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We propose a kind of reverse Kochen-Specker theorem that amounts to generating ortho
modular lattices with exactly one state that do not admit properties of the Hilbert space. We
apply MMP algorithms to obtain smallest orthomodular lattices with 35 atoms and 35 blocks
(35-35) and all other ones up to 38-38. We find out that all but one of them admit exactly one
state and discover several other properties of them. Previously known such orthomodular lattices
have 44 atoms and 44 blocks or more. We present some of them in our notation.
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1. Introduction

If we assumed that values of measured observables of a quantum system in all
possible setups were completely independent of and unaffected by measurements
of other observables of the same system, then-according to the Kochen-Specker
theorem-we would run into a contradiction for particular setups.

Such setups that cannot be given a classical interpretation were not easy to find
and only a handful of them have been found until 2004 by Simon Kochen and E. P.
Specker [1], Asher Peres [2], Jason Zimba and Roger Penrose [3], Adan Cabello [4],
Michael Kernaghan [5] and others [6-10]. In 2004 we designed an algorithm and
wrote programs for exhaustive generation of Kochen-Specker (KS) setups by means
of MMP diagrams (hypergraphs), state evaluation, and interval analysis [11, 12].

In a 3D space there is a correspondence between the MMP diagrams applied to
a generation of orthogonal vectors from the Hilbert space and the Greechie diagrams
of orthomodular lattices (OMLs) underlying the space. The correspondence stems
from the fact that a 3D system of equations representing orthogonalities as defined
in a KS setup can have real solutions only for loops of order five and bigger
and that means that MMP diagrams can be interpreted as Greechie diagrams of
OMLs [12]. (Greechie diagrams with a loop of order less then five do not represent
a lattice.) Hence, when we want to find KS vectors we first find OMLs that do not
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admit a classically strong set of states (Definition 2.3) of type 0-1 and only then we
look whether there are underlying vectors according to the procedure given in [12].

This result also enables us to take the opposite approach and find OMLs that
do not admit a strong set of states at all (Definition 2.3). Since any Hilbert space
admits a strong set of states this means that such OMLs cannot underly any Hilbert
space and that there cannot exist "quantum states" defined on such OMLs in the
same sense in which there cannot exist 0-1 ("classical") states on KS OMLs. Thus
we can view our generation of OMLs that do not admit a strong set of states as
a kind of reverse Kochen-Specker theorem. Of course, since no strong set of states
is admitted there can be no vectors underlying these OMLs and they cannot be
used for proving the Kochen-Specker theorem.

Nevertheless the project turns out to be equally complicated as the aforementioned
exhaustive generation of OMLs that do not admit 0-1 for the aforementioned Kochen
Specker setups but fortunately our previous results help [12-14].

Our approach is based on generating and recognising orthomodular lattices that
do not admit any of the properties of Hilbert lattices underlying Hilbert space. So,
no set of experimental detections along directions determined by such orthomodular
lattices could be consistent with any quantum measurement. Note here that we cannot
have a simple inversion, i.e. we cannot have classical measurement that would not
be quantum because the distributivity is a stronger property than orthomodularity or
modularity and non-orthomodularity immediately means non-distributivity as well.
We can carry out a classical algorithm on a quantum computer but not the other
way round.

In this paper we investigate one of possible realisations I of the approach
orthomodular lattices with "exactly one state," reviewed in 2008 by Mirko Navara
[16] and also called nearly exotic [17]. Orthomodular lattices with exactly one state
were considered by Frederic W. Shultz [18], Pavel Ptak [17], Mirko Navara [19],
Hans Weber [20] and others [21, 22]. They proved to be useful in obtaining many
new properties of orthomodular lattices and other algebras.

We realized that orthomodular lattices with exactly one state are examples of
our "nonquantum" lattices after we proved that their single states cannot belong to
a strong set of states. We then noticed that apparently no one of the authors pointed
out that their orthomodular lattices with exactly one state do not admit a strong set
of states and apparently also not any stronger condition than the orthomodularity
itself and we considered that worth checking.

Our approach in the present paper is to apply our algorithm for exhaustive
generation of arbitrary 3-dim (3D) MMP diagrams to obtain orthomodular lattices
with exactly one state. As an example we generate the smallest Greechie diagrams
of the kind with 35-35 atomslblocks (vertices/edges) through 38-38 atoms/blocks.?

