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We show that one can formulate an algebra with lattice ordering so as to contain one
quantum and five classical operations as opposed to the standard formulation of the
Hilbert space subspace algebra. The standard orthomodular lattice is embeddable into
the algebra. To obtain this result we devised algorithms and computer programs for
obtaining expressions of all quantum and classical operations within an orthomod-
ular lattice in terms of each other, many of which are presented in the paper. For
quantum disjunction and conjunction we prove their associativity in an orthomodu-
lar lattice for any triple in which one of the elements commutes with the other two
and their distributivity for any triple in which a particular element commutes with
the other two. We also prove that the distributivity of symmetric identity holds in
Hilbert space, although whether or not it holds in all orthomodular lattices remains
an open problem, as it does not fail in any of over 50 million Greechie diagrams we
tested.

1. INTRODUCTION

Closed subspaces of Hilbert space form an algebra called a Hilbert lattice.
A Hilbert lattice is a kind of orthomodular lattice, which we, in the next section,
introduce starting with an ortholattice, which is a still simpler structure. In any
Hilbert lattice the operationmeet, a ∩ b, corresponds to set intersectionHa ∩
Hb of subspacesHa andHb of Hilbert spaceH; the ordering relationa ≤ b
corresponds toHa ⊆ Hb; the operationjoin, a ∪ b, corresponds to the smallest
closed subspace ofH containingHa ∪ Hb; anda′ corresponds toH′a, the set
of vectors orthogonal to all vectors inHa. Within Hilbert space there is also an
operation that has no parallel in the Hilbert lattice: the sum of two subspaces
Ha +Hb, which is defined as the set of sums of vectors fromHa andHb. We
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also have,Ha +H′a = H. One can define all the lattice operations on Hilbert
space itself, following the above definitions (Ha ∩Hb = Ha∩Hb, etc.). Thus we
haveHa ∪Hb = Ha +Hb = (Ha +Hb)⊥⊥ = (H′a∩H′b)′, (Isham, 1995, p. 175)
whereHc is a closure ofHc, and thereforeHa +Hb ⊆ Ha ∪Hb. WhenH is finite
dimensional or when the closed subspacesHa andHb are orthogonal to each other,
thenHa +Hb = Ha ∪Hb (Halmos, 1995, pp. 21–29; Kalmbach, 1983, pp. 66–
67; Mittelstaedt, 1978, pp. 8–16).

In the past, scientists, starting with Birkhoff and von Neumann, wanted to
find parallels with a possible logic lying underneath the orthomodular lattice
and operations defined on such a logic. A possible candidate for the logic was
formulated (Chiara, 1986; Dishkant, 1974; Kalmbach, 1974; Kalmbach, 1983;
Mittelstaedt, 1978). However, it has recently been shown (Paviˇcić and Megill,
1998a) that the logic can have at least two models: Hilbert space and another
model that is not orthomodular—so there is noproperquantum logic.5 One can
still consider operations within the model itself: the orthomodular lattice. The
problem of finding quantum operations that would reduce to classical ones for
compatible observables has been attacked many times in the past. In particular,
it has been shown that one can start with uniqueclassicalconjunction, disjunc-
tion, and implication and using them define fivequantumconjunctions, disjunc-
tions, and implications [which collapse into former classical ones for commuting
(compatible, commensurable) observables]. In this paper we show that one can
start with unique quantum operations and arrive at five classical ones. Thus it
turns out that the usual way of defining orthomodular lattice by means of unique
classical conjunction and disjunction is a consequence of a direct translation of
meet and join from Hilbert space. We also express all possible quantum and
classical operations by each other, even a chosen classical or quantum one by
means of all other quantum and classical ones in single equations. We do so with
the help of a computer program that reduces two-variable expressions to each
other.

In section 5 we prove that in an orthomodular lattice the associativity of both
quantum disjunctions and conjunctions holds for any triple of lattice elements as
soon as one of them commutes with the other two.

In the the end, we partially solve an open problem from Megill and Paviˇcić
(2000) by proving that the “distributive law” for a quantum identity holds in the
Godowski lattices and therefore in Hilbert space. It remains an open problem
whether or not the law holds in all orthomodular lattices.

5 Consequently, the papers that are now appearing and claim—as, e.g., Dalla Chiara and Giuntini
(2001)—that quantum logic, defined as a genuine logical system, characterizes orthomodular lattices
are simply incorrect. All previous such papers and books are outdated by the result.
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2. QUANTUM AND CLASSICAL LATTICE OPERATIONS

One usually defines an ortholattice in the following way.

Definition 2.1. An ortholattice (OL) is an algebra〈LO,′ , ∪〉 such that the follow-
ing conditions are satisfied for anya, b, c ∈ LO:

L1 a = a′′ (2.1)

L2 a ≤ a ∪ b & b ≤ a ∪ b & b ≤ a ∪ a′ (2.2)

L3 a ≤ b & b ≤ a ⇒ a = b; a = b ⇒ a ≤ b (2.3)

L4 a ≤ b ⇒ b′ ≤ a′ (2.4)

L5 a ≤ b & b ≤ c ⇒ a ≤ c (2.5)

L6 a ≤ c & b ≤ c ⇒ a ∪ b ≤ c (2.6)

where

a ≤ b
def= a ∪ b = b, 1

def= a ∪ a′, 0
def= a ∩ a′. (2.7)

Then we can define six operations of implication:

Definition 2.2. a→0 b
def= a′ ∪ b, a→1 b

def= a′ ∪ (a ∩ b), a→2 b
def= b′ →1 a′,

a→3 b
def= ((a′ ∩ b) ∪ (a′ ∩ b′)) ∪ (a ∩ (a′ ∪ b)), a→4 b

def= a′ →3 b′, a→5

b
def= ((a ∩ b) ∪ (a′ ∩ b)) ∪ (a′ ∪ b′), where→0 is calledclassical implicationand
→i , i = 1, . . . , 5 quantum implication.

Quantum implications reduce to the classical one whenevera andbcommute.

Definition 2.3. We say thata and b commute and writeaCb when any and
therefore all of the following equations hold: (Holland, 1995; Mittelstaedt, 1978;
Zeman, 1979) (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ b) ∪ (a′ ∩ b′) = 1, a ∩ (a′ ∪ b) ≤ b, a =
(a ∩ b) ∪ (a ∩ b′).

We can also define:

Definition 2.4.

a ∪i b
def= a′ →i b, a ∩i b

def= (a→i b′)′, i = 0, . . . , 5; (2.8)

a ≡i b
def= (a→i b) ∩ (b→0 a), i = 0, . . . , 5, (2.9)

wherea ∪0 b = a ∪ b, a ∩0 b = a ∩ b anda ≡0 b are classical disjunction, con-
junction, and identity, respectively, whilea ∪i b, a ∩i b, anda ≡i b, i = 1, . . . , 5,
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are quantum ones, respectively. The latter obviously reduce to the former whena
andb commute.

For the above operations the following theorems hold. In them, we can also
pick any one of the conditions in Theorem 2.5 as our definition of an orthomod-
ular lattice and in Theorem 2.6 as our definition of a distributive lattice (Boolean
algebra).

