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Abstract

Recently, S. Meljanac proposed a construction of a class of ex-
amples of an algebraic structure with properties very close to the
Hopf algebroids H over a noncommutative base A of other authors.
His examples come along with a subalgebra B of H ® H, here called
the balancing subalgebra, which contains the image of the coproduct
and such that the intersection of B with the kernel of the projection
H® H — H®4 H is a two-sided ideal in B which is moreover well
behaved with respect to the antipode. We propose a set of abstract
axioms covering this construction and make a detailed comparison to
the Hopf algebroids of Lu. We prove that every scalar extension Hopf
algebroid can be cast into this new set of axioms. We present an ob-
servation by G. Bohm that the Hopf algebroids constructed from weak
Hopf algebras fit into our framework as well. At the end we discuss
the change of balancing subalgebra under Drinfeld-Xu procedure of
twisting of associative bialgebroids by invertible 2-cocycles.

1 Introduction

Hopf algebroids [2], [6, [16] are generalizations of Hopf algebras, which are
roughly in the same relation to groupoids as Hopf algebras are to groups.
They are bialgebroids possesing a version of an antipode, where an (as-
sociative) bialgebroid is the appropriate generalization of a bialgebra. Hopf
algebroids comprise several structure maps defined on a pair of associative
unital algebras, the total algebra H (generalization of a function algebra
on the space of morphisms of a groupoid), and the base algebra A (gener-
alization of a function algebra on the space of objects (equivalently, units)
of a groupoid). The main structure on the total algebra of a bialgebroid is
an A-bimodule structure on H and a coproduct A : H - H ®4, H. The
commutative Hopf algebroids (where both H and A are commutative) are
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easy to define by a categorical dualization of the groupoid concept. They
are used as a classical tool in stable homotopy theory [12], 23]. Noncom-
mutative Hopf algebroids over a commutative base (H noncommutative, A
commutative) are also rather straightforward to introduce; this theory has
been studied from late 1980-s, under the influence of the quantum group the-
ory [20]. The most obvious examples are the convolution algebras of finite
groupoids. Bialgebroids and Hopf algebroids over a noncommutative base are
much more complicated to define; several versions were developed in early
1990s by Lu [16], Xu [31], Bohm [I], Bohm-Szlachanyi [5], Day-Street [8] and
others, including an earlier notion of x 4-bialgebra [30] and its Hopf version
by Schauenburg [24]; for comparisons see [2, 6]. Béhm has also introduced
an internalization of a bialgebroid in any symmetric monoidal category with
coequalizers commuting with tensor product [3]; this has been extended to an
internalization of Hopf algebroids in [27]. Many examples of Hopf algebroids
over noncommutative bases have been studied in the contexts of inclusions
of von Neumann algebra factors [2], dynamical Yang-Baxter equation, weak
Hopf algebras, deformation quantization [31], noncommutative torsors, non-
commutative differential calculus and cyclic homology [13] etc.

In 2012, S. Meljanac devised a new approach to some examples of (topo-
logical) Hopf algebroids over a noncommutative base restricting the codomain
of the coproduct map in a useful, but somewhat ad hoc way. To construct
that codomain, he chooses a subalgebra B in the tensor square H ® H of
the total algebra H, such that the intersection of B with the kernel 14 of the
projection 7 : H ® H — H ® 4 H to the tensor square over the noncommu-
tative base algebra A is a two-sided ideal I, N B C B (with an appropriate
behaviour under the antipode map). The appearance of the two-sided ideal
is a novel and somewhat unexpected feature reminding of the classical case
where the base algebra A is commutative and [, is two-sided itself. The
approach is developed in collaborative works [I5], with more details in [I4].

Papers [14] and [I5] neglect two mathematical issues. Firstly, no care
is taken about the implicit use of completions: the values of the coprod-
uct involve infinite sums, hence its codomain should be a completed tensor
square. Secondly, at the algebraic level, they do not state a complete ax-
iomatic framework for their version of Hopf algebroid, nor state its precise
relation to other definitions. Instead, they construct an interesting class of
examples and give a partial list of essential properties. In our article [21]
with Meljanac, we treat a somewhat wider class of examples in a mathemati-
cally rigorous way, using G. Bohm’s definition of a symmetric Hopf algebroid,



partly adapted to a formally completed tensor product. For a better adapta-
tion, which gives rise to an internal Hopf algebroid in a symmetric monoidal
category of filtered-cofiltered vector spaces, entailing a more sensible com-
pletion, see [27, 28]. These works took care of completions, but instead of
the two-sided ideal approach they relied on (an internalization of ) symmetric
Hopf algebroid axiomatics [2, [5]. To return closer to the original idea, we
here propose a new set of axioms expressing the essence of the two-sided ideal
approach and discuss it in the context. The subalgebra B C H ® H in new
axioms is named the balancing subalgebra and our new version of Hopf
algebroid over noncommutative base algebra A is named a Hopf A-algebroid
with balancing subalgebra B.