1We also pursue other possible alleys for finding nonquantum conditions imposed on either orthomodular
lattices or Hilbert space vectors [15].

2In [16] an orthomodular lattice with 44 atoms and 44 blocks [19] was cited as the smallest known example
of orthomodular lattices with exactly one state.
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some of them graphically and discuss their properties. We also announce a new
generation of algorithms and programs that will be specially designed for obtaining
such lattices for arbitrary high number of atoms/blocks theoretically and much higher
number of them realistically.

2. Orthomodular lattices, MMP diagrams, and states

Closed subspaces of the Hilbert space form an algebra called a Hilbert lattice. A
Hilbert lattice is a kind of orthomodular lattice. In any Hilbert lattice the operation
meet, a n b, corresponds to set intersection, HanHb, of subspaces Ha, Hb of
Hilbert space H, the ordering relation a :::: b corresponds to Ha S; Hb' the operation
join, aU b, corresponds to the smallest closed subspace of H containing HaUHb'
and the orthocomplement a' corresponds to H;, the set of vectors orthogonal to
all vectors in Ha . Within Hilbert space there is also an operation which has not
a parallel in the Hilbert lattice: the sum of two subspaces H; +Hb which is defined
as the set of sums of vectors from Ha and Hb. We also have Ha+H; = H.

One can define all the lattice operations on Hilbert space itself following the
above definitions (HanHb = HanHb' etc.). Thus we have HaUHb = Ha+ Hb =
(Ha+ Hb).l..l. = (H; nH;).l., [23, p. 175] where He is the closure of He> and
therefore Ha+ Hb S; Ha U Hb. When H is finite-dimensional or when the closed
subspaces Ha and Hb are orthogonal to each other then Ha+ Hb = Ha U Hb [24,
pp. 21-29], [25, pp. 66, 67], [26, pp. 8-16]. Every Hilbert space is orthomodular:
v_ def v .l..l. v
I ~a = Hb = (Han I ~b) U (Ha n Hb) = I t: ===} Ha = Hb.

Using the above operations we can define orthomodular lattice as follows.

DEFINITION 2.1. An orthomodular lattice (OML) is an algebra (.co,' , U, n) such
that the following conditions are satisfied for any a, b, c E .co [27, Ll-L6 &
L7 '(Theorem 3.2)]:

aUb=bUa,

(aUb)Uc = aU(bUc),

a" = a,

aU (b Ubi) = b Ubi,

aU(anb) = a,

an b = (a' U b ')',

a == b = 1 ===} a = b,

(1)

(2)

(3)

(4)
(5)
(6)
(7)

where a == b ~ (a n b) U (a' n b'). In addition, since aU a' = b U b ' for any
a, b E .co, we define the greatest element of the lattice (1) and the least element
of the lattice (0):

1def U I=a a, Odef n I=a a (8)
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the ordering relation (::s) on the lattice:

~ anb=a ~ aUb=ba::sb

and the orthogonality

a1..b ~ o s b',

(9)

(10)

Now let us look at the orthogonal vectors that determine directions in which
we can orient our detection devices and therefore also directions of observable
projections. We can choose one-dimensional subspaces Ha, ... , He as shown in
Fig. 1, where we denote them as a, ... , e.

c

d a

b

e
d '

d

o

c'

c

Fig. I. MMP/Greechie diagram and its corresponding Hasse diagram.

If we used Greechie diagrams for the purpose, we would obtain the following
structure of Hasse diagrams for OMLs of one-dimensional Hilbert subspaces. The
given orthogonalities are a 1.. b, c, d, e since a ::s b', c', d', e', b 1.. c since b ::s c', and
d 1.. e since d ::s e', Also, e.g. b' is the complement of b and that means a plane
to which b is orthogonal: b' = a U c. Eventually bUb' = 1 where 1 stands for H.
However, we should better use MMP diagrams for which the bare orthogonalities
between vectors suffice without the exponentially increasing complexity of Hasse
diagrams.

Thus we generate orthomodular lattices as Hilbert vectors with the help of MMP
diagrams that are defined by means of the following MMP algorithm [11, 12] (see
a graphical representation in [12]):

(i) Every vertex (atom) belongs to at least one edge (block).
(ii) Every edge contains at least 3 vertices.

