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Abstract: Recently, quantum contextuality has been proved to be the source of quantum
computation’s power. That, together with multiple recent contextual experiments, prompts improving
the methods of generation of contextual sets and finding their features. The most elaborated
contextual sets, which offer blueprints for contextual experiments and computational gates, are
the Kochen–Specker (KS) sets. In this paper, we show a method of vector generation that supersedes
previous methods. It is implemented by means of algorithms and programs that generate hypergraphs
embodying the Kochen–Specker property and that are designed to be carried out on supercomputers.
We show that vector component generation of KS hypergraphs exhausts all possible vectors that can
be constructed from chosen vector components, in contrast to previous studies that used incomplete
lists of vectors and therefore missed a majority of hypergraphs. Consequently, this unified method
is far more efficient for generations of KS sets and their implementation in quantum computation
and quantum communication. Several new KS classes and their features have been found and are
elaborated on in the paper. Greechie diagrams are discussed.
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1. Introduction

Recently, it has been discovered that quantum contextuality might have a significant place in
a development quantum communication [1,2], quantum computation [3,4], and lattice theory [5,6].
This has prompted experimental implementation of 4-, 6-, and 8-dimensional contextual experiments
with photons [7–13], neutrons [14–16], trapped ions [17], solid state molecular nuclear spins [18],
and paths [19,20].

Experimental contextual tests involve subtle issues, such as the possibility of noncontextual hidden
variable models that can reproduce quantum mechanical predictions up to arbitrary precision [21].
These models are important because they show how assignments of predetermined values to dense
sets of projection operators are precluded by any quantum model. Thus, Spekkens [22] introduces
generalised noncontextuality in an attempt to make precise the distinction between classical and
quantum theories, distinguishing the notions of preparation, transformation, and measurement of
noncontextuality and by doing so demonstrates that even the 2D Hilbert space is not inherently
noncontextual. Kunjwal and Spekkens [23] derive an inequality that does not assume that the value
assignments are deterministic, showing that noncontextuality cannot be salvaged by abandoning
determinism. Kunjwal [24] shows how to compute a noncontextuality inequality from an invariant
derived from a contextual set/configuration representing an experimental Kochen-Specker (KS) setup.
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This opens up the possibility of finding contextual sets that provide the best noise robustness in
demonstrating contextuality. The large number of such sets that we show in the present work can
provide a rich source for such an effort.

Quantum contextual configurations that have been elaborated on the most in the literature are the
KS sets, and, in this paper, we consider just them. In order to obtain KS sets, so far, various methods of
exploiting correlations, symmetries, geometry, qubit states, Pauli states, Lie algebras, etc., have been
found and used for generating master sets i.e., big sets which contain all smaller contextual sets [25–37].

All of these methods boil down either to finding a list of vectors and their n-tuples of
orthogonalities from which a master set can be read off or finding a structure, e.g., a polytope,
from which again a list of vectors and orthogonalities can be read off as well as a master set they build.
In the present paper, we take the simplest possible vector components within an n-dimensional Hilbert
space, e.g., {0,±1}, and via our algorithms and programs exhaustively build all possible vectors and
their orthogonal n-tuples and then filter out KS sets from the sets in which the vectors are organized.
For a particular choice of components, the chances of getting KS sets are very high. We generate KS sets
for even-dimensional spaces, up to 32, that properly contain all previously obtained and known KS
sets, present their features and distributions, give examples of previously unknown sets, and present a
blueprint for implementation of a simple set with a complex coordinatization.

2. Results

The main results presented in this paper concern generation of contextual sets from several basic
vector components. Previous contextual sets from the literature made use of often complicated
sets of vectors that the authors arrived at, following particular symmetries, or geometries,
or polytope correlations, or Pauli operators, or qubit states, etc. In contrast, our approach considers
McKay–Megill–Pavičić (MMP) hypergraphs (defined in Section 2.1) from n-dimensional (nD) Hilbert
space (Hn, n ≥ 3) originally consisting of n-tuples (in our approach represented by MMP hypergraph
edges) of orthogonal vectors (MMP hypergraph vertices) which exhaust themselves in forming
configurations/sets of vectors (MMP hypergraphs). Already in [38], we realised that hypergraphs
massively generated by their non-isomorphic upward construction might satisfy the Kochen–Specker
theorem even when there were no vectors by means of which they might be represented (see
Theorem 1), and finding coordinatizations for those hypergraphs which might have them, via standard
methods of solving systems of non-linear equations, is an exponentially complex task solvable only for
the smallest hypergraphs [38]. It was, therefore, rather surprising to us to discover that the hypergraphs
formed by very simple vector components often satisfied the Kochen–Specker theorem. In this paper,
we present a method of generation of KS MMP hypergraphs, also called KS hypergraphs, via such
simple sets of vector components.