In Theorem [3.4 we compare Hopf A-algebroid with a balancing subalgebra
to the Hopf algebroids of Lu instead to symmetric Hopf algebroids from [2]
5, 21]. This is because Lu’s axioms for the antipode map involve a choice of
certain map (section vy below) which is close in spirit to the choice of balancing
subalgebra in our axiomatics and in the informal approach of Meljanac. Our
main result is Theorem (based on nontrivial Lemmas stating
that every scalar extension Hopf algebroid can be cast into a Hopf algebroid
with a suitable choice of balancing subalgebra B.

In Section 5] we worked out the observation of Bohm that each weak Hopf
algebra gives rise not only to Hopf algebroids in the senses of Lu [I6] and
Boéhm [11, 5], but also to a Hopf algebroid with a balancing subalgebra.

Throughout the paper, k is a commutative ground field, and the un-
adorned tensor symbol ® between symbols for k-vector spaces, is meant over
k, however we often use ®, for emphasis. When used among elements in
calculations, symbol ® is interpreted from the context.

2 Bialgebroids over noncommutative base

The axioms of bialgebroids and Hopf algebroids over a noncommutative base
algebra are far less obvious to formulate [2, [6, 16, 24, B1]. Let us detect a
problem naively. For a commutative k-algebra A, an A-bialgebra is a monoid
(algebra) and a comonoid (coalgebra) in the same symmetric monoidal cate-
gory, namely that of A-modules, with a compatibility condition utilizing the
symmetry of the tensor product ® 4. For a noncommutative base algebra A
over k, the category of A-modules is not monoidal, so it is natural to try re-
placing it with the monoidal category of A-bimodules. However, the latter is



neither symmetric nor braided monoidal in general, so the usual compatibil-
ity condition between the comonoids and monoids makes no sense. Instead,
it appears that the monoid and the comonoid part of the left A-bialgebroid
structure live in different monoidal categories [2].

The monoid structure (H, u,n) on H is in the monoidal category of A ®
A°P-bimodules; equivalently ([2], Lemma 2.2), (H,u) is an associative k-
algebra and the unit map 7 is a morphism of k-algebras 1 : A @y AP — H
(we say that (H,pu,n) is an A ® A°-ring). The unit n : A ® A® — H is
usually described in terms of its left leg @ := n(— ® 1400) : A — H and its
right leg 6 :=n(14 ® —) : A°® — H, also called the source and target maps
respectively; then, their images commute because

a(a)B(b) =nla@)n(1®b) =nla®b) =n(l@b)nla®1) = fb)a(a). (1)

An A® A°P-ring (H, p1,n) is described below as the equivalent datum (H, u, «, 3).
On the other hand, the comonoid structure (H, A, €) is in the monoidal
category of A-bimodules (we say that H is an A-coring, [7]).

Definition 2.1. An A ® A°P-ring (H,p,«, ) and an A-coring (H, A, ¢)
with underlying A-bimodule H form a left associative A-bialgebroid
(H, u, o, B, A, €) if they satisfy the following compatibility conditions:

(C1) The underlying A-bimodule structure of A-coring H is determined by
the source and target maps (part of the A® A°P-ring structure): a.h.b =
a(a)B(b)h for a,b € A and h € H. This is indeed a bimodule by ([I).

(C2) Formulas: Y, ha®ay = €(3°, haa(ay)) defines an action H@A = A.

(C3) The map H ®y (H @, H) — H ®4 H given by the rule h ® (¢ ® f) —
A(h)(g® f), factorizes through a map H ®y(H®4 H) — H®4 H which
is moreover a unital action. Expression A(h)(g ®g f) is understood by
taking any representative of A(h) in H ®j H, then multiplying in each
tensor factor separately with ¢ ® f € H ®g H; the result is well defined
in H ®4 H. Unitality of the action implies A(1) =1 ®4 1.

By (C1), € being a bimodule map means e(a(a)h) = ae(h) and €(5(b)h) =
€(h)b. In particular, eoa = €0 f =ids and €(1g) = €(a(ls)) = 14. Action

in (C2) is unital by its defining formula and it extends the left regular action
A® A — A along the inclusion A ® A U He A by direct calculation,

e(a(a)a(b)) = e(a(ab)) = ab. Action axiom (C2), for acting on 14, implies
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= (hg)> 14 =h>(g>14) = e(ha(e(g))). In particular,
e(hB(b)) = e(ha((eoB)(b))) = e€(ha(b)) = h>b. Action axiom on 14 together
with a = €(a(a)) = a(a) > 1, implies the general case, h>(g>a) = h> (g>

(aa)> 1)) = h> ((ga(a)) > 1) = (hga(a)) > 1 = (hg) > (a(a) > 1) = (hg) & a.