Theorem 2.5. An ortholattice in which any one of the following conditions holds
is an orthomodular lattice and vice versa(Pavičić, 1987, 1989, 1993, 1998; Paviˇcić
and Megill, 1998b).

a→i b = 1 ⇔ a ≤ b, i = 1, . . . , 5, (2.10)

a ∪i b = 1 ⇔ a′ ⊥ b′, i = 1, . . . , 5, (2.11)

a ∩i b = 0 ⇔ a⊥ b, i = 1, . . . , 5, (2.12)

a ≡i b = 1 ⇔ a = b, i = 1, . . . , 5, (2.13)

a ⊥ b & a ∪ b = 1 ⇒ a′ ⊥ b′, (2.14)

wherea⊥ b
def= a ≤ b′

Theorem 2.6. An ortholattice in which any one of the following conditions holds
is a distributive lattice and vice versa(Pavičić, 1987, 1989, 1993, 1998; Paviˇcić
and Megill, 1998b).

a→0 b = 1 ⇔ a ≤ b, (2.15)

a ∪ b = a ∪0 b = 1 ⇔ a′ ⊥ b′, (2.16)

a ∩ b = a ∩0 b = 0 ⇔ a⊥ b, (2.17)

a ≡0 b = 1 ⇔ a = b. (2.18)

Actually, in any orthomodular lattice all expressions with two variables are
reducible to 1 of the 96 Beran canonical forms. (Beran, 1985, Table 1, p. 82) The
reader can easily reduce any two-variable expression with the help of our program
beran, which we describe in section 8. All 96 forms can be also viewed inside
the source code ofberan.c. In general we can divide them into 16classicaland
80 quantumones. Classical expressions are, classical implication and its nega-
tion (disjunction and conjunction) – Beran expressions 2–5 and 92–95; classical
identity and its negation – expressions 9 and 88; variablesa, b and their nega-
tions – expressions 22, 39, 58, and 75; and “0” and “1” – expressions 1 and 96,
respectively. Quantum expressions are all the other expressions, that reduce to
classical ones whenever the variables commute: quantum implications and their
negations (quantum disjunctions and conjunctions) – 12–15, 18–21, 28–31, 34–37,



P1: GDX/GAY/GCX P2: LMD

International Journal of Theoretical Physics [ijtp] PP159-339815 January 1, 1904 2:27 Style file version Nov. 19th, 1999

Orthomodular Lattices and a Quantum Algebra 1391

44–47, 50–53, 60–63, 66–69, 76–79, and 82–85; quantum identities (a ≡1 b =
a′ ≡3 b′, a ≡2 b = a′ ≡4 b′, a ≡5 b) and their negations – 24, 25, 40, 41, 56, 57,
72, 73, 8, and 89; “quantum variables” (which reduce to “classicala, b”) and
their negations –a: 6, 38, 54, 70, 86,b: 7, 23, 55, 71, 87,−a: 11, 27, 43, 59, 91,
and −b: 10, 26, 42, 74, 90; and “quantum 0,1” – “0”: 17, 33, 49, 65, 81 and “1”:
16, 32, 48, 64, 80. For some of these quantum expressions we give the following
definitions and theorems.

Definition 2.7. Quantum unitiesandzerosin an OML are,

11(a,b)
def= a′ ∪ (a ∩ b′) ∪ (a ∩ b) (2.19)

12(a,b)
def= b∪ (a ∩ b′) ∪ (a′ ∩ b′) (2.20)

13(a,b)
def= a ∪ (a′ ∩ b) ∪ (a′ ∩ b′) (2.21)

14(a,b)
def= b′ ∪ (a′ ∩ b) ∪ (a ∩ b) (2.22)

15(a,b)
def= (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ b) ∪ (a′ ∩ b′) (2.23)

01(a,b)
def= a ∩ (a′ ∪ b) ∩ (a′ ∪ b′) (2.24)

02(a,b)
def= b′ ∩ (a′ ∪ b) ∩ (a ∪ b) (2.25)

03(a,b)
def= a′ ∩ (a ∪ b′) ∩ (a ∪ b) (2.26)

04(a,b)
def= b∩ (a ∪ b′) ∩ (a′ ∪ b′) (2.27)

05(a,b)
def= (a ∪ b) ∩ (a ∪ b′) ∩ (a′ ∪ b) ∩ (a′ ∪ b′) (2.28)

Some consequences of these definitions are straightforward:

Lemma 2.8. Two variables commute iff any of the80 two-variable quantum
expressions is equal to its classical counterpart. Two variables also commute iff any
two of the five different forms of each quantum expression are equal to each other.

For example, 1i (a,b) = 1 or 0i (a,b) = 0, i = 1, . . . , 5 is equivalent toaCb. In
particular, 15(a,b) = 1 is the first expression from Definition 2.3. Also, for example,
ai (a,b) = a, i = 1, . . . , 5, whereai (a,b) are given by Beran expressions: 6, 38, 54,
70, 86, respectively, are equivalent toaCb. In particular,a1(a,b) = (a ∩ b) ∪ (a ∩
b′)= a is the third expression from Definition 2.3. Examples for the second claim
of the theorem are thata→i b = a→ j b, a ∪i b = a ∪ j b, anda ∩i b = a ∩ j

b, i 6= j , i , j = 1, . . . , 5 are equivalent toaCb(Pavičić, 1993, p. 1487). The same
holds for 1i (a,b)= 1 j (a,b), ai (a,b)=aj (a,b), a ≡i b=a ≡ j b, i 6= j , i , j = 1, . . . , 5,
etc.
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Theorem 2.9. An ortholattice in which any one of the following conditions holds
is an orthomodular lattice and vice versa.

a→i b = 1 j (a,b) ⇔ a ≤ b, i , j = 1, . . . , 5; i 6= j ; (2.29)

a ≡i b = 1 j (a,b) ⇔ a = b, i , j = 1, . . . , 5; i 6= j . (2.30)

Proof. We will exemplify the proofs by proving the casei = 1, j = 5. Other
cases the reader can prove analogously. We first use Eq. (2.13) to write the premise
as (a→1 b) ≡5 15 = 1 (≡5 should be used for all cases—in it the subscript 5 is
not j ) and then we find the canonical expression of

(a→1 b) ≡5 15(a,b) = (a→1 b) ≡5 (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ b) ∪ (a′ ∩ b′)

by typing (see section 8 for details on our programberan)

beran “((aIb) = (((â b)v(â -b))v((-â b)v(-â -b))))”

The program responds with

30 ((-avb)̂ ((av(-â -b))v(-â b)))

which is nothing buta→3 b. Using Eq. (2.10) we get the desired conclusion.¤

3. RELATIONS BETWEEN OPERATIONS

In this section we show how one can connect the operations defined in section 2
with each other in an orthomodular lattice defined in a standard way given by
Definition 2.1. In counting the cases for commuting operations later, we disregard
the order ofa andb.

In Pavičić and Megill (1998b) we have shown how one can express classical
disjunction by quantum and classical implications within a single equation. (That
equation was one of the four smallest ones. Another one is presented later.)

Lemma 3.1. (i ) The equation

a ∪ b = ((((b→i a)→i (a→i b))→i b)→i a)→i a (3.1)

is true in all orthomodular lattices for i= 1, . . . , 5 and in all distributive lattices
for i = 0, . . . , 5;

(ii ) an ortholattice in which Eq. 3.1 holds is an orthomodular lattice for
i = 1, . . . , 5 and a distributive lattice for i= 0.

This equation does not contain negations and if we wanted to define an algebra
by means of so merged implications and without using negation we should at least
introduce 0. Alternatively one can use the negation and define 0. In this paper we
adopt the latter approach. We do not give proofs of the lemmas in this section
because all expressions can be trivially checked with the help of the computer
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programberan written by one of us (N. D. M.), which the reader can download
from our web sites.

Lemma 3.2. There is only one “smallest” (lowest number of occurrence of
variables, 5, and negations, 2) expression of classical disjunction by means of
quantum implications:

a ∪ b = (((a′ →i b′)→i b)→i a)→i a; i = 1, . . . , 5, (3.2)

and seven smallest (5 variables, 4 negations) expressions of classical conjunction
by means of quantum implications, one of which is,

a ∩ b = (a→i ((a→i b)→i (b′ →i a′)′)′; i = 1, . . . , 5. (3.3)

There are two smallest (5 variables, 3 negations) expressions of classical disjunc-
tion by means of quantum disjunctions, one of which is,

a ∪ b = ((a ∪i b′) ∪i (b′ ∪i a))′ ∪i a; i = 1, . . . , 5, (3.4)

and two (5,5) by means of quantum conjunctions, one of which is,

a ∪ b = (((a′ ∩i b) ∩i (b∩i a′))′ ∩i a′)′; i = 1, . . . , 5, (3.5)

An equal number of smallest expressions of classical conjunction by means of
quantum disjunctions and conjunctions we get by using a∩ b = (a′ ∪ b′)′and a∩i

b = (a′ ∪i b′)′ (of course with reversed smallest number of negations).
Any of these equations when added to an ortholattice makes it orthomodular.

