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Appendix A. Algorithms and Programs behind Table 1

We used the program mmpstrip to strip edges from starting hypergraphs.
We adjusted the increment parameter of mmpstrip so that, after each edge re-
moval and post-processing step, we ended up with a sample of a desired size,
say 1,000,000 hypergraphs. So after the full run of stripping a edges and post-
processing, we ended up with 64 sample sets of up to 1,000,000 non-isomorphic
KS hypergraphs each, with one sample set for each hypergraph size from 12
through 75 edges. For 12 edges and less, no KS sets have ever remained, prob-
ably because they don’t exist.

The complete processing of the samples sets of this size, including finding all
of the critical KS hypergraphs among them, took about 4 days on a single CPU.
We ran 200 such jobs on a cluster, then combined the results. The random
selection and the large sample space ensured that we would have, with high
probability, completely different samples on successive program runs. Except
near the extreme edge sizes of 75 and 12 where the sample space is essentially
exhausted, we never found a duplicated hypergraph in our spot checking.

The overall iterative procedure we used is as follows. We started with the
MMP hypergraph for the 60-75 KS set.
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1. We started with the 60-75 KS set and with mmpstrip obtained 75 new
60-74 sets—each with one less edge than the original 60-75. Then we
repeated the procedure to obtain 2775 new 60-73 sets, etc. but not more
than 1,000,000 hypergraphs to keep the run time reasonable. We used
mmpstrip’s increment parameter i, which selects every ith edge on average,
to achieve this limit. The increment parameter can be a non-integer to
better control the output size. When it is greater than 1, the edges can be
selected either with uniform spacing or randomly; the latter option was
usually chosen.

2. A hypergraph is connected if there is a chain of zero or more edges con-
necting every pair of edges. Unconnected hypergraphs were removed with
mmpstrip.

3. Duplicate hypergraphs result when one edge is removed at a time (rather
than multiple edges combinatorially). These duplicates were removed.

4. Isomorphic hypergraphs were removed with shortd.

5. Colorable hypergraphs were filtered out with states01 (described in [1]),
leaving only non-colorable ones (i.e. KS sets).

Typically, we first ran these steps on a small sample of the hypergraphs (a
hundred or so) so that the increment parameter for each mmpstrip call could
be estimated, in order to end up with the same number of output hypergraphs
as input hypergraphs after each edge removal step.

We examined the final set of MMP hypergraphs obtained after each iteration
of the above process in order to determine which hypergraphs were critical, using
an option of the states01 program. Any critical sets found were collected for
analysis.

The advantage of stripping one edge at a time then filtering at each stage
is that many fewer MMP hypergraphs had to be examined, because at each
step we consider only the non-isomorphic KS sets from the previous step. For
example, from Fig. 3, there are 3.1 · 1020 hypergraphs with 28 edges, of which
only 1.6 · 1013 are KS sets. The 23 critical sets were were found by examining a
sample of only 6 · 107 KS sets rather than 1.2 · 1015 starting MMP hypergraphs
that would have otherwise been required, representing a speedup factor of about
20 million.

Appendix B. Samples of KS hypergraphs with even number of edges

Here we give samples of KS hypergraphs of each kind that we listed in Table
1 and did not give in Figures in Section 2..

Using our programs longest and loopbig, we can instantly determine the
following structural features. Let us take the 45-26 hypergraph below. The pro-
gram longest shows that its biggest loop is a 12-gon. The program loopbig

gives 26 instances of its 12-gon representation, the first one of which is 2134,4YZE,