From (C1) and A(ly) = 1y ®4 1y, A being an A-bimodule map implies
Aa(a)) = A(a(a)ly) = afa) ®4 1y and A(B(b)) = 1y ®4 (b). It follows
that A(ha(a)) = A(h)(a(a)®al) = haya(a) ®ahe) and A(hB(a)) = hay®a
h(2B(a). Applying the counit axiom we obtain, for all h € H and a € A,

ha(a) = Oz(E(h(l)Oé(a)))h(Q) = Oé(h(l) > a)h(z), (2)

hB(a) = Ble(h@)B(a))he) = Blhe > a)hq). (3)
The condition (C1) implies that the kernel I, = Ker7 of the projection
map

€(hg) = e(hga(la))

T HQH— H®sH

of H-bimodules is a right ideal in the algebra H ®, H, generated by the
set of elements of the form f(a) ® 1 — 1 ® a(a):

Regarding that 4 is a right ideal, and A(h) is defined up to I, the map
H®, (H®p H) - H®a H in (C3) is well defined. Its factorization through
amap H®g (H®a H) - H®4 H exists iff for every h, A(h)I4 C 14, which
is clearly equivalent to A(h)(f(a) ® 1 — 1 ® a(a)) € 14 for all a € A. Hence
A(h) must belong to a set

HxAH:{Zb®b’€H®AH|Zb®b’ Zbﬁ )b, VaeA},

which is a A-subbimodule of H® 4 H ([29,130]), called the Takeuchi product [6,
2]. In these terms, the factorization property from (C3) is equivalent to the
property ImA C H x4 H. Another part of (C3), stating that the induced
map is an action, may also be expressed in terms of Takeuchi product. A
direct check shows that the preimage 7' (H x4 H) = {}_;b; @ b}, >, b; ®
bia(a) — b;f(a) @ b, € 14} is closed under multiplication; in fact a unital
subalgebra. The right ideal 14 is spanned by the elements of the form 3(a)d®
d—d®a(a)d and if Y . b, @ b; € H x4 H then

<Zb ®b’> a)dod —doa(a (szﬂ ®b§—bi®b§@(a)) (dod)



and the right hand side clearly belongs to 4. Thus, Iy N7 ' (H x4 H) is
not only a right ideal but a two sided ideal of 771(H x4 H) showing that
Hx H>7n Y HxaH)/(IaNT Y(Hx4H)) is, unlike H® 4 H, an associative
algebra with respect to the componentwise product. The componentwise
rule is not well defined in H ® 4 H because it may depend on the chosen
representatives in H ®; H; this is because 14 is only a right ideal in general.

This discussion shows that (C3) is equivalent to the joint assertion of the
following two requirements:

(C3a) ImA C H x4 H,
(C3b) A as a map from H to H x4 H is a homomorphism of algebras.

Of course, (C3b) makes sense only because of (C3a). Observe now a com-
mutative diagram of A-bimodules:

7Y H x, H)—H®, H (5)
Lﬂ-ﬂ'_l(HXAH) lﬂ
H A HxaH HoaH

All arrows except those into H ® 4 H are also homomorphisms of algebras.

The equation ), b; ® bia(a) = ), b;5(a) @ U for elements in H ®4 H is
demanded in the quotient, hence it holds only up to elements in I4; if we
take the same equation strictly in H ®g H to cut some subalgebra (actually a
left ideal) Hx H C H @4 H, then the projection 7|5, maps this subalgebra
within H x 4 H, but is not necessarily onto. In a categorical language, H X 4 H
is an end (kind of a categorical limit) of a coend (kind of a colimit), not the
other way around. However, Meljanac in his examples takes some other
subalgebra B C H ®; H (not a universal construction) first and then passes
to the quotient by 7|z (hence a colimit), with a result which is still an algebra
(different from H x4 H). To achieve this, he needs that

(C3MI) 14N B is a two-sided ideal in B.
In addition, he (implicitly) requires
(C3Ma) ImA C B/(14 N B),

(C3Mb) A as a map from H to B/(14 N B) is a homomorphism of algebras.



Definition 2.2. A left A-bialgebroid with balancing subalgebra B
comprises an A ® A°P-ring (H, m, a, ) and an A-coring (H, A, €) with the
same underlying A-bimodule H and satisfying (C1) and (C2), and a (not
necessarily unital) subalgebra B C H ®;, H satisfying (C3MI), (C3Ma) and