(iii) Edges that intersect each other in n - 2 vertices contain at least n vertices.
As opposed to Greechie diagrams, MMP ones are bare hypergraphs-set of

vertices and edges with no other meaning or conditions imposed on them. Greechie
diagrams are by definition a shorthand notation for Hasse diagrams; e.g. they have
a built-in condition that they cannot contain loops of order (3) 4 or less for
describing (partially ordered sets) lattices. MMP diagrams do not have any such
limitation. For example, to obtain Kochen-Specker vectors we have used 4D MMP
diagrams with loops of order 2.
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However, we always build additional conditions into the generation algorithm
depending on application. For instance, while generating 3D OMLs or 3D Hilbert
vectors we built in the orthogonality conditions-by means of a preliminary pass.
In 3D they have the same effect as the condition of not having loops of order 4
or less but are much more efficient and speed up the programs tremendously. The
3D MMP diagrams which we obtain in the next section are also Greechie diagrams
because 3D MMP diagrams applied to generation of either Hilbert vectors or OMLs
are isomorphic (at the level of vertices and edges) to correlated Greechie diagrams.

We now ascribe a state (a value) to each lattice element in the following standard
and well-known way.

DEFINITION 2.2. A state on an orthomodular lattice OML is a function m :
OML ---+ [0, 1] (for real interval [0, 1]) such that m(1) = 1 and a .L b ::::}
mea U b) = mea) + m(b).

This implies that

(Vm E S) (m(a) + mea') = 1)

and
(Vm E S) (a :s b ::::} (m(a):S m(b)) (11)

for all elements in OML.
To connect values obtained by a measurement with the structure of OML we

introduce the so-called strong set of states following Mayet [28].

DEFINITION 2.3. A nonempty set S of states on an OML is called a strong set
of states if

(Va, b e OML)«(Vm E S)(m(a) = 1 ::::} m(b) = 1)) ~ a:S b). (12)

Following [13, 29], we also introduce a classically strong set of states as follows.

DEFINITION 2.4. A nonempty set S of states on an OML is called a classically
strong set of states if

(3m E S)(Va, b E OML)«m(a) = 1 ::::} m(b) = 1) ~ a : b). (13)

We assume that OML contains more than one element and that an empty set of
states is not strong.

THEOREM 2.1. Any OML that admits a classically strong set of states is
distributive.

Proof: As given in [13]. D

Note that we can write Eq. (12) as

(Va, bE OML)«(Vm E S)(m(a) = 1 ::::} m(b) = 1)) ::::} a:S b) (14)

because the {::: part of ~ in Eq. (12) follows from Eq. (11) and we can drop it
in Eq, (14) as redundant. From Eq. (14), assuming that an empty S is not strong
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and that OML contains more than one element and adding the redundant {= from
Eq. (11) we obtain

(Va, b e L)((:3m E S)((m(a) = 1 ::::} m(b) = 1) {} a::: b». (15)

The two assumptions (OML contains more than one element and an empty set
of states is not strong), which we need to make the predicate calculus relationship
between the second V in Eq. (14) and :3 in Eq. (15) work, will always hold for any
measurement or theoretical consideration we might be interested in for any realistic
application. Notice also that any classically strong set of states is strong (in the
sense of Definition 2.3) as well, but not the other way round.

Now, if we assume that any m is classically always predetermined, i.e. the same
for all the elements of OML, then we will get Eq. (13) from Eq. (15) since in
that case we can move the existential quantifier to the front. Hence, a classical
measurement evaluating conditions defined on an OML that admits a classically
strong set of states give the same outcomes as a classical probability theory on
a Boolean algebra, because we can always find a single state (probability measure)
for all lattice elements. A quantum measurement, on the other hand, consists of
two inseparable parts: an OML and a quantum probability theory, because we must
obtain different states for different OML elements.

3. Orthomodular lattices with exactly one state

To find orthomodular lattices with exactly one state we are first tempted (following
the previously found examples [18-20]) to look at the lattices with an equal number
of atoms and blocks. However, in that case we might give every atom the same
value, but it is not necessarily the only state. Thus we have decided to do both,
generate and scan OMLs with an equal number of atoms and blocks.