Theorem 1 (MMP hypergraph reformulation of the Kochen–Specker theorem).
There are nD MMP hypergraphs, i.e., those whose each edge contains n vertices, called KS MMP hypergraphs,
to which it is impossible to assign 1s and 0s in such a way that

(α) No two vertices within any of its edges are both assigned the value 1;
(β) In any of its edges, not all of the vertices are assigned the value 0.

In Figure 1, we show the smallest possible 4D KS MMP hypergraph with six vertices and three
edges. We can easily verify that it is impossible to assign 1 and 0 to its vertices so as to satisfy the
conditions (α) and (β) from Theorem 1. For instance, if we assign 1 to the top green-blue vertex, then,
according to the condition (α), all of the other vertices contained in the blue and green edges must be
assigned value 0, but, herewith, all four vertices in the red edge are assigned 0s in violation of the
condition (β), or, if we assign 1 to the top red-blue vertex, then, according to the condition (α), all the
other vertices contained in the blue and red edges must be assigned value 0, but, herewith, all four
vertices in the green edge are assigned 0s in violation of the condition (β). Analogous verifications go
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through for the remaining four vertices. We verified that there is neither a real nor complex vector
solution of a corresponding system of nonlinear equations [38]. We have not tried quaternions as
of yet.

Figure 1. The smallest 4D KS MMP hypergraph without a coordinatization.

When a coordinatization of a KS MMP hypergraph exists, its vertices denote n-dimensional
vectors inHn, n ≥ 3, and edges designate orthogonal n-tuples of vectors containing the corresponding
vertices. In our present approach, a coordinatization is automatically assigned to each hypergraph by
the very procedure of its generation from the basic vector components. A KS MMP hypergraph with a
given coordinatization of whatever origin we often simply call a KS set.

2.1. Formalism

MMP hypergraphs are those whose edges (of size n) intersect each other in at most n − 2
vertices [26,37]. They are encoded by means of printable ASCII characters. Vertices are denoted by one
of the following characters: 1 2 ...9 A B ...Z a b ...z ! " # $ % & ’ ( ) * - / : ; < = > ? @ [ \ ] ˆ _ ‘
{ | } ~ [26]. When all of them are exhausted, one reuses them prefixed by ‘+’, then again by ‘++’, and so
forth. An n-dimensional KS set with k vectors and m n-tuples is represented by an MMP hypergraph
with k vertices and m edges which we denote as a k-m set. In its graphical representation, vertices are
depicted as dots and edges as straight or curved lines connecting m orthogonal vertices. We handle
MMP hypergraphs by means of algorithms in the programs SHORTD, MMPSTRIP, MMPSUBGRAPH,
VECFIND, STATES01, and others [5,30,38–41]. In its numerical representation (used for computer
processing), each MMP hypergraph is encoded in a single line in which all m edges are successively
given, separated by commas, and followed by assignments of coordinatization to k vertices (see 18-9
in Section 2.2).

2.2. KS Vector Lists vs. Vector Component MMP Hypergraphs

In Table 1, we give an overview of most of the k-m KS sets (KS hypergraphs with m vertices
and k edges) as defined via lists and tables of vectors used to build the KS master sets that one can
find in the literature. These master sets serve us to obtain billions of non-isomorphic smaller KS sets
(KS subsets, subhypergraphs) which define k-m classes. In doing so (via the aforementioned algorithms
and programs), we keep to minimal, critical, KS subhypergraphs in the sense that a removal of any of
their edges turns them into non-KS sets. Critical KS hypergraphs are all we need for an experimental
implementation: additional orthogonalities that bigger KS sets (containing critical ones) might possess
do not add any new property to the ones that the minimal critical core already has. The smallest
hypergraphs we give in the table are therefore the smallest criticals. Many more of them, as well as their
distributions, the reader can find in the cited references. Some coordinatizations are over-complicated
in the original literature. For example (as shown in [37]), for the 4D 148-265 master, components
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{0,±i,±1,±ω,±ω2}, where ω = e2πi/3, suffice for building the coordinatization, and for the 6D 21-7
components {0, 1, ω} suffice. In addition, {0,±1} suffice for building the 6D 236-1216.