EFGD,DfKN,NPQO,OeUd,dacb,bWL7,7586,6jMT,ThgV,ViR2. 9.A.B.C. H.I.G*8* J.K*L*M*

R*S.Q*C. T*U*S.F* V*W*X.P* c*X.M*3* f*Z*R*7* g*e*I.3* i*j*Y*N* h*a*Y*H. a*B.6*2*

e*Y*L*A. d*V*K*9. (The edges are the same as in 45-26 below, only in a different
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order. Also the vertices within an edge are mostly in a different order. Ac-
tually, all 26 instances are just different 12-gon arrangements of 45-26 below.)
The edges 1234–ViR2 are polygon edges (see Sec. 2); vertices followed by “.” are
free vertices; edges containing free vertices are free edges; vertices followed by
“*” are polygon vertices; edges containing only polygon vertices followed by “*”s
are span edges; (in other words span edges are edges which are not polygon edges
and which do not contain free vertices). Our script based on Asymptote draws
26 figures of 45-26 with 12-gons as shown in Fig. B.1.
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Figure B.1: A critical 45-26 KS set shown in three figures. The left and middle ones: maximal
16-gon + free edges. The right one: 16-gon + span edges.

Once the figures are drawn, the user can assign any ASCII symbol desired to
any vertex. Also, by utilizing our program vectorfind she/he can ascribe vec-
tors to vertices. 1,2,. . . ,i,j → {τ ,0,1,κ}, {0,1,0,0}, {κ,0,τ ,1}, {1,0,κ,τ}, {κ,τ ,1,0},
{1,0,κ,τ},{τ ,κ,0,1}, {0,1,τ ,κ},{0,τ ,κ,1}, {1,1,1,1},{κ,0,τ ,1}, {τ ,κ,0,1},{1,1,1,1},
{1,1,1,1},{1,1,1,1}, {1,1,1,1},{κ,1,0,τ}, {τ ,1,κ,0}, {κ,τ ,1,0}, {0,1,τ ,κ}, {1,0,κ,τ},
{τ ,κ,0,1}, {τ ,1,κ,0},{κ,0,τ,1}, {0,κ,1,τ}, {1,τ ,0,κ}, {0,0,1,0},{κ,1,0,τ},{0,1,τ ,κ},
{τ ,1,κ,0},{1,0,0,0},{0,1,τ ,κ}, {0,τ ,κ,1},{1,κ,τ ,0}, {1,τ ,0,κ},{τ ,0,1,κ}, {κ,τ ,1,0},
{1,1,1,1}, {0,κ,1,τ},{1,τ ,0,κ}, {κ,1,0,τ}, {0,κ,1,τ},{0,τ ,κ,1}, {0,0,0,1},{κ,τ ,1,0},
where τ = (

√
5 + 1)/2 and κ = 1/τ ; a bar over a number indicates its negative.

