therefore considered unique operations of identity and found that one

can formulate identity rules which are analogues to the lattice-theoretic modus
ponens rules given by Theorem 1.1. The rules turn an ortholattice into either

an orthomodular or a distributive lattice as shown by Theorems 2.2 and 2.3.

It is interesting that two such rules which at a first sight might be taken

for ortholattice theorems can be substituted for the orthomodularity and the
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distributivity axioms. Therefore, in Section 3, we investigated whether it

would be possible to arrive at an ª identity algebraº which would use the

identity as the only primitive operation and answered this question in the
negative.

The main contribution of our recent (PavicÏ icÂand Megill, 1998a, b) and

present results to understanding principles of modeling quantum and classical

theories by means of lattices and other algebraic structures and logics is that

the latter are recognized as systems handling operations and relations between

the propositions and not primarily the propositions themselves.
In PavicÏ icÂand Megill, (1998a, 1998b) we have shown that one can

model both quantum and classical theories by practically nothing but operation

and relations of implication and without dealing directly with elementary

propositions and attaching values to them. For quantum theories and their

logics, which cannot ascribe values to all propositions, the appropriateness

of such an approach is obvious. For classical theories and their logics this
is an interesting alternative to the standard approach. In the present paper

we have shown that even higher axioms (orthomodularity and distributivity) in

such models do not require implication and ordering: identifying propositions

which can be considered equal suffices for the axiomatization.
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