Lemma 3.3. Here are samples of the smallest expressions (with their numbers
being given in curly brackets) of classical conjunction and disjunction by means
of both, classical(i = 0) and quantum(i = 1, . . . , 5) implications, disjunctions,
and conjunctions in single equations in any orthomodular lattice:

a ∪ b = ((b→i a)→i (((a→i b′)→i b′)→i a)) {1} (3.6)

a ∪ b = (b∪i (a ∪i ((a ∪i b) ∪i (b′ ∪i a))′)) {16} (3.7)

a ∪ b = ((a′ ∩i b)′ ∩i (a′ ∩i (b∩i (b∩i a)′)′))′ {8} (3.8)

a ∩ b = (a→i ((a→i ((a→i b)→i b′))→i a′)′)′ {23} (3.9)

a ∩ b = ((b′ ∪i (a ∪i (a ∪i b)′)′) ∪i (b′ ∪i a)′)′ {8} (3.10)

a ∩ b = (b∩i (a ∩i ((a ∩i b) ∩i (b′ ∩i a))′)) {16}, (3.11)

where i= 0, . . . , 5. Any of these equations for i= 1, . . . , 5 and Eqs.(3.6), (3.8),
(3.9), and(3.10)for i = 0 when added to an ortholattice makes it orthomodular
(fails in O6). For i = 0, there are no such smallest samples of the type given by
Eqs.(3.7)and(3.11)and there are18samples that passO6of Eq.(3.9) type,4 of
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(3.8) type, and4 of (3.10)type. Samples of the latter ones are,

a ∩ b = (a→i (b→i ((b→i a)→i (b′ →i a′)′)))′ (3.12)

a ∪ b = (b′ ∩i (a′ ∩i ((a′ ∩i b) ∩i (b∩i a′))′))′ (3.13)

a ∩ b = (b′ ∪i (a′ ∪i ((a′ ∪i b) ∪i (b∪i a′))′))′, (3.14)

respectively.

Lemma 3.4. The shortest expressions of some operations defined here by each
other are,

a ∪ b = a ∪0 b = b∪1 (b∪1 a′)′ = a ∪2 (b′ ∪2 a)′ = b∪3 (b∪3 a)

= a ∪4 (b∪4 a) = b∪5 (b∪5 a′)′ (3.15)

a ∪1 b = b∪2 a = (a ∪3 b) ∪3 b = b∪4 (b∪4 a) = a ∪5 (b∪5 a) (3.16)

a ∪2 b = b∪1 a = (b∪3 a) ∪3 a = a ∪4 (a ∪4 b) = b∪5 (b∪5 a) (3.17)

a ∪3 b = b∪4 a = (a ∪1 b′)′ ∪1 (b∪1 a) = (a ∪2 b) ∪2 (b′ ∪2 a)′

= (a ∪5 b) ∪5 (a ∪5 (b∪5 a′))′ (3.18)

a ∪4 b = b∪3 a = (b∪1 a′)′ ∪1 (a ∪1 b) = (b∪2 a) ∪2 (a′ ∪2 b)′

= (b∪5 a) ∪5 (b∪5 (a ∪5 b′))′ (3.19)

a ∪5 b = b∪5 a = ((a ∪1 b)′ ∪1 (a′ ∪1 (b∪1 a))′)′

= ((b∪2 a)′ ∪2 ((a ∪2 b) ∪2 a′)′)′

= ((b∪3 a)′ ∪3 ((b∪3 a) ∪3 a)′)′

= ((b∪4 a)′ ∪4 (b∪4 (b∪4 a))′)′ (3.20)

a ≡0 b = (a′ ≡5 b)′ = (b∪i a)′ ∪i (b′ ∪i a′)′; i = 1, . . . , 5 (3.21)

a ≡1 b = a′ ≡3 b′ = (a ∪1,3 b)′ ∪1,3 (b′ ∪1,3 a′)′

= (a′ ∪2,4 b′)′ ∪2,4 (b∪2,4 a)′

= (a ∪5 (a ∪5 b))′ ∪5 (a′ ∪5 (b∪5 a′)′)′ (3.22)

a ≡2 b = a′ ≡4 b′ = (b′ ∪1,3 a′)′ ∪1,3 (a ∪1,3 (b∪1,3 a))′

= ((a′ ∪2 b)′ ∪2 (a ∪2 (b∪2 a)′)′)′

= (a ∪4 b)′ ∪4 (a′ ∪4 (b′ ∪4 a′))′

= ((b∪5 (b∪5 a′))′ ∪5 (a ∪5 (b∪5 a)′)′)′ (3.23)

Dual expressions on both sides of equations we get by using a∩i b = (a′ ∪i b′)′.
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Lemma 3.5. Samples of expressions of particular quantum disjunctions by means
of all five of them together in single equations are

a ∪1 b = a ∪i (b′ ∪i (b∪i a)′)′ (3.24)

a ∪2 b = b∪i (a′ ∪i (a ∪i b)′)′ (3.25)

a ∪3 b = ((a′ ∪i (b∪i a))′ ∪i ((b∪i (a ∪i b)) ∪i (b′ ∪i a)′)′)′ (3.26)

a ∪4 b = ((b′ ∪i (a ∪i b))′ ∪i ((a ∪i (b∪i a)) ∪i (a′ ∪i b)′)′)′ (3.27)

a ∪5 b = ((b∪i a)′ ∪i (b′ ∪i ((a ∪i b) ∪i (b∪i a′)))′)′, (3.28)

where i= 1, . . . , 5. Dual expressions(a ∪ b by means of a∩i b, and a∩ b by
means of a∪i b and a∩i b) we get by using a∩ b = (a′ ∪ b′)′ and a∩i b =
(a′ ∪i b′)′.

4. QUANTUM ALGEBRA

In Lemma 3.2, Eq. (3.4), we have shown how one can express the classical
disjunction by means of quantum ones in a single equation. So, we can substitute
this expression for the disjunctions in conditions that define an orthomodular lattice
(Definition 2.1) and obtain five formally identical ways to write those conditions
using five quantum disjunctions. But we can do even more and define an algebra
with a lattice ordering as follows.

Definition 4.1. A quantum algebra QA is an algebra〈AO,′ , d〉 such that the
following conditions are satisfied for anya, b, c ∈ AO:

A1 a = a′′ & b ≤ 1 (4.1)

A2 a ≤ ((a d b′) d (b′ d a))′ d a & b ≤ ((a d b′) d (b′ d a))′ d a (4.2)

A3 a ≤ b & b ≤ a ⇒ a = b; a = b ⇒ a ≤ b (4.3)

A4 a ≤ b ⇒ b′ ≤ a′ (4.4)

A5 a ≤ b & b ≤ c ⇒ a ≤ c (4.5)

A6 a ≤ c & b ≤ c ⇒ ((a d b′) d (b′ d a))′ d a ≤ c (4.6)

A7 a ⊥ b & ((a d b′) d (b′ d a))′ d a = 1 ⇒ a′ ⊥ b′, (4.7)

where

a ≤ b
def= ((a d b′) d (b′ d a))′ d a = b (4.8)

1
def= ((a d a) d (a d a))′ d a & 0

def= (((a d a) d (a d a))′ d a)′. (4.9)
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Substitution Rule: Any valid condition or equation one can obtain in the standard
formulation of OML containing only variables,∪i (satisfied for alli = 1, . . . , 5),
and negations written in QA withd substituted for∪i is a valid condition or
equation in QA.