45-26 1234,5678,9ABC,DEFG,HIG8,JKLM,NOPQ,RSQC,TUSF,VWXP,YZE4,abcd,edUO,
cXM3,fZR7,bWL7,geI3,fNKD,hgVT,ijYN,haYH,jTM6,aB62,iVR2,eYLA,dVK9.
46-28 1234,5678,9AB8,CDEF,GHIJ,KLMN,OPQR,STR4,UVNF,WXYZ,abZT,YQME,cdYB,
efb7,gVSJ,hiPA,jfOI,idHD,aLIC,ieXN,jiS6,kgM5,khcG,kbU9,hL73,cON2,WSL9,gZOD.
47-28 1234,5674,89AB,CDEF,GHIJ,KLJ7,MNOB,PQR3,STUO,VWU6,XYI5,ZabL,cdYL,efbF,
gaHA,hWG9,iTGE,jkZ2,lkNE,kdUR,lfXK,hXD1,XVQ8,jfPA,jcMC,ecSQ,khge,iaXM.
48-28 1234,5678,9ABC,DEC8,FGHI,JKLM,NOME,PQRB,STIA,UVWX,YXRL,Zab4,cdW3,efgT,
hdbK,ijcJ,gVQH,kfJG,lhF7,jeb6,iUPD,faU9,YS72,mlZT,lQO3,kdYN,mUN6,iZYH.
49-28 1234,5678,9ABC,DEFG,HIJ8,KLG7,MNOP,QRSP,TUVJ,WLC4,XYZV,abS7,cdeb,fgUO,
heZN,ijdI,kgaF,lcYM,jYRE,iXQG,fHGB,mfdW,mkTN,nhR3,nigA,lhFC,cTG3,mYA7.
49-30 1234,5678,9ABC,DEFG,HIJK,LMN8,OPQR,STUK,VWRC,XYZW,abcQ,deJ4,fghe,ijU3,
kjQG,ZTNB,khA7,gYS8,lkV2,mcMF,mif6,lidE,nfXD,mPJB,gOI3,bX73,ndcC,lgaB,nkNI,lXMK.
51-30 1234,5678,9AB8,CDEF,GHIJ,KLMN,ONJ4,PQRS,TUB3,VWIA,XSOF,YZE7,aHD6,bcZX,
defW,ghiM,cWR2,jkL9,liR5,mbUC,nkfb,onha,pgeX,pojG,mhdQ,oYP3,pmVK,nlTK,kgYH,ljd4.
52-30 1234,5678,9ABC,DEF4,GHIJ,KLMN,OPQ8,RSQJ,TUVI,WXYZ,abcJ,NHC3,defg,hijc,
kgbB,lkZ7,mYMJ,njX4,fSNF,oWVA,piPA,qeVE,onml,qpna,ohdQ,pfYU,liLE,UQLB,qhN7,ngI8.
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53-30 1234,5678,9ABC,DEFG,HIJK,LMNO,PQRS,TUVW,XYZW,abZS,cdVG,eRC4,fghY,ihK3,
gdbJ,jkeI,lQOF,mki8,nopJ,qpjE,qhP7,roX7,nmUQ,rjcN,rfUB,pliT,paMB,mYNC,MIG7,lbC7.
51-32 1234,5678,9AB4,CDEF,GHFB,IJKL,MNOP,QRPL,STUH,VWXR,YZUQ,abcO,dZXE,
eTK8,fgJA,hig3,jiN7,iSD9,khcY,lXMK,mnWA,opYI,ndc6,ljfC,mjZ2,lbS5,pV62,piaG,ogeb,keWG,
onPC,kSP2.
52-32 1234,5674,89AB,CDE7,FGHB,IJKL,MLA3,NOP2,QRST,UVWX,YZaX,bcWT,dePK,fgSJ,
hiaH,jkOG,lmW9,nmgN,oeVR,kife,pkZQ,pcE3,onHE,qjRM,qfbY,hbND,qp96,laR4,UJGD,qndU,
dZB7,RNIB.
53-32 1234,5678,9A84,BCDE,FGHI,JKLM,NOPQ,RST3,UVW7,XYIA,Zabc,defM,ghYL,ijcT,
kWQ2,ljfH,mhbV,nmiP,eSGE,oaUK,pgZR,qohO,plNK,ondI,ZXE2,rfUD,gdC6,qiD9,rpmk,qkJG,
cNG5,mHC3.
54-32 1234,5678,9ABC,DEFG,HIJC,KLMN,OPQR,STUC,VWXY,URN4,Zabc,def3,ghcQ,ihMJ,
jkB8,lifY,mkgT,nopA,qrlT,rpjP,ebX8,rhdG,qoeJ,maPF,naNI,sbLE,som7,oZYG,nWTE,rVN7,
fQEB,YPLC.
55-32 1234,5678,9ABC,DEFC,GHIJ,KLMF,NOPQ,RSTU,VWXY,ZabE,cde8,fghe,ijeQ,klmU,
mhbJ,nopB,qrpT,sjT4,todY,naMI,SHA3,tlP7,ngR7,rGF7,qZXO,tsZL,eWM3,fVLA,nmiV,dNF4,
qkdA,mOC8.
53-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQR,STUV,WVRB,XYUF,Zabc,decN,fgYJ,hijA,
kjbE,lmQF,ePI3,aWMI,niXL,oZRH,phcT,pmH7,qkLB,pgKE,qhI6,rnmf,ncO2,mdSA,OJDA,roke,
ogS6,lLJ4,raU4,nIE9.
54-34 (16) 1234,4567,789A,ABCD,DEFG,GHIJ,JKLM,MNOP,PQRS,STUV,VWXY,YZab,bcde,

efgh,hijk,klm1,3EQb,5DWl,7JYk,8Ubl,CHXe,DKTa,EMfm,OTck,2nLZ,3To9,6FLq,7Nen,Bonm,
IQWn,Ipdi,LRlp,Srsj,Ugrq. Shown in Fig. B.2.
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Figure B.2: A critical 54-34 KS set shown in two figures. (a) A maximal 16-gon + span edges;
(b) 16-gon + free edges.