To carry out the generation we used algorithms and programs for generation of
MMP, Greechie, and bipartite-graph diagrams, described in [12, 14, 15], respectively.
(Note that both MMP diagrams and Greechie diagrams are hypergraphs.) To carry
out the scanning and drawing of the diagrams we used algorithms and programs for
finding states on lattices, described in [13] with some additional features presented
in [15].

We encode MMP hypergraphs by means of alphanumeric characters. Each vertex
(atom) is represented by one of the following alphanumeric characters: 12345678

9ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!" #$
%&'()*-/:;<=>?«l[\]'-'(Il- .

Each block is represented by a string of characters which represent atoms without
spaces. Blocks are separated by comas without spaces. All blocks in a line form
a representation of a hypergraph; their order is irrelevant-however we shall often
present them starting with blocks forming the biggest loop to facilitate their possible
drawing; the line must end with a full stop; for a hypergraph with n atoms all
characters up to the n-th one, from the list given above, must be used without
skipping any of the characters.
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Navara presented his 44-44 OML (44 atoms and blocks) with only one state
(1/3 for each atom) (tire 44) in [19] and gave its figure in [16]. We translated the
figure in our formalism so as to read: (44-44) 123,345,567,789, 9AB, BCD, DEF, FGH, HIJ,

JKL, LMN,NOP, PQR, RST, TUV, VWX,XYZ, Zab, bcd,def, fgh, hi1,c1E,e3G,g51, i7K,29M,4BO,6DQ,8FS,AHU,

CJW,ELY,GNa,IPc,KRe,MTg,OVi,QX2,SZ4,Ub6,Wd8,YfA,ahC.

From Hans Weber's 73-78 OML without group-valued states? [20] we obtained
(by just dropping the first 5 blocks from his 73-78-no-group-valued Greechie diagram
given in footnote 3) the following OML with exactly one state (113) : (73-73) BCl,

PQR, RST, TUV, VWX,XYZ,ZaP, nop, pqr, rst, tuv, vwx,xyn, DEF, FGH, HIJ,JKL, LMN, NOD, bcd,def, fgh, hij,jkl,

Imb,z!"," #$,$%&,&'(. 0*, *-z, /EK,28G,310,4AF,6CH, Pci,QWe, Rgm, SYd, Uaf, n!' ,ou#, p%-,qw" ,sy$, lPn,

1Vk,2Sq ,2hu ,3bs,4Qv,4Up,4Yj,5gz,6Sy,6W(.6al,7cw,8Q$, 9Tt,9Z) ,Am#, Bd%, DT!, Eer, Fc*, GXx,IZ" ,Jf', LWo,

Mgx, Mk&. Hans Weber in his construction obtained a 73-78 OML with exactly one
state."

Our generation is pursued by means of two different algorithms: a direct generation
of all possible Greechie diagrams (via generation of MMP diagrams + orthogonality)
and by generation of bipartite graphs that correspond to hypergraphs (OMLs) with
equal number of atoms and blocks. The generation and procedure was described
in detail in [14]. There we also gave the number of 35-35 (5), 36-36 (1), 37-37
(0), and 38-38 (8) OMLs, but not the very lattices (apart from 36-36). Now we do
so and we also scan them for admitting exactly one state to obtain the following
results.

Among the five 35-35 OMLs there is one which is dual to itself-when we
exchange atoms for blocks and vice versa we obtain an OML which is isomorphic
to the original one. The latter OML is shown in Fig. 2b and it does admit more
than one state.

The first two states found by our program are:

{ I I I I I I I I I I I I I I I I I I I I I 2 I 2 2 I I 2 °120}
(1)6' 2 '2'6' 2 '2' 6' 6' 2 ,(A)2' 6' 6' 2 '6' 2' 6' 2' 6 ,(J)6' 2' 3 '0'3 '3 '0'3 ,0, 3 ,(T)3' 3' 3' '3' 3 ,(Z)

{(1)4, ~,~, 4, ~,~, 4,4, ~ ,(A)~, 4,4, ~,4, ~,4, ~,4 ,(J) 4, ~,~, ~ ,0, ~,~ ,0, ~ ,O,(T)~, ~ ,0, ~,~ ,O,(Z)~}

where the values are for the aforementioned alphanumeric characters for the atoms
in the above order from 1 to z. Some atoms are indicated.