We can easily check that the above ordering is a proper ordering and that
for a, b, c ∈ AO lower upper and greater lower bounds exist – they are given by
((a d b′) d (b′ d a))′ d a and (((a′ d b) d (bd a′))′ d a′)′, respectively. Obviously
we can introduce the following definitionx ∪ y

def= ((a d b′) d (b′ d a))′ d a and
obtain the standard definition of OML as given in section 2. This enables us to
formulate the aboveSubstitution Rule, which actually introduces an infinite number
of conditions. Whether or not they can be replaced with a finite set of individual
conditions is an open problem. Along this rule, A7 becomes Eq. (2.14). Equation
(2.14) is equivalent to Eq. (2.13), which forj = 5 reads (Paviˇcić and Megill, 1999):
a ≡5 b = (a ∩ b) ∪ (a′ ∩ b′) = 1⇔a = b. Since from Eq. (3.23) we havea ≡5

b = ((b∪i a′)′ ∪i (b′ ∪ a)′)′, i = 1, . . . , 5, we get A8. Similarly, we get A9, etc.
Of course, we can never arrive ata ≤ adb, ad (aeb) = a, ad (a′ e (adb)) =
adb, or many other equations we are used to in OML. For example, if we had had
ad (aeb) = a, that would have reduced Eq. (4.12) to Eq. (2.17) and therefore
turn QA into a Boolean algebra.

Lemma 4.2.

A8 (bda′)e (b′ da) = 1 ⇔ a = b, (4.10)

A9 ada′ = 1, (4.11)

A10 ae (bd (bea)) = 0 ⇔ a⊥ b, (4.12)

A11 (((bda)ea)′ db)ea = ae (bd (bea)), (4.13)

A12 adb = 1 ⇔ a′ ⊥ b′, (4.14)

where aeb
def= (a′ db′)′.

On the other hand, Lemma 3.4 indicates that there might be different ways of
expressing classical disjunctions by means of quantum ones. And indeed,a ∪ b =
(a ∪5 b) ∪5 (b′ ∪5 a′)′ does not match any other∪i – meaninga ∪ b 6= (a ∪i b) ∪i

(b′ ∪i a′)′, i = 1, 2, 3, 4. The same is true with Eq. (3.15) for∪3 and∪4, as well as
with a ∪ b = ((a′ ∪1 b′)′ ∪1 b′)′ ∪1 ((a ∪1 b′)′ ∪1 a′)′ anda ∪ b = ((a′ ∪2 b′)′ ∪2

a′)′ ∪2 (b′ ∪2 (b∪2 a′)′)′. Thus we arrive at the following theorem.

Theorem 4.3. In QA one can express classical disjunction in the following five
nonequivalent ways:

a ∪cl1 b = ((a′ db′)′ db′)′ d ((adb′)′ da′)′ (4.15)

a ∪cl2 b = ((a′ db′)′ da′)′ d (b′ d (bda′)′)′ (4.16)
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a ∪cl3 b = bd (bda) (4.17)

a ∪cl4 b = ad (bda) (4.18)

a ∪cl5 b = (adb)d (b′ da′)′. (4.19)

Of course, there are many other such nonequivalent 5-tuples. Altogether, there
are (55)5 5-tuples.

In conclusion, by using the parallels with the standard orthomodular lattice
theory, in QA we can derive all the equations that hold in the lattice theory in
terms of∪i , i = 1, . . . , 5, and negation, even those that cannot be obtained by
the method presented in section 3 – for example,a ∪i (b∩i a) = a ∪i (b′ ∩i a)
or a ∪i (b∪i (a′ ∩i (a ∪i b))) = a ∪i b where neither side of these equations are
equal to particular Beran expressions for alli = 1, . . . , 5, while the equations
themselves do hold for alli = 1, . . . , 5. On the other hand, by usinga ∪ b

def=
((adb′)d (b′ da))′ da and A1–A7 from Definition 4.1 we can embed the standard
orthomodular lattice theory in QA.

5. CONDITIONAL ASSOCIATIVITY OF QUANTUM OPERATIONS

Quantum disjunctions and conjunctions are not associative. However, a con-
ditional associativity, similar to Foulis–Holland (F–H) distributivity, does hold in
any orthomodular lattice as proved in the theorem later. D’Hooghe and Pykacz
(2000, p. 648) proved the theorem fori = 1, 2, and 5, and conjectured it fori = 3
and 4. Here we confirm their conjecture by giving the proofs fori = 3 and 4. By
doing so we prove that the conditional associativity holds for the unified quan-
tum disjunction and conjunction (d ande) from the previous section. For this
purpose, we may takeaCb to bead (a′ eb) = bda, noting that in any OML
a ∪i (a′ ∩i b) = b∪i a is equivalent toaCb for i = 1, . . . , 5.

Theorem 5.1. In any orthomodular lattice any triple{a, b, c} in which one of
the elements commutes with the other two is associative with respect to∪i and
∩i , i = 1, . . . , 5:

aCb & aCc ⇒ (a ∪i b) ∪i c = a ∪i (b∪i c), i = 1, . . . , 5 (5.1)

aCb & bCc ⇒ (a ∪i b) ∪i c = a ∪i (b∪i c), i = 1, . . . , 5 (5.2)

aCc & bCc ⇒ (a ∪i b) ∪i c = a ∪i (b∪i c), i = 1, . . . , 5 (5.3)

aCb & aCc ⇒ (a ∩i b) ∩i c = a ∩i (b∩i c), i = 1, . . . , 5 (5.4)

aCb & bCc ⇒ (a ∩i b) ∩i c = a ∩i (b∩i c), i = 1, . . . , 5 (5.5)

aCc & bCc ⇒ (a ∩i b) ∩i c = a ∩i (b∩i c), i = 1, . . . , 5 (5.6)
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Proof. Since D’Hooghe and Pykacz (2000, p. 648) proved the casesi = 1, 2, 5
we only give sketchy proofs for these cases for the sake of completeness.

For i = 1, Eq. (5.1), given the premise (aCb) and the F–H theorem [aCb&
aCc⇒ (a ∪ b) ∩ c = (a ∩ c) ∪ (b∪ c), etc] we have (sincea′Ca): a ∪1 b = a ∪
(a′ ∩ b) = (a ∪ a′) ∩ (a ∪ b) = a ∪ b. Thus, the conclusion from Eq. (5.1) reads

(a ∪1 b) ∪1 c = a ∪ b∪ c = a ∪1 (b∪1 c).

Equations (5.2) and (5.3) follow analogously. Sincea ∪2 b = b∪1 a anda ∩1,2

b = (a′ ∪1,2 b′)′, we have proved the theorem fori = 1, 2.
For i = 5, (again we haveaCb⇒ a ∪5 b = a ∪ b, etc.) both sides of the

conclusion of Eqs. (5.1), (5.2), and (5.3) reduce toa ∪ (b∪5 c), b∪ (a ∪5 c), and
c∪ (a ∪5 b), respectively.

Let us now consider the casei = 3, Eq. (5.1). According to the first definition
of aCb from Definition 2.3 we have, given the premises (aCbandaCc) and the
orthomodularity property [a ∪ (a′ ∩ (a ∪ b)) = a ∪ b]:

a ∪3 b = (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ (a ∪ b)) = a ∪ (a′ ∩ (a ∪ b)) = a ∪ b

and therefore, using F–H theorem and the second premise and Definition 2.3,

(a ∪3 b) ∪3 c = ((a ∪ b) ∩ c) ∪ ((a ∪ b) ∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ b∪ c))

= [F–H]

= (a ∩ c) ∪ (b∩ c) ∪ (a ∩ c′) ∪ (b∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ b∪ c))

= [Def. 2.3] = a ∪ (b∩ c) ∪ (b∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ b∪ c))

= (b∩ c) ∪ (b∩ c′) ∪ ((a ∪ (a′ ∩ b′)) ∩ (a ∪ b∪ c))

= (b∩ c) ∪ (b∩ c′) ∪ (((a ∪ a′) ∩ (a ∪ b′)) ∩ (a ∪ b∪ c))

= (b∩ c) ∪ (b∩ c′) ∪ ((a ∪ b′) ∩ (a ∪ b∪ c)) (5.7)