55-34 1234,5674,89AB,CDEF,GHIJ,KLJ7,MNOP,QRST,UVWT,XYZa,bcaW,dec6,fghI,ihPB,
jkgS,kZVL,lmRO,noi3,pqYI,rNF3,qoeE,mbDA,sljc,rplU,sfXQ,kbH2,tsqN,ndYO,tU97,nfLA,
reSJ,XUPH,siJD,kOE9.
56-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQR,STUJ,VWXB,YURN,Zabc,defT,ghMF,ijQE,
klmA,nLI9,opnc,pmhY,qjbH,oKD8,olX7,rsfa,iWS3,tsWM,utZP,urmJ,neO6,uqog,dHF3,skH6,
qYV4,laIE,ieZY,fPD4.
57-34 1234,5674,89AB,CDEF,GHIJ,KLMN,OPQB,RSTU,VWXY,Zabc,defc,ghb7,ijkY,lmnU,
ofT3,pqSA,rstR,qnXQ,uvmN,pkhN,ljgP,ieMA,tolJ,vdWI,aQJF,ueVP,ZPLE,sPI4,RNHD,voiZ,
rnL3,bYDB,rpVF,dRQ7.
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58-34 1234,5678,9ABC,DEF8,GHIJ,KLMN,OPQN,RSTU,VWXY,ZaMJ,bYU4,cdef,ghia,jkiQ,
lmnT,onP8,phfL,qoeS,rROI,hbHC,srp3,qpmX,tuvo,wvdJ,wqb7,rkdK,jcWB,uscb,trlB,ukVT,
lbZF,gVIF,vpjF,qgNB.
59-34 1234,5678,9ABC,DEFG,HIJK,LMNO,PQR8,STUV,WXYZ,abcZ,defg,higO,jklm,nopm,
qric,slbR,tukQ,uV74,vuYN,srf3,paN3,wthC,jeKB,xwvj,qodX,xqUQ,jVMG,UJF3,nIC8,wWTH,
cTE8,snWM,wdRF,oTOB.
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Figure B.3: Enlarged Fig. 2.