All other four 35-35 OMLs have exactly one state (113). One of them is drawn
in Fig. 2(a). It has a mirror symmetry with respect to a vertical line drawn through
atoms V,O,Y. The remaining 3 hypergraphs are given below. The reader can easily
draw them since the first 16 blocks (chained) form a loop (hexadecagon).

3There is a misprint in Table I of [16]: Weber's OML does not have 74 atoms, 78 blocks, and 156 elements
but 73 atoms, 78 blocks, and 154 elements: (73-78-no-group-valued) 123/,345,567,789,9AB,BCl,PQR,RST,
TUV,VWX,XYZ,ZaP,nop,pqr,rst,tuv,vwx,xyn,DEF,FGH,HIJ,JKL,LMN,NOD,bcd,def,fgh,hij,jkl,lmb,z!" ,"#$,
$%&, &'(. 0*, *-z, /EK, 28G, 310,4AF,6CH, Pei, QWe, Rgm,SYd, Uaf, n!',ou#, p%-,qw" ,sy$, lPn, 1Vk, 2Sq,2hu,
3bs,4Qv,4Up,4Yj,5gz,6Sy,6W(,6al,7cw,8Q$,9Tt,9Z),Am#,Bd%,DTI,Eer,Fc*,GXx,IZ" ,Jf',LWo,Mgx,Mk&.

4We can obtain a 73-78 variety of Weber's original 73-78 with exactly one state if we drop "I" in the first
block (the only 4 atom block; see footnote 3) of his "73-78-no-group-valued." That single state OML has 148
elements.
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Fig. 2. (a) OML with 35 atoms and 35 blocks that admits exactly one state: (35-35a) XYZ, Z5J, JNK, KFP,
P38,8L7,7T9,9GW,WVU,UE6,6M1,lR2,2CQ,QHI,ISD,DAX,RST,OPQ,LMN,GIM,EKT,BCL,9AO,560,34R,
4AN,5BS,BFW,2JV,4HU,8DV,7HZ,3GY,lFX,CEY.; (b) OML with 35 atoms and 35 blocks that is dual to
itself and admits more than one state: (35-35e) XYZ,Z3H,HIT,TKJ,J1V,VE8,8S7,72L,LMN,N4C,CFU,UGA,
A9R,R56,6WD,DBX,UVW,RST,OPQ,GIQ,FKP,EIN,DKM,BCS,460,380,15L,3AM,lBQ,29P,2HW,4JY,9EX,
7GY,5FZ.

(35-35b) YXZ,Z3J,JTK, KNG,GU6,65R, R9A,AWE, EMI, IFQ,Q2B, BCS,S87, 701, 1VH, H4Y,

UVW,RST,OPQ,LMN,HIT,DKP,48L,360,25L,3CM,4AP,19N,2JW,CDV,8FU,BGY,9FZ,7EX,5DX.

(35-35c) YXZ,ZFH,HIM,MLN,NKJ,J4S,SB3,3P9,91U,UVW,WTQ,QAG,GCE,E67,702,28Y,

RST,OPQ,FGK,DEI,ABM,89K,5LP,4HO,5FR,5DV,4CU,17R,2BV,8IT,6NW,CLY,DJX,lAX,36Z.

(35-35d) XYZ, ZFH, HIM, MLN, NJK, K8T, TWQ, QAE, EGC,C4U,U92,2S7,7Pl, 1VB, BR3,36X,

UVW,RST,OPQ,FGK,DEI,ABN,891,67G,5LS,4JP,4HR,5FO,5DV,390,6MW,CLY,DJX,2AZ,18Y.

There is only one 36-36 OML which is dual to itself and has only one state
(1/3 for each atom). Its figure, that shows a cyclic (9) symmetry, is given in Fig. 2
of [14]. Here we write it down starting with 18 blocks that form the biggest loop
(octadecagon).
(36-36) XWY, YTS,SLP, PQ7, 7RO,OZJ,J5B, BN8,82F, FCV, VH4,416,6IA,A9M, MK3, 3GU, UDE, EaX,

NRX,MQW,LUZ,KVa,KOT,IPa,GHY,FWZ,BDQ,ACR,9HJ,8GI,6DT,5CS,4LN,29E,135,127.