The right-hand side of the conclusion in Eq. (5.1) reads

a ∪3 (b∪3 c) = (a ∩ (b∪3 c)) ∪ (a ∩ (b∪3 c)′) ∪ (a′ ∩ (a ∪ (b∪3 c))). (5.8)

Now b∪3 c = (b∩ c) ∪ (b∩ c′) ∪ (b′ ∩ (b∪ c)) and since we also haveaCb
and aCc and therefore,aC(b∩ c), aC(b∩ c′), and aC(b′ ∩ (b∪ c)); we have
aC(b∪3 c) as well. Hence, using Definition 2.3 we reduce Eq. (5.8) to

a ∪3 (b∪3 c) = a ∪ a′ ∩ (a ∪ (b∪3 c)) = a ∪ (b∩ c) ∪ (b∩ c′) ∪ (b′ ∩ (b∪ c))

= (b∩ c) ∪ (b∩ c′) ∪ ((a ∪ b′) ∩ (a ∪ b∪ c)),

which is nothing but Eq. (5.7). Hence, Eq. (5.1) is proved.
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Let us next consider Eq. (5.2). Here we have,a ∪3 b = a ∪ b andb ∪3 c =
b∪ c and therefore,

(a ∪3 b) ∪3 c = ((a ∪ b) ∩ c) ∪ ((a ∪ b) ∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ b∪ c))

= [F–H]

= (a ∩ c) ∪ (b∩ c) ∪ (a ∩ c′) ∪ (b∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ c))

= (a ∩ c) ∪ (a ∩ c′) ∪ (b∩ c) ∪ (b∩ c′) ∪ ((a′ ∩ b′) ∩ (a ∪ c))

= [bCc] = (a ∩ c) ∪ (a ∩ c′) ∪ b∪ ((a′ ∩ b′) ∩ (a ∪ c))

= [bC(a′ ∩ b′), bC(b∪ c)]

= (a ∩ c) ∪ (a ∩ c′) ∪ ((a′ ∪ b) ∩ (a ∪ b∪ c)). (5.9)

On the other hand, we have

a ∪3 (b∪3 c) = (a ∩ (b∪ c)) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∩ (a ∪ b∪ c))

= [F–H] = (a ∩ b) ∪ (a ∩ c) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∩ (a ∪ b∪ c))

= (a ∩ c) ∪ (a ∩ b′ ∩ c′) ∪ (a ∩ b) ∪ (a′ ∩ b) ∪ (a′ ∩ (a ∪ c))

= [aCb] = (a ∩ c) ∪ (a ∩ b′ ∩ c′) ∪ b∪ (a′ ∩ (a ∪ c))

= [bC(a ∩ c′)]

= (a ∩ c) ∪ ((a ∩ c′) ∪ b) ∩ (b′ ∪ b) ∪ (a′ ∩ (a ∪ c))

= (a ∩ c) ∪ (a ∩ c′) ∪ b∪ (a′ ∩ (a ∪ c))

= [bCa′, bC(a ∪ c)]= (a ∩ c) ∪ (a ∩ c′) ∪ ((a′ ∪ b) ∩ (a ∪ b∪ c))

which is nothing but Eq. (5.9) and this proves Eq. (5.2).
As for Eq. (5.3), here we again havecC(a ∪3 b) andb∪3 c = b∪ c. Thus

we get,

(a ∪3 b) ∪3 c = ((a ∪3 b) ∩ c) ∪ ((a ∪3 b) ∩ c′) ∪ ((a ∪3 b)′ ∩ ((a ∪3 b) ∪ c))

= (a ∪3 b) ∪ ((a ∪3 b)′ ∩ ((a ∪3 b) ∪ c))

= [OM property]= (a ∪3 b) ∪ c

= (a ∩ b) ∪ (a ∩ b′) ∪ (a′ ∩ (a ∪ b)) ∪ c

= (a ∩ b) ∪ (a ∩ b′) ∪ ((a′ ∪ c) ∩ (a ∪ b∪ c)) (5.10)

For the right-hand side we have,

a ∪3 (b∪3 c) = (a ∩ (b∪ c)) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∩ (a ∪ b∪ c))

= (a ∩ b) ∪ (a ∩ c) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∩ (a ∪ b∪ c))
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= (a ∩ b) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∪ (a ∩ c)) ∩ ((a ∩ c) ∪ a ∪ b∪ c))

= (a ∩ b) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∪ c) ∩ (a ∪ b∪ c))

= (a ∩ b) ∪ (a ∩ b′ ∩ c′) ∪ (a′ ∩ (a ∪ b∪ c)) ∪ c

= (a ∩ b) ∪ ((a ∩ b′) ∪ c) ∩ (c∪ c′) ∪ (a′ ∩ (a ∪ b∪ c))

= (a ∩ b) ∪ (a ∩ b′) ∪ c∪ (a′ ∩ (a ∪ b∪ c))

= (a ∩ b) ∪ (a ∩ b′) ∪ ((a′ ∪ c) ∩ (a ∪ b∪ c))

which is nothing but Eq. (5.10), which proves Eq. (5.3).
Sincea ∪4 b = b∪3 a anda ∩3,4 b = (a′ ∪3,4 b′)′, we have proved the theo-

rem for i = 3, 4. ¤

We conjecture that the theorem holds in any weakly orthomodular lattice,
WOML (Pavičić and Megill, 1998a) as well.

6. CONDITIONAL DISTRIBUTIVITY OF QUANTUM OPERATIONS

The F–H theorem for conditional distributivity does not in general hold for
the quantum disjunctions and conjunctions. D’Hooghe and Pykacz show this for
∪5, ∩5 [2000, p. 646] and state (in our notation fori ) “the same can be checked
for i = 1, 2, 3, 4” (p. 647). While this is true fori = 3, 4, distributivity in the
forms given by Theorems 6.1 and 6.2 does hold fori = 1, 2. Also, parts of the
Foulis–Holland theorem, presented in Theorem 6.3 hold for anyi and therefore for
the unified quantum disjunction and conjunction (d ande) from section 4.

Theorem 6.1. In any orthomodular lattice any triple{a, b, c} in which one of
the elements commutes with the other two is distributive with respect to∪1 and∩1

in the following sense:

aCb & aCc ⇒ a ∪1 (b∩1 c) = (a ∪1 b) ∩1 (a ∪1 c) (6.1)

aCb & bCc ⇒ a ∪1 (b∩1 c) = (a ∪1 b) ∩1 (a ∪1 c) (6.2)

aCc & bCc ⇒ a ∪1 (b∩1 c) = (a ∪1 b) ∩1 (a ∪1 c) (6.3)

Proof. In this and all other proofs of this section, we will implicitly make use
of the rulesaCb⇒ a ∪i b = a ∪ j b, aCb⇒ a ∩i b = a ∩ j b, aCb & aCc⇒
aCb∪i , ∩i c, andaCb⇒ a, b, a ∪i b, a ∩i b C a∪ j b, a ∩ j b, 0≤ i , j ≤ 5. Also,
aCa∪0,1,3,5, ∩0,1,3,5b, b C a∪0,2,4,5, ∩0,2,4,5b, a ∪0,1 b C a′ ∪0,1 c, a ∩0,1 b C a′

∩0,1 c, a ∪0,1 b C c∪0,2 a′, anda ∩0,1 b C c∩0,2 a′. We will use F–H implicitly.
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Recall that∪0 = ∪.

For (6.1), a ∪ (b∩1 c) = a ∪ (b∩ (b′ ∪ c)) = (a ∪ b) ∩ ((a′ ∩ b′) ∪ a ∪ c)

= (a ∪ b) ∩1 (a ∪ c).

For (6.2), a ∪1 (b∩ c) = a ∪ (a′ ∩ b∩ c) = a ∪ (b∩ a′ ∩ c)

= (a ∪ b) ∩ (a ∪ (a′ ∩ c)) = (a ∪ b) ∩ (a ∪1 c).