Table 1. Vector lists from the literature; we call their masters list-masters. We shall make use of their
vector components from the last column to generate master hypergraphs in Section 2.3 which we call
component-masters. ω is a cubic root of unity: ω = e2πi/3.

dim Master Size Vector List List Origin Smallest
Hypergraph Vector Components

4D 24-24 [25,42,43]
symmetry,
geometry

1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9 {0,±1}

4D 60-105 [28,37]
Pauli

operators
1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9 {0,±1,±i}

4D 60-75 [27,30,37,41]
regular

polytope
600-cell

26−13
{0,±(

√
5− 1)/2,±1,

±(
√

5 + 1)/2, 2}

4D 148-265 [36,37]
Witting

polytope

P

43 1 2

6

7

R

F

Y

U

N

T

G
Z

L

M

D

I

9

A

S

C

B 5

O

b

W V

K

H

c

a

E

Q J

d e

8
X

40−23

{0,±i,±1,±ω,±ω2,
±iω1/

√
3,±iω2/

√
3}

6D 21-7 [19] symmetry
21−7

{0, 1, ω, ω2}

6D 236-1216
Aravind &

Waegell
2016, [37]

hypercube
→hexaract

Schäfli {4, 34} 34−16
{0,±1/2,±1/

√
3,

±1/
√

2, 1}

8D 36-9 [37] symmetry
36−9

{0,±1}

8D 120-2025 [35,37]
Lie

algebra
E8 34−9

as given
in [35]

16D 80-265 [37,44,45]
Qubit
states 72−11

D

M
x

y
z

t $

!
’

(

F

X

a b
c
d

" #

r

w

v

L

%&

G

86543219 7

J

f
g

h

j
i

k
P

Q

S

O
N

q

o

n

l

*
− )

Y
Z

W
U

T

e

V

E
A

B C

I

s

u

K

H

m R

p

{0,±1}

32D 160-661 [37,46]
Qubit
states 144−11
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u t

P
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/XYb
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−
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:

;
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?
!

^

>

]
f
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|
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’+l

*

Z

+T
+Y

+e

r
+R

)

+P

x
+Q

"

eaq
p
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+Z
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+W

(

9

F
H

+N
+h

G

R

W

$ \

&

d }

+A

+
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+
E
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z
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+S+V

+a
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O
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3

6
7
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B D
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{0,±1}
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Some of the smallest KS hypergraphs in the table have ASCII characters assigned and some do
not. This is to stress that we can assign them in an arbitrary and random way to any hypergraph
and then the program VECFIND will provide them with a coordinatization in a fraction of a second.
For instance,

18-9: 1234,4567,789A,ABCD,DEFG,GHI1,I29B,35CE,68FH.
{1={0,0,0,1},2={0,0,1,0},3={1,1,0,0},4={1,-1,0,0},5={0,0,1,1},6={1,1,1,-1},
7={1,1,-1,1}, 8={1,-1,1,1},9={1,0,0,-1},A={0,1,1,0},B={1,0,0,1},C={1,-1,1,-1},
D={1,1,-1,-1},E={1,-1,-1,1},F={0,1,0,1},G={1,0,1,0},H={1,0,-1,0},I={0,1,0,0}}.

(To simplify parsing, this notation delineates vectors with braces instead of traditional parentheses in
order to reserve parentheses for component expressions.)

However, a real finding is that we can go the other way round and determine the KS sets from
nothing but vector components {0,±1}.

2.3. Vector-Component-Generated Hypergraph Masters

We put simplest possible vector components, which might build vectors and therefore provide
a coordinatization to MMP hypergraphs, into our program VECFIND. Via its option -master,
the program builds an internal list of all possible non-zero vectors containing these components.
From this list, it finds all possible edges of the hypergraph, which it then generates. MMPSTRIP via
its option -U separates unconnected MMP subgraphs. We pipe the obtained hypergraphs through
the program STATES01 to keep those that possess the KS property. We can use other programs of
ours, MMPSTRIP, MMPSHUFFLE, SHORTD, STATES01, LOOP, etc., to obtain smaller KS subsets and
analyze their features.