55-36 1234,5678,9AB4,CDEF,GHIJ,KLMF,NOP3,QRPM,STUJ,VWOB,XYZa,bcdA,efgh,ijkd,
lmkU,haNJ,nocW,pREB,qrpj,mbZ2,ojJD,srM8,qgb7,tlaW,WTF7,qnQI,kYHE,sZIB,fXOD,iL62,
tfI6,qSOL,leLA,neE8,rWH2,kfM4.
56-36 1234,5674,89AB,CDEF,GHIJ,KLMF,NOPQ,RST3,UVWX,YZaX,bcdW,efgB,hVE7,ijgQ,
kTPM,lmnd,oQJD,pqrs,faC2,tsnI,kjcA,tZOA,uib6,mYS9,uonf,rliR,sUQL,qXPH,poZ4,rG97,
mkeU,hRIB,qmh2,mOK6,ocRK,bPC9.
57-36 1234,5674,89A3,BCDE,FGHI,JKLM,NOPQ,RSTU,VWXY,ZaYQ,bcdI,efE2,ghM3,ijkf,
lhda,mecP,nOL7,oXU6,pqbA,kNHD,rsqZ,pnfT,cWSK,ZJGE,tunl,vsVO,ljUG,vgTD,umiR,oiOI,
rmh6,iWCA,vtA6,usH4,mYD9,qlKD.
58-36 1234,5674,89AB,CDEF,GHI3,JKLM,NOPQ,RSTM,UVB7,WXYI,ZaYT,bcaQ,dcSF,efgh,
ijkR,lmhP,ngXL,nmZH,opWV,qplK,rpaA,sJE4,trkG,tnD9,usoZ,vfbI,qjf6,wXO6,wtse,vtld,
kbVC,uhUM,wpiF,ujdN,kh84,pnN4.
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59-36 1234,5674,89AB,CDEF,GHB7,IJKL,MNOP,QRPF,STUV,WXYA,ZabL,cdef,ghij,kfbY,
kVR6,lKH3,mjO9,nopX,qrlU,siXT,tule,vwpS,odRK,xusJ,xwc6,thYG,daOE,wrm2,iND4,uZSA,
xqF9,rnfN,vtNL,rgEA,phPJ,XLF2.
60-36 1234,5678,9AB8,CDEF,GHIJ,KLMN,OPQJ,RSTU,VWXN,YZab,cdeB,fgX7,hgeM,ijQF,
kljd,mnoN,phbI,qrif,saEB,tolH,uvn4,srUL,wMD3,xmkf,wroZ,vcbT,ywjS,hWSP,ukYL,kVTJ,
yvHE,uqP8,xUH8,tfbD,poQB,fSB4.
57-38 1234,5674,89AB,CDE7,FGHI,JKLM,NOPB,QRS3,TUVW,XYZa,bcde,fgPM,heWE,ijVS,
klRI,mnol,podH,qrU6,sraP,toOL,ukaK,tgZG,cKD3,vspQ,vueO,vTJ7,vqgA,pkjh,nibP,jfcY,
rmjG,nY94,viXI,tiE2,tkT9,qYHE,mQEB,cUIB.
58-38 1234,5674,89AB,CDEB,FGHI,JKL7,MNOP,QRST,UVWX,YZaA,bcLE,defg,hia3,jkXP,
lmZK,ngWT,opnI,qrkH,rpSB,sfRO,tjRK,sYVL,umUG,vcPF,wm96,qeUD,okid,udbQ,wdYN,vpf2,
wnhc,qnMK,utra,viW9,sliD,wtD2,QPD7,usn4.
59-38 1234,5674,89A3,BCD7,EFGH,IJKL,MNOL,PQRS,TUVW,XYZW,abZ2,cdeb,fgK6,hijA,
aVSH,klJ9,mnoG,pID8,qrYC,stO1,oeRO,ujgF,vuol,wutU,xkid,wnZJ,mjcX,rfdQ,rhaN,xwPC,
vcNE,qpkR,wpfM,vpV5,rmT8,tmkB,sWPF,vsiK.
60-38 1234,5674,89A7,BCDE,FGHI,JKLM,NOPE,QRST,UVWT,XYZa,bcde,fghA,eWMI,ijkl,
mnlV,opha,qrgU,spnD,tdL3,trSP,cZRK,uveO,qkYI,jRHD,wrZ9,xiQ4,vtXV,mJC7,ywN6,yxtf,
pibN,ysKG,wjhd,romG,upT2,xumY,yqC2,viGA.
59-40 1234,5678,9ABC,DEF8,GHI4,JKLM,NOPI,QRSC,TUVW,XYZH,abMB,cWPC,debZ,fgh7,
ijkF,lmnk,opje,qnaV,rsmU,tjU3,lhYS,uSE2,sqdA,kgXR,upfO,vTQN,qfL3,wnNK,vuJG,wfbF,
xicK,tgcE,vqoX,xura,xlTA,vcb6,spcY,rgeN,leG8,XUK8.

Appendix C. Details for Sample Space Statistics

The plots of Fig. 3 provide an overview of the subsets of 60-75. Because they
were determined by statistical inference from small samples of this space, most
of the numbers are approximate. As a practical matter, some of the sample
sets, or portions of them, were obtained with the more efficient semi-random
method mentioned in the footnote in Sec. 2, which has an effect.1 Overall, the
numbers should be trusted only to within an order of magnitude or so. The
plots are intended to provide a rough guideline for planning future work, such
as an exhaustive search of certain ranges, and for that purpose it should be
adequate.