For (6.3), a ∪1 (b∩ c) = a ∪ (a′ ∩ b∩ c) = (a ∪ (a′ ∩ b)) ∩ (a ∩ c)

= (a ∪1 b) ∩ (a ∪ c). ¤

Because∪1, ∩1 are not commutative, the “reverse” distributivity (a ∩1 b) ∪1

c = (a ∪1 c) ∩1 (b∪1 c) does not hold for all F–H hypotheses. However, it does
hold for∪2, ∩2:

Theorem 6.2. In any orthomodular lattice any triple{a, b, c} in which one of
the elements commutes with the other two is distributive with respect to∪2 and∩2

in the following sense:

aCb & aCc ⇒ (a ∩2 b) ∪2 c = (a ∪2 c) ∩2 (b∪2 c) (6.4)

aCb & bCc ⇒ (a ∩2 b) ∪2 c = (a ∪2 c) ∩2 (b∪2 c) (6.5)

aCc & bCc ⇒ (a ∩2 b) ∪2 c = (a ∪2 c) ∩2 (b∪2 c) (6.6)

Proof. Theorem 6.1 and the fact thata ∪2 b = b∪1 a, a ∩2 b = b∩1 a. ¤

For certain F–H hypotheses, distributive laws hold for alli = 1, . . . , 5. In
addition, a couple of other cases hold fori = 1, 2.

Theorem 6.3. In any orthomodular lattice the following laws hold:

aCb & aCc ⇒ a ∪i (b∩i c) = (a ∪i b) ∩i (a ∪i c), i = 1, . . . , 5 (6.7)

aCc & bCc ⇒ (a ∩i b) ∪i c = (a ∪i c) ∩i (b∪i c), i = 1, . . . , 5 (6.8)

aCb & aCc ⇒ (a ∩1 b) ∪1 c = (a ∪1 c) ∩1 (b∪1 c) (6.9)

aCc & bCc ⇒ a ∪2 (b∩2 c) = (a ∪2 b) ∩2 (a ∪2 c) (6.10)

Proof. For Eq. (6.7), usingaCb⇒ a ∪i b = a ∪ b and aCb & aCc⇒ aC
(b∪i c) and F–H we can write the conclusion as

a ∪ (b∩i c) = (a ∪ b) ∩i (a ∪ c), i = 1, . . . , 5 (6.11)
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To prove that the right-hand side boils down to the left-hand one is straightforward
and can be done in a complete analogy to the casei = 1 already done previously –
Eq. (6.1). For example, fori = 4 we have,

(a ∪ b) ∩4 (a ∪ c) = ((a′ ∩ c′) ∪ ((a ∪ b) ∩ (a ∪ c))) ∩ (a ∪ b∪ c)

∩ ((a′ ∩ b′) ∪ a ∪ c)

= ((a′ ∩ c′) ∪ a ∪ (b∩ c)) ∩ (a ∪ b∪ c) ∩ (a ∪ b′ ∩ c)

= a ∪ (b∩4 c).

For Eq. (6.8), the proof follows from Eq. (6.11) by symmetry.
The proof of (6.9) seems a little tricky, so we show it in some detail. First,

we show that (under the hypotheses)

(a ∩ b) ∪ (a′ ∩ c) = (a ∪ c) ∩ (b∪ a′). (6.12)

From b ≥ a ∩ b = a ∩ (b∪ a′) andc ≥ c∩ (b∪ a′) we haveb∪ c ≥ (a ∩ (b∪
a′)) ∪ (c∩ (b∪ a′)) = (a ∪ c) ∩ (b∪ a′). Therefore (a ∪ c) ∩ (b∪ a′) = (b∪
a′)∩ (a ∪ c)∩ (b∪ c)= ((a ∩ b) ∪ a′)∩ ((a ∩ b) ∪ c)= (a ∩ b) ∪ (a′ ∩ c), estab-
lishing (6.12). The left-hand side of (6.9) reduces to (a ∩ b) ∪1 c = (a ∩ b) ∪ ((a ∩
b)′ ∩ c)= (a ∩ b) ∪ ((a′ ∪ b′) ∩ c)= (a ∩ b) ∪ (a′ ∩ c) ∪ (b′ ∩ c). The right-hand
side reduces to (a ∪ c) ∩1 (b∪1 c) = (a ∪ c) ∩ ((a ∪ c)′ ∪ b∪ (b′ ∩ c)) = (a ∪
c) ∩ ((a′ ∩ c′) ∪ b ∪ (b′ ∩ c)) = (a ∪ c) ∩ (b ∪ (a′ ∩ c′) ∪ (b′ ∩ c)) = (a ∪
c) ∩ (((b ∪ a′) ∩ (b ∪ c′)) ∪ (b′ ∩ c)) = (a ∪ c)∩ ((b′ ∩ c) ∪1 (b ∪ a′)) =
(a ∪ c) ∩ ((b ∪ a′) ∪ (b′ ∩ c)) = ((a ∪ c) ∩ (b∪ a′)) ∪ ((a ∪ c) ∩ b′ ∩ c) =
((a ∪ c) ∩ (b∪ a′)) ∪ (b′ ∩ c). Using (6.12), we see they are the same.

For (6.10) we use (6.9) anda ∪2 b = b∪1 a, a ∩2 b = b∩1 a. ¤

Similar results can be stated for the dual operations (∪i and∩i interchanged).
In all other cases not shown in the three theorems above, the distributive law does
not hold: all of them fail in orthomodular lattice MO2 (Fig. 1).

If we allow a mixture of the different disjunctions and conjunctions, we can
obtain a distributive law that holds unconditionally.

Theorem 6.4. In any orthomodular lattice the following law holds:

a ∪1 (b∩0 c) = (a ∪1 b) ∩0 (a ∪1 c) (6.13)

Proof. Expanding definitions and using F–H,a ∪1 (b∩0 c) = a ∪ (a′ ∩ b∩ c) =
a ∪ (a′ ∩ b∩ a′ ∩ c) = (a ∪ (a′ ∩ b)) ∩ (a ∪ (a′ ∩ c)) = (a ∪1 b) ∩0 (a ∪1 c).

¤

It is interesting that if we consider all equations of the forma ∪i (b∩ j c) =
(a ∪k b) ∩l (a ∪m c) for all possible assignments 0≤ i , j , k, l , m≤ 5 (65 = 7776
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Fig. 1. Lattice MO2.

possibilities), the equation holds in all OMLs for exactly the one case of (6.13):
i = 1, j = 0, k = 1, l = 0, m= 1. All other 7775 cases fail in lattice MO2.

The “reverse” form of (6.13) holds with∪2 substituted for∪1. Dual results
with ∪i and∩i interchanged can also be stated.

7. AN OPEN PROBLEM

In Megill and Pavičić (2000) we opened an interesting problem on whether
the “distributivity of symmetric identity,” expressed by Eq. (7.7), holds in all or-
thomodular lattices or not and if a particular equation derivable from it in any
orthomodular lattice characterizes the latter lattices. An indication that they might
do so is that they pass all Greechie diagrams we let them run on – with up to
38 atoms and 38 blocks (more that 50 million lattices). We used our program
greechie to obtain the diagrams and our programlatticeg to check the equa-
tions on them (Mckayet al., 2000). On the other hand Eq. (7.7) does not imply the
orthomodularity property – it does not fail in the diagram 06, which characterizes
all orthomodular lattices.