There are no 37-37 OMLs and there are eight 38-38 OMLs. No one of the latter
OMLs is dual to itself and they all have only one state (1/3). Using the programs
we introduced in [13], we write them down so as to put the blocks that form the
biggest loops [enneadecagons (19-gons) for the first seven and an octadecagon for
the eighth] to the front (with chained blocks):
(38-38a) abc,c12,2L9,98J,JHU,UPQ,QKS,SNO,07Y,YXZ,ZWV,VA5,5T4,4MB,BCD,DIF,FEG,GR3,36a,

TUY, RSW,LMQ, IJW,AG H,EMZ,69X, DKX,3CP,8CO,46N,7AL, 1FN,1PV,2RT,5Kb,8Eb,71a, BHe.

(38-38b) bac,cF3,3SX,XI7,7GV,VRl,14L,LZM,M9T,TNO,OAW,WPQ,QJB,BCH,HDE,E5Y,Y2U,UK6,68b,

XYZ,UVW,RST,IJK,FGH,8QZ,6CS,34P,24N,8GN,9EP,ACL,5JR,DIO,FKM,lDb,2Ba,5Ac,79a.
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(38-38c) abc,c65,5ET,TZU,UIF,FGH,H4K,KLW,WIJ,J7C,CAB,BV9,93N,NMY,YDP,POS,SQR,RX8,82a,
XYZ,VWZ,DEJ,89E,6SV,7HX,5AL,AGP,2CM,6FM,INQ,2KO,lLR,4QT,30U,lDb,Gla,4Bb,37c.
(38-38d) cba,a95,5FQ,QUP,PM2,2AV,VWZ,ZYX,X47,76E,E3T,TN8,8IB,BlS,SDH,HJO,OKL,LRC,CGc,
TUY,RSW,MNO,IJZ,GHU,DEF,CFI,9AB,7AG,9LY,5NW,lMX,3KV,4KQ,6PR,13c,2Db,48b,6Ja.
(38-38e) acb,b59,9SR,RG8,83V,VWU,UIP,POY,YCN,NML,LQ2,2FT,T7X,XAE,EDH,H61,IKJ,JZB,B4a,
XYZ,STW,QRZ,FGH,CKW,9DN,78M,5AK,4AL,BDV,5FP,UM,310,6QU,40S,23c,67b,lEc,CGa.
(38-38f) XZY,YTO,OA2,24a,a13,3E6,6SH,HFb,b97,7C8,8QJ,JKW,WUV,VRP,PDM,MLN,NIB,Bc5,5GX,
abc,STW,QRZ,HIZ,FGV,DEY,BCT,9AR,56A,48G,2IU,lKX,lCP,7EU,9KN,FL0,4MS,3LQ,DJc.
(38-38g) bac,c2J,JKY,YUT,T3D,DCE,EFR,R9H,HZI,157,7G6,6XN,NOQ,QWP,P8A,AIL,LMS,SV4,4Bb,
XYZ,VWZ,RSU,FGW,9AB,8EK,5PU,3MQ,BGT,2DV,4KO,1IO,29N,7JM,CLX,5Cb,68a,lFc,3Ha.
(38-38h) abc,elK, KLX,XMN, N94,43U, UZT, T6D, DGA,AVI, IJS,SPQ, QWO, 02H, H78,8BF, FRC, C5a,
XYZ,VWZ,RSY,GHY,EFW,CDL,9AB,6NQ,57M,EJM,3LO,14R,BKP,2JT,17V,5PU,68b,29a,EGc,3Ib.

Thus we obtain the following theorem.

THEOREM 3.1. There exist precisely 5, 1, 0, and 8 OMLs with 35, 36, 37, and
38 both atoms and blocks, respectively, and none of them admits a strong set of
states.

4. Conclusion

In this elaboration we formulated a kind of reverse Kochen-Specker theorem
that amounts to finding conditions imposed on a basic algebra of the Hilbert space
as well as on Hilbert space vectors that cannot be satisfied by any quantum system.
In 3D space this also applies to counterfactual orientation of experimental setups in
the same way in which it works for Kochen-Specker setups. With the latter setups
it is impossible to obtain consistent classical 0-1 measurement outcome and with
our setups it is impossible to obtain consistent quantum outcomes.

Our "reversing of Kochen-Specker theorem" consists in generating basic quantum
algebras-orthomodular lattices (OMLs)-that do not admit properties of the Hilbert
space. There are many possible approaches to such a generation depending on
what properties we want to consider. In this paper we decided to investigate the
state properties of OMLs in a 3D space because states impose complex structures
on ortholattice (algebra satisfying conditions (l )-(6) in Definition 2.1)-for instance
an ortholattice with exactly one strong state is a Boolean algebra. Therefore we
examined recent results-many of them reviewed in Mirko Navara's review [l6]-on
orthomodular lattices with exactly one state.

Using MMP algorithms, we previously used to exhaustively generate Kochen
Specker vectors [11, 12], we obtained five smallest OMLs in 3D space with 35 atoms
and 35 blocks (35-35), one 36-36, no 37-37, and eight 38-38. The smallest previously
found such an OML has 44 atoms and 44 blocks [19]. OMLs that admit exactly
one state have been previously investigated and used to obtain various properties
of OMLs and related algebras and structures [16]. MMP diagrams (hypergraphs)
and algorithms are briefly reviewed in Sections 2 and 3 and in detail in the cited
references. In 3D MMP for Hilbert vectors and OMLs amounts (at the level of
bare vertices and edges).
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Among five 35-35 OMLs we generated, four have exactly one state (113 for each
atom) and the fifth, which is dual (with roles of atoms and blocks exchanged) to
itself, has at least two states. The MMP diagrams (Greechie diagrams) of all five
35-35 OMLs are given in Section 2 as well as the states of the dual OML. We
also provide figures of 35-35a with a single state and of the dual 35-35e in Fig. 2.

OML 36-36 is dual to itself and has exactly one state (1/3 for each atom). All
of the 38-38s are dual to themselves and they all have exactly one state (1/3 for
each atom). We give MMP (Greechie) diagrams for all of them in Section 2.

We carried out several other tests on the aforementioned OMLs and obtained
the following results:

• None of the obtained states belongs to a strong set of states, while it is
apparently possible to have an OML admitting only one strong state as indicated
by Ptak results for posets [17]. Thus the former states are nonquantum (and
therefore also nonclassical), while the latter are classical (and therefore also
quantum). Therefore we might view the former states as a kind of "reverse
Kochen-Specker theorem" as explained in Introduction.

• None of the generated OMLs pass any known stronger than orthomodularity
condition as, e.g. Godowski equations (because they do not admit strong states)
or orthoarguesian equations [29].

• OMLs that admit exactly one state that does not belong to a strong set of
states are not limited only to those OMLs that have equal number of atoms
and blocks as 73-78 given in footnote 4 proves. However, for lattices that
have less blocks than atoms this is still an open question. We did not scan
such lattices so far because that is computationally very demanding but it is
one of our future projects.

• OMLs with equal number of atoms and blocks do not necessarily have only
one state as dual 35-35e in Fig. 2b shows. Other duals, 36-36 and all 38-38,
have only one state though.

We should stress here that the above OMLs with exactly one state cannot be
enlarged so as to become a sublattice of a Hilbert lattice because the orthoarguesian
equations that have to hold in any Hilbert lattice fail in all above OMLs. And if an
equation fails in a sublattice (meaning a subalgebra) it fails in the lattice as well.

To obtain further results both on bigger OMLs that admit only one state and on
OMLs that do not admit other quantum conditions we are developing new algorithms
some of which are presented in [15]. These algorithms will however not enable
a generation of lattices with less blocks than atoms at all, so the aforementioned
project of scanning lattices with less blocks than atoms will not make use of them.

We are developing new algorithms because the algorithms (gengre) we developed
for generation of lattices with arbitrary number of atoms and blocks and used for
obtaining Kochen-Specker vectors spend years of CPU time on our clusters. So, to
go over 40 atoms and blocks we had to specialise the algorithms [15].

In the end we should stress that our results also contribute to the theory of
orthomodular lattices and to the theory of graphs and hypergraphs.
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