Several techniques, which we describe below, were used to obtain the values
for the plots. The total number of MMP hypergraphs is simply

(
75
b

)
= 75!

b!(75−b)! ,

where b is the number of edges given at the abscissa.
The mmpstrip program was used to identify and remove unconnected hy-

pergraphs. We do not include the resulting numbers of MMP hypergraphs in
Fig. 3 but briefly describe them as follows. For 1 through 4 edges, the number of
unconnected MMP hypergraphs are exactly 0, 2175, 59725, and 1101450. For
67–75 edges there are exactly 0. For the rest, we used samples of 106 MMP

1To test this effect, we used non-isomorphic MMPs with 67 edges, where the actual count
is known from an exhaustive search. Using semi-random sampling, a value of 1.4 · 106 was
estimated, compared to the actual count of 1.2 · 106. This is apparently due to some kind of
systematic bias that occurred when samples were taken uniformly from the set of input KS
sets, leading to the overcount. Using true random sampling, the estimate was very close to
the actual 1.2 · 106, as we describe below.
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hypergraphs for each number of edges. For 47–66 edges, no unconnected hyper-
graphs were observed. For 5–46 edges, the number of unconnected hypergraphs
(estimated from the ones observed in the sample) decreases to zero as a per-
centage the total number of MMP hypergraphs, from 1.56 ·107 (out of 1.73 ·107
total) for 5 edges to 1 · 1015 (out of 5.1 · 1020 total) for 46 edges.

To calculate the the number of non-isomorphic MMP hypergraphs, uncon-
nected hypergraphs were discarded and the rest passed through the shortd

program, which filters isomorphic hypergraphs, keeping only one canonical rep-
resentative from each isomorphism class. For small and large numbers of edges,
exhaustive generation of all MMPs yielded exact values. For 1–4 edges there
are 1, 1, 2, and 5 (connected) isomorphism classes; for 67–75 edges, there are
1183189, 141314, 15014, 1463, 154, 19, 4, 1, and 1. For the other edge sizes, the
number of isomorphism classes was estimated from a sample. Finding this esti-
mate is called the “coupon collector’s problem,” [2] and the maximum likelihood
estimator is the smallest integer j ≥ c such that

j + 1

j + 1− c

(
j

j + 1

)n

< 1, (C.1)

where n is the number of samples (with replacement) and c is the observed
number of isomorphism classes in the sample. For example, we observed c =
516604 isomorphism classes in a random sample of n = 545961 13-edge hy-
pergraphs. The criteria of Eq. (C.1) yields j = 4893025 ≈ 4.9 · 106, which
is the point shown for 13 edges in the non-isomorphic MMP hypergraphs plot
of Fig. 3. We mention that in our implementation, we expressed Eq. (C.1) as
log(j + 1) − log(j + 1 − c) + n(log j − log(j + 1)) < 0 and determined j with
a binary search method. Because the computation involves the subtraction of
almost-equal terms, high-precision floating-point operations are necessary. For
the calculations of Fig. 3, Eq. (C.1) gave incorrect answers with less than 35
significant digits, and we used 100 significant digits for robustness.

As a rough check of the statistical model used by the coupon collector’s
problem, 10 random samples of 50000 67-edge MMP hypergraphs yielded from
48900 to 48975 isomorphism classes, corresponding to predictions of 1119613
to 1202764 total classes by Eq. (C.1). This compares to the actual number of
1183189 classes obtained by exhaustive generation of MMP hypergraphs.

To estimate the KSs in Fig. 3, KS sets were identified using the states01

program. For small numbers of edges (≤ 12), we never observed a KS set. For
large numbers of edges (≥ 63), we never observed a non-KS set, so for them
the two plots coincide. For those in between, we took a random sample of non-
isomorphic hypergraphs for each edge size and plotted the fraction of observed
KS sets times the estimated non-isomorphic MMP hypergraphs.