The likelihood that chosen components will give us a KS master hypergraph and the speed
with which it does so depends on particular features they possess. Here, we will elaborate on
some of them and give a few examples. Features are based on statistics obtained in the process of
generating hypergraphs:

(i) the input set of components for generating two-qubit KS hypergraphs (4D) should contain number
pairs of opposite signs, e.g., ±1, and zero (0); we conjecture that the same holds for 3, 4, . . . qubits;
with 6D it does not hold literally; e.g., {0, 1, ω} generate a KS master; however, the following
combination of ω’s gives the opposite sign to 1: ω + ω2 = −1;

(ii) mixing real and complex components gives a denser distribution of smaller KS hypergraphs;
(iii) reducing the number of components shortens the time needed to generate smaller hypergraphs

and apparently does not affect their distribution.

Feature (i) means that, no matter how many different numbers we use as our input components,
we will not get a KS master if at least to one of the numbers, the same number with the opposite
sign is not added. Thus, e.g., {0, 1,−i, 2,−3, 4, 5} or a similar string does not give any, while {0,±1},
or {0,±i}, or {0,±(

√
5− 1)/2} do. Of course, the latter strings all give mutually isomorphic KS

masters, i.e., one and the same KS master, if used alone. More specifically, they yield a 40-32 master
with 40 vertices and 32 edges as shown in Table 2. When any of them are used together with other
components, although they would generate different component-masters, all the latter masters of a
particular dimension would have a common smallest hypergraph as also shown in Table 2.
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Table 2. Component-masters we obtained. List-masters are given in Table 1. In the last two rows of
all but the last column, we refer to the result [33] that there are 16D and 32D criticals with just nine
edges. According to the conjectured feature (i) above, the masters generated by {0,±1} should contain
those criticals; they did not come out in [37], so, we do not know how many vertices they have. The
smallest ones we obtained are given in Table 1. The number of criticals given in the 4th column refer to
the number of them we successfully generated although there are many more of them except in the
40-32 class.

dim Vector Components Component-Master
Size

No of KS
Criticals

in Master

Smallest
Hypergraph

Contains
List-Masters

4D
{0,±1} or {0,±i} or

{0,±(
√

5− 1)/2} or . . .
40-32 6

1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9 24-24

4D {0,±1,±i} 156-249 7.7× 106

1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9 24-24, 60-105

4D
{0,±(

√
5− 1)/2,±1,

±(
√

5 + 1)/2, 2} 2316-3052 1.5× 109

1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9 24-24, 60-75

4D {0,±1,±i,±ω,±ω2} 400-1012 8× 106

1 2 4

D C A

6

5

H

I

F

E

8

9

7

3

B

G 18−9
24-24, 60-105

148-265

6D {0,±1, ω, ω2} 11808-314446 3× 107
21−7

21-7, 236-1216

8D {0,±1} 3280-1361376 7× 106
34−9 36-9, 120-2025

16D {0,±1} computationally
too demanding 4× 106 ?−9

[33]. 80-265

32D {0,±1} computationally
too demanding 2.5× 105 ?−9

[33]. 160-661

We obtained the following particular results which show the extent to which component-masters
give a more populated distribution of KS criticals than list-masters. We also closed several
open questions:

• As for the features (ii) and (iii) above, components {0,±1, ω} generate the master 180-203 which
has the following smallest criticals 18-9, 20. . . 22-11, 22. . . 26-13, 24. . . 30-15, 30. . . 31-16, 28. . . 35-17,
33. . . 37-18, etc. This distribution is much denser than that of, e.g., the list-master 24-24 with
real vectors which in the same span of edges consists only of 18-9, 20-11, 22-13, and 24-15
criticals or of the list-master 60-75 which starts with the 26-13 critical. In Appendix A, we give a
detailed description of a 21-11 critical with a complex coordinatization and give a blueprint for its
experimental implementation;

• In [19], the reader is challenged to find a master set which would contain the "seven context star"
21-7 KS critical (shown in Tables 1 and 2). We find that {0, 1, ω} generate the 216-153 6D master
which contains just three criticals 21-7, 27-9, and 33-11, {0, 1, ω, ω2} generate 834-1609 master
from which we obtained 2.5× 107 criticals, and {0,±1, ω, ω2} generate 11808-314446 master from
which we obtained 3× 107 criticals, all of them containing the seven context star. Some of the
obtained criticals are given in Appendix B;
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• The 60-75 list-master contains criticals with up to 41 edges and 60 vertices, while the 2316-3052
component-master generated from the same vector components contains criticals with up to close
to 200 edges and 300 vertices;

• The 60-105 list-master contains criticals with up to 40 edges and 60 vertices, while the 156-249
component-master generated from the same vector components contains criticals with up to at
least 58 edges and 88 vertices;

• Components {0,±1} generate 332-1408 6D master which contains the 236-1216 list-master while
originally components {0,±1/2,±1/

√
3,±1/

√
2, 1} were used;

• In [37], we generated 6D criticals with up to 177 vertices and 87 edges from the list-master 236-1216,
while, now, from the component-master 11808-314446, we obtain criticals with up to 201 vertices
and 107 edges;

• We did not generate 16D and 32D masters because that would take too many CPU days and we
already generated a huge number of criticals from submasters which are also defined by means of
the same vector components in [37]. See also Section 3.