In Megill and Pavičić (2000) we proved several partial results for the above
distributivity. In this section we prove that it holds in Hilbert space and in the
Godowski lattices of the second lowest order (4GO). We recall from Megill and
Pavičić (2000) that a 4GO is any OML (actually any OL) in which the following
equation, which we call 4-Go, holds:

(a→1 b) ∩ (b→1 c) ∩ (c→1 d) ∩ (d→1 a) ≤ a→1 d. (7.1)

We definea ≡ b
def= (a ∩ b) ∪ (a′ ∩ b′) and note thata ≡ b = a ≡5 b holds in all

OMLs.
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Lemma 7.1. In any OML we have,

(a ≡ c) ∪ (b ≡ c) = ((a→2 c) ∪ (b→2 c)) ∩ ((c→1 a) ∪ (c→1 b)) (7.2)

(a ≡ c) ∪ (b ≡ c) ≤ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) (7.3)

((a ∪ b) ≡ c) ∩ (a ≡ b) = (a ≡ c) ∩ (a ≡ b). (7.4)

In any 4GO we have,

(a ≡ b) ∩ ((b ≡ c) ∪ (a ≡ c)) ≤ a ≡ c. (7.5)

Proof. For (7.2), we have,

(a ≡ c) ∪ (b ≡ c) = (b∩ c) ∪ (a′ ∩ c′) ∪ (b′ ∩ c′) ∪ (a ∩ c)

= (b∩ c) ∪ (a′ ∩ c′) ∪ ((b→2 c) ∩ (c→1 a))

= (b∩ c) ∪ (((a′ ∩ c′) ∪ (b→2 c)) ∩ ((a′ ∩ c′) ∪ (c→1 a)))

= (b∩ c) ∪ (((a′ ∩ c′) ∪ (b→2 c)) ∩ (c→1 a))

= ((b∩ c) ∪ (a′ ∩ c′) ∪ (b→2 c)) ∩ ((b∩ c) ∪ (c→1 a))

= ((a′ ∩ c′) ∪ (b→2 c)) ∩ ((b∩ c) ∪ (c→1 a))

= (((a′ ∩ c′) ∪ c) ∪ (c∪ (b′ ∩ c′))) ∩ (((b∩ c) ∪ c′)

∪ (c′ ∪ (c∩ a)))

= ((a→2 c) ∪ (b→2 c)) ∩ ((c→1 b) ∪ (c→1 a))).

In the second step, we use Eq. (3.20) from Megill and Paviˇcić (2000). In the third
and fifth steps we apply the F–H theorem, and in the fourth and sixth steps we
apply absorption laws.

For (7.3), (a→2 c) ∪ (b→2 c) ≤ (a ∩ b)→2 cand (c→1 a) ∪ (c→1 b) ≤
c→1 (a ∪ b) in any OL, so (a ≡ c) ∪ (b ≡ c)= [from (7.2)]((a→2 c) ∪
(b→2 c)) ∩ ((c→1 a) ∪ (c→1 b)) ≤ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)).

For (7.4), we have,

((a ∪ b) ≡ c) ∩ (a ≡ b) = ((a ∪ b) ∩ c) ∪ (a′ ∩ b′ ∩ c′)) ∩ ((a ∩ b) ∪ (a′ ∩ b′))

= (((a ∪ b) ∩ c) ∩ ((a ∩ b) ∪ (a′ ∩ b′))) ∪ ((a′ ∩ b′ ∩ c′)

∩ ((a ∩ b) ∪ (a′ ∩ b′)))

= (((a ∪ b) ∩ c) ∩ (a ∩ b)) ∪ (((a ∪ b) ∩ c) ∩ (a′ ∩ b′))

∪ ((a′ ∩ b′ ∩ c′)∩ (a ∩ b)) ∪ ((a′ ∩ b′ ∩ c′) ∩ (a′ ∩ b′))

= ((a ∩ b∩ c) ∪ 0∪ 0∪ (a′ ∩ b′ ∩ c′))

= (a ≡ c) ∩ (a ≡ b)
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where in the second and third steps we apply F–H and in the last step we apply
Lemma 3.11 of Megill and Paviˇcić (2000).

Finally, (7.5) is proved as follows. Equation (3.30) of Megill and Paviˇcić
(2000), which we repeat below as (7.6), was shown to hold in all 4GOs.

(a ≡ b) ∩ ((b′ ∩ c′) ∪ (a ∩ c)) ≤ a ≡ c. (7.6)

Using Eq. (3.20) of Megill and Paviˇcić (2000) and renaming variables, we see that
this is the same as

(d ≡ e) ∩ (e→2 c) ∩ (c→1 d) ≤ d ≡ c.

Substitutinga ∪ b for d anda ∩ b for e,

((a ∪ b) ≡ (a ∩ b)) ∩ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) ≤ (a ∪ b) ≡ c.

Since (a ∪ b) ≡ (a ∩ b) = a ≡ b holds in any OML, we have

(a ≡ b) ∩ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) ≤ (a ∪ b) ≡ c

(a ≡ b) ∩ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) ≤ ((a ∪ b) ≡ c) ∩ (a ≡ b)

(a ≡ b) ∩ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) ≤ (a ≡ c) ∩ (a ≡ b)

(a ≡ b) ∩ ((a ∩ b)→2 c) ∩ (c→1 (a ∪ b)) ≤ a ≡ c

(a ≡ b) ∩ ((a ≡ c) ∪ (b ≡ c)) ≤ a ≡ c.

where in the third step we use (7.4) and in the last step we use (7.3).¤

Theorem 7.2. The following equation, which we call distributivity of symmetric
identity, holds in all 4GOs(and therefore all nGO, n≥ 4) and thus in the lattice
of all closed subspaces of finite- or infinite-dimensional Hilbert space:

(a ≡ b) ∩ ((b ≡ c) ∪ (a ≡ c)) = ((a ≡ b) ∩ (b ≡ c)) ∪ ((a ≡ b) ∩ (a ≡ c)).

(7.7)

Proof. The result follows immediately from (7.5) and Theorem 2.9 of Megill
and Paviˇcić (2000). ¤

Whether or not (7.7) holds in all OMLs or even in all WOMLs (since it does
not fail in O6) is still an open question. However, the most important question
from the point of view of quantum mechanics, which is whether or not it holds in
Hilbert space, is answered by Theorem 7.2.

Since (7.6) also follows from (7.7), as shown in Megill and Paviˇcić (2000),
the OML variety in which (7.6) holds is the same as the OML variety in which
(7.7) holds. Thus if one of these holds in any OML (our open question), so does
the other.
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Another open question is whether the stronger-looking Eq. (3.29) of Megill
and Paviˇcić (2000), from which (7.6) follows and which we repeat here as (7.8),

(a→1 b) ∩ (b→2 c) ∩ (c→1 a) ≤ (a ≡ c) (7.8)

can be derived (in an OML) from (7.6).

8. ALGORITHMS FOR THE PROGRAMS

In an OML, any expression with two variables is equal to 1 of 96 canoni-
cal forms, corresponding to the 96 elements of the free OML F2. We fix the 96
expressions of Beran (1985, Table 1, p. 82) as our canonical standard.

The programberan takes, as its input, an arbitrary two-variable expression
and outputs the equivalent canonical form. The program can be used to prove or
disprove any two-variable conjecture expressed as an equation, simply by verifying
that both sides of the equation reduce (or do not reduce) to the same canonical form.

Each element of OML F2 can be separated into a “Boolean part” and an “MO2
part” (Navara, 1997). Each of them has relatively simple rules of calculation, and
we use this method in the programberan.6 This is implemented in the program
by checking for either Boolean or MO2 lattice violation of the 96 equations formed
by setting the input expression equal to each of the 96 canonical expressions, and
the unique equation that violates neither lattice gives us the answer.

The programberan is contained in a single file,beran.c, and compiles on
any platform with anANSI C compiler such asgcc. The use of the program is sim-
ple. The operations∪, ∩, and′ are represented by the charactersv,ˆ, and-. (Other
operations are also defined and can be seen with the program’s —help option). As
an example, to see the canonical expression corresponding toa ∪ (a′ ∩ (a ∪ b)),
we type

beran "(av(-aˆ(avb)))"

and the program responds with(avb).
A second program,bercomb, was used to find the minimal expressions shown

in section 3. This program is contained in the single filebercomb.c. Its input pa-
rameters include the number of variable occurrences and the number of negations
(orthocomplementations), and it exhaustively constructs all possible expressions
containing a single binary operation with these parameters fixed. For each expres-
sion it uses the algorithm fromberan.c to determine the expression’s canonical
form which it prints out. When a set of operations is specified, such as→1 through
→5, it prints out the canonical form only when all operations simultaneously result
in that canonical form.