We show the number of isomorphically unique critical hypergraphs we ob-
served, as identified by the -c (“critical”) option of the states01 program, in
the “observed odd criticals” and “observed even critical” plots of Fig. 3. We
include these to show the actual currently known (not estimated) number of
critical sets. It is not, however, intended to convey the distribution of critical
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hypergraphs vs. edge size; for that purpose, the estimated maximum number of
critical sets in Fig. 3 should be used.2

In the range of 12 through 62 edges, the “estimated max crit.” plot shows the
upper 95% confidence limit derived from Bernoulli trial probabilities, based on
the model of sampling with replacement from a search space where the a priori
probability is unknown. [3] IfK is the total number of KSs (from the “estimated
KSs” plot), n is the sample size (with replacement) of random KS sets, and m
is the observed number of critical sets, then the lower 95% confidence level is
[3, Eq. (1)]

K · I−1
1
2 (1−0.95)

(m+ 1, n−m+ 1) (C.2)

and the upper 95% confidence level is [3, Eq. (3)]

K · I−1
1
2 (1+0.95)

(m+ 1, n−m+ 1) (C.3)

where I−1 is the inverse regularized incomplete beta function. For example,
for the 35-edge case, K = 9.0 · 1015, n = 52800000, and m = 580. Thus
for upper 95% confidence level we have K · I−1

1
2 (1+0.95)

(m + 1, n − m + 1) =

K · I−1
0.975(581, 52799421) ≈ K · 0.0000119163 ≈ 1.1 · 1011. This is the value in

the “estimated max crit.” plot for 35 edges.
The “estimated min crit.” plot shows either the the lower 95% confidence

limit from Eq. (C.2) or zero (in which case we omit the “estimated min crit.”
point from the plot since it is outside the logarithmic scale). A value of zero
is used whenever no critical sets were observed. Of course this is the most
conservative value possible, but there are two other motivations. First, the
trend of the “estimated max crit.” curve starts to fall rapidly at 41 edges, and
a smooth extrapolation would suggest that it plummets, perhaps to zero, very
soon after that point. Second, when no critical sets were observed for a given
edge size, the probability distribution of the Bernoulli trial estimation is not
“Gaussian-like” but is highly skewed, with a mode (maximum likelihood) of
zero critical sets, even though Eq. (C.2) may predict a small positive number.

We emphasize that in the cases where no critical sets were observed, “es-
timated max crit.” merely represents a statistical upper bound based on the
number of random samples we took, meaning it is improbable that the actual
number of critical sets would exceed that number. For sizes greater than 41
edges where no critical sets have been observed, there may be an overriding
theoretical reason (that is currently unknown) that would lead to the actual

2The “observed odd [even] criticals” in Fig. 3 are not directly related to the distribution of
critical sets vs. edge size because we used varying sample sizes. For example, the 879 critical
sets with 34 edges were observed in 1.1 · 108 KS samples whereas the 580 critical sets with
35 edges were observed in only 5.28 · 107 KS samples. Since the number of observed critical
sets grows with the number of samples, it is likely that the actual number of critical sets with
35 edges—that would be obtained with an exhaustive search—is larger, not smaller, than the
number with 34 edges.
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number of critical sets being zero. In that case, “estimated max crit.” would
get smaller and smaller, approaching zero, as we increased the number of sam-
ples. But for any given number of samples, the statistical upper bound is the
best unbiased estimate we can make without either a proof that the number
of critical sets is zero or an exhaustive set of samples (which would amount to
that proof). Thus the estimated range on Fig. 3 is as objectively conservative
as possible, even though there is subjective evidence, based on extrapolation at
41 edges, that the actual number of critical sets becomes identically zero very
soon after that point (and that would be our conjecture).

[1] M. Pavičić, J.-P. Merlet, B. D. McKay, and N. D. Megill, J. Phys. A 38,
1577 (2005).

[2] M. Finkelstein, H. G. Tucker, and J. A. Veeh, Stat. Probabil. Lett. 37, 423
(1998).

[3] N. D. Megill and M. Pavičić, ArXiv:1105.1486 (2011).
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