3. Methods

Our methods for obtaining quantum contextual sets boil down to algorithms and programs
within the MMP language we developed to generate and handle KS MMP hypergraphs as the
most elaborated and implemented kind of these sets. The programs we make use of, VECFIND,
STATES01, MMPSTRIP, MMPSHUFFLE, SUBGRAPH, LOOP, SHORTD, etc., are freely available from
our repository http://goo.gl/xbx8U2. They are developed in [5,29,30,38–40,47,48] and extended for
the present elaboration. Each MMP hypergraph can be represented as a figure for a visualisation
but more importantly as a string of ASCII characters with one line per hypergraph, enabling us to
process millions of them simultaneously by inputting them into supercomputers and clusters. For the
latter elaboration, we developed other dynamical programs specifically for a supercomputer or cluster,
which enable piping of our files through our programs in order to parallelize jobs. The programs have
the flexibility of handling practically unlimited number of MMP hypergraph vertices and edges as we
can see from Table 2. The fact that we did not let our supercomputer run to generate 16D and 36D
masters and our remark that it would be "computationally too demanding" do not mean that such
runs are not feasible with the current computers, but that they would require too many CPU days on
the supercomputer and that we decided not to burden it with such a task at the present stage of our
research; see the explanation in Section 2.3.

4. Conclusions

The main result we obtain is that our vector component generation of KS hypergraphs (sets)
exhaustively use all possible vectors that can be constructed from chosen vector components. This is
in contrast to previous studies, which made use of serendipitously obtained lists of vectors curtailed
in number due to various methods applied to obtain them. Hence, we obtain a thorough and
maximally dense distribution of KS classes in all dimensions whose critical sets can therefore be
much more effectively used for possible implementation in quantum computation and communication.
A comparison of Tables 1 and 2 vividly illustrates the difference.

In Appendix A, we present a possible experimental implementation of a KS critical with complex
coordinatization generated from {0,±1, ω}. What we immediately notice about the 21-11 critical from
Figure A1 is that the edges are interwoven in more intricate way than in the 18-9 (which has been
implemented already in several experiments), exhibiting the so-called δ-feature of the edges forming
the biggest loop within a KS hypergraph. The δ-feature refers to two neighbouring edges which share
two vertices, i.e., intersect each other at two vertices [37]. It stems directly from the representation
of KS configuration with MMP hypergraphs. Notice that the δ-feature precludes interpretation of
practically any KS hypergraph in an even dimensional Hilbert space by means of so-called Greechie
diagrams, which by definition require that two blocks (similar to hypergraph edges) do not share more
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than one atom (similar to a vertex) [6], on the one hand, and that the loops made by the blocks must
be of order five or higher (which is hardly ever realised in even dimensional KS hypergraphs—see
examples in [37]), on the other.

Our future engagement would be to tackle odd dimensional KS hypergraphs. Notice that, in a 3D
Hilbert space, it is possible to explore similarities between Greechie diagrams and MMP hypergraphs
because then neither of them can have edges/blocks which share more than one vertex/atom (via their
respective definitions) and loops in both of them are of the order five or higher [26,39].
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Abbreviations

The following abbreviations are used in this manuscript:

KS Kochen–Specker; defined in Section 1
MMP McKay-Megill-Pavičić; defined in Section 2.1

Appendix A. 21-11 KS Critical with Complex States fromH2⊗H2

Below, we present a possible implementation of a KS critical 21-11 with complex coordinatization
shown in Figure A1.

The vector components of the first qubit on a photon correspond to a linear (horizontal, H, vertical,
V, diagonal, D, antidiagonal A) and circular (right, R, left L) polarization, and those of the second qubit
to an angular momentum of the photon (+2,−2) and (h, v). One-to-one correspondence between
them is given below.

1

7

F

J

2 4

BD
E

I

H

G

K

9

A

8

6

5

21−11−a

B=(1,1,0,0)

D=(1,1,−1,−1)

E=(1,1,1,1)

F=(1,−1,1,−1)

G=(0,1,0,−1)

H=(1,0,−1,0)

I=(0,1,0,1)

J=(1,−1,1,1)

K=(0,0,1,0)

2=(1,−1,−1,−1)

1=(1,1,1,−1)

3=(1,0,0,1)

4=(0,1,−1,0)

5=(0,1,1,0)

6=(0,0,0,1)

7=(1,0,0,0)

8=(0,1,0,0)

9=(0,0,1,−1)

A=(0,0,1,1)
L=(1,−1,−i,i)

3

C=(1,−1,i,−i)

L

C

Figure A1. 21-11 KS set with complex coordinatization.
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An example of a tensor product of two vectors/states fromH2 ⊗H2 is:

|01〉 = |0, 1〉 = |0〉1 ⊗ |1〉2 =

(
1
0

)
1

⊗
(

0
1

)
2

=


1

(
0
1

)

0

(
0
1

)
 =


0
1
0
0

 .

This is our vector 8 from Figure A1. Since we are interested in the qubit states, we are going to
proceed in reverse—from 4-vectors to tensor products of polarization and angular momentum states.
Let us first define them:

|H〉 =
(

1
0

)
1

; |V〉 =
(

0
1

)
1

; |D〉 = 1√
2

(
1
1

)
1

; |A〉 = 1√
2

(
−1
1

)
1

; |R〉 = 1√
2

(
1
i

)
1

;

|L〉 = 1√
2

(
1
−i

)
1

; |+ 2〉 =
(

1
0

)
2

; | − 2〉 =
(

0
1

)
2

; |h〉 = 1√
2

(
1
1

)
2

; |v〉 = 1√
2

(
1
−1

)
2

.

Now, one can read off our vertex states as follows:

1 =


1

1

1

−1

→
1
2


1

1

1

−1

 =
1
2
(


1

1

0

0

+


0

0

1

−1

) =
1√
2
(

1√
2



1

1

1



0

1

1




+

1√
2



0

 1

−1



1

 1

−1




)

=
1√
2
(

1

0


1

⊗ 1√
2

1

1


2

+

0

1


1

⊗ 1√
2

 1

−1


2

=
1√
2
(|H〉|h〉+ |V〉|v〉) = 1√

2
(|D〉|+ 2〉 − |A〉| − 2〉).

We will now skip real states and go directly to those with imaginary components, C and L, to
illustrate how they can be implemented via circular polarization:

C =


1
−1

i
−i

→ 1
2


1

(
1
−1

)

i

(
1
−1

)
 =

1√
2

(
1
i

)
1

⊗ 1√
2

(
1
−1

)
2

= |R〉|v〉,

L =


1
−1
−i
i

→ 1
2


1

(
1
−1

)

−i

(
1
−1

)
 =

1√
2

(
1
−i

)
1

⊗ 1√
2

(
1
−1

)
2

= |L〉|v〉.

Thus, in order to handle a complex coordinatization, we need a fifth degree of freedom (circular
polarization), but, as we can see, it is manageable.
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Appendix B. 6D Criticals from the Masters Containing the Seven Context Star.

The 216-153 KS master generated from {0, 1, ω} contains 21-7 and 27-9, which can be viewed as
21-7 with a pair of δ-triplets interwoven with 21-7, as shown in Figure A2. The 834-1609 KS master
generated from {0, 1, ω, ω2}, which were used for a construction of 21-7 in [19], contains 39-13 as well.
Equally so, the 11808-314446 master generated from {0,±1, ω, ω2}.

39−1321−7 27−9

Figure A2. 21-11 KS set from [19] and 27-9 are contained in three different master sets, 39-13 in two
(together with 21-11 and 27-9); see the text.

References

1. Cabello, A.; D’Ambrosio, V.; Nagali, E.; Sciarrino, F. Hybrid Ququart-Encoded Quantum Cryptography
Protected by Kochen-Specker Contextuality. Phys. Rev. A 2011, 84, 030302(R). [CrossRef]

2. Nagata, K. Kochen-Specker Theorem as a Precondition for Secure Quantum Key Distribution. Phys. Rev. A
2005, 72, 012325. [CrossRef]

3. Howard, M.; Wallman, J.; Veitech, V.; Emerson, J. Contextuality Supplies the ‘Magic’ for Quantum
Computation. Nature 2014, 510, 351–355. [CrossRef] [PubMed]

4. Bartlett, S.D. Powered by Magic. Nature 2014, 510, 345–346. [CrossRef] [PubMed]
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