6 The authors wish to thank Prof. Navara for suggesting this method. The reader can download this or any
other afore-mentioned program from our ftp sites: ftp://m3k.grad.hr/pavicic/quantum-logic/programs/
and ftp://users.shore.net/members/n/d/ndm/quantum-logic/
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If v ≥ 2 is the number of variable occurrences andn is ≥0 and≤(2v − 1)
the number of negations, the number of possible expressions containing one or
two different variables is as follows. The number of ways of parenthesizing a
binary operation in an expression withv variables is the Catalan numberCv−1,
whereCi = ( 2i

i )/(i + 1). There are 2v possible ways to assign two variables to an
expression. If we display an expression with no negations in Polish notation, it is
easy to see that there are 2v − 1 symbols and therefore (2v−1

n ) ways to distribute
n negations (disallowing double negations). Thus for fixedv and n, there are
2v( 2v−1

n )Cv−1 possible expressions.
For example, if we type

bercomb 7 O i n

then all 27( 2.7−1
0 )C7−1 = 16896 expressions with 7 variable occurrences and

0 negations are scanned, and the output includes the four smallest implicational
expressions resulting ina ∪ b that we mentioned before Lemma 3.1. We refer the
reader to the program’s —help option for the meaning and usage of the other
bercomb parameters. In this examplei means→1 through→5 andn means don’t
suppress duplicate canonical expressions.

9. CONCLUDING REMARKS

In Pavičić and Megill (1999) we stressed that all the operations in an or-
thomodular lattice are fivefold defined and we illustrated this on the identity op-
erations. The claim was based on Paviˇcić and Megill (1998b) where we proved
that “quantum” as well as “classical” operations can serve for a formulation of an
orthomodular lattice underlying Hilbert space. In 1998, we also put on the web
the computer programberan, which reduces any two-variable expression in an
orthomodular lattice to one of the 96 possible ones as given in Beran (1985).

In effect, in the standard orthomodular lattice formulation (where the “classi-
cal” operations are inherited from the Hilbert space formalism) there are 80 quan-
tum expressions that for compatible variables reduce to 16 classical expressions.
In general all quantum expressions (including “quantum 0” and “quantum 1”) are
fivefold defined. (Detailed presentation of them all we give in section 2.) In our
quantum algebraic approach the situation reverses and we have classical operations
fivefold defined in a quantum algebra formulation.

Still, recently several papers on “some new operations on orthomodular
lattices” appeared in press as, for example, the one by D’Hooghe and Pykacz
(2000) in which they picked out Beran expressions 12, 18, 28, 34, 44, 50, 60,
and 76 and looked at some of their properties. So, for example, in D’Hooghe
and Pykacz (2000, p. 649, bottom) one reads (in our notation): “Theorem 7 al-
lows one to express in many ways any of the studied operations by (any of)
the other(s) orthocomplementation. However, the following example in which we
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express∪1 by ∪5 and shows that the obtained formulas might be rather lengthy:
a ∪1 b = (a ∪5 ((a ∪5 b)′ ∪5 a))′ ∪5 a. It is an open question which of such formu-
las (if any) could be written in a more economical way.” Our approach immediately
closes this open question: all the formulas could be written in a more economical
way and one gets all alternatives in seconds; for example, in the afore-cited ex-
ample, there are over 100 shorter expressions—one of 3 shortest ones is given by
Eq. (3.16)—and there are over 500 of them with the same (5) variable occurrences.
On the other hand, Theorem 6 from D’Hooghe and Pykacz (2000, p. 648) is just a
special case of our Theorem 2.5 from Paviˇcić (1993, p. 1487). Also all the results
from D’Hooghe and Pykacz (2000, section 3.2, p. 646–648), can be trivially ob-
tained using our computer programlatticeg (McKay et al., 2000). In addition,
their two conjectures (p. 648) following from their Theorem 5 (p. 647) one can
support by our programlatticeg with millions of lattices. Hence, it appears
necessary to present our results in detail, give explicit proofs of all our previous
claims, present the most important and relevant outputs of our programs in some
detail, and provide the reader with instructions on how to use our programs that
give answers to virtually all questions one can have on algebraic properties of
two-variable orthomodular formulas in seconds.

Thus, in section 3 we prove several lemmas in which we show how one can
express operations in any standardly defined (in section 2) orthomodular lattice by
each other. Lemma 3.2 gives expressions of classical disjunction (∪) by means of
all five quantum implications→i , i = 1, . . . , 5 and without negations in a shortest
possible single equation—meaning that the equation preserves its form for alli ’s
and that there are no simpler equations with such a property. Expressions of∪
by means of quantum disjunctions (∪i , i = 1, . . . , 5) and conjunctions (∩i , i =
1, . . . , 5) follow from Definition 2.4. Lemma 3.2 gives the shortest expressions of
∪ = ∪0 and∩ = ∩0 by means of→i , ∪i , and∩i , i = 1, . . . , 5, with negation.
Lemma 3.4 gives the shortest expressions of∪i , ∩i , and≡i , i = 0, . . . , 5, by
means of∪i and∩i , i = 1, . . . , 5, with negation.

In section 4 we start with the possibility—opened by Lemma 3.2—of ex-
pressing∪ by means of∪i , i = 1, . . . , 5, in five equations of the same form and
define—in Definition 4.1—the orthomodular lattice by means of one unique quan-
tum operation. We have chosen quantum disjunctiond, but the same, of course, can
be done with quantum conjunctione or implication (the latter being just another
way of writing disjunction) – quantum identity is the only quantum operation that
cannot serve the purpose, as we proved in Paviˇcić (1998). In such a formulation
of orthomodular lattice everything reverses and now classical operations can be
expressed in five different ways as shown by Theorem 4.3.

We stress that the quantum algebra QA (Definition 4.1) is actually completely
defined by its Substitution Rule, and that “axioms” A1–A7 are merely some con-
sequences of that rule. A1–A7 are important in that they show that standard OML
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can be embedded in QA and are included for this reason. However there are many
other nonobvious consequences of QA such as those exemplified in Lemma 4.2.
That lemma only touches the surface of the kind of conditions one can obtain from
QA, and it is possible that QA provides a rich algebraic structure that has yet to
be explored. It also remains an interesting open problem if QA can be finitely
axiomatized.

Lemma 3.3 shows the surprising result that classical disjunction can be
expressed in a single equation that holds in any OML forall 6 disjunctions
∪i , i = 0, . . . , 5. This opens the possibility of an even more general quantum
algebra, with Eq. (3.7) used in place Eq. (3.4) as the basis for A1–A7. In this case
we would replace “i = 0, . . . , 5” for “ i = 1, . . . , 5” in the Substitution Rule. The
same kinds of open questions we brought up for QA would also apply to this more
general algebra.

As for D’Hooghe and Pykacz’s conjecture on a possible conditional associa-
tivity of ∪3,4 and∩3,4 (Hooghe and Pykacz, 2000), we decided that its passage
through millions of Greechie diagrams makes it worth proving and we did so in
section 5. In that way we obtained the conditional associativity for the unified
operationsd ande from section 5.

In section 6 we prove several Foulis–Holland-type conditional distributivities,
some of which are valid for all standard quantum disjunctions and conjunctions
and therefore for the unified quantum disjunction and conjunction (d ande) from
section 4.

As for properties taken over from Hilbert space in section 7 we present two,
given by Eqs. (7.5) and (7.7), which proved to hold in a variety of orthomodular
lattice 4GO (and therefore innGO, n ≥ 4), but which do not fail in any of over
50 million Greechie diagrams we tested the properties on. Thus it remains an open
problem whether the properties hold in any orthomodular lattice and even more
whether Eq. (7.7) holds in an even weaker ortholattice called weakly orthomodular
lattice, WOML.

In section 8 we give algorithms we used to obtain and check all our equations
and proofs for properties involving two variables.

To conclude, the only genuine target that apparently remains for scientific
investigation in algebraic properties of orthomodular lattices in the future are
properties with three and more variables.
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Pavičić, M. (1987). Minimal quantum logic with merged implications.International Journal of Theo-

retical Physics26, 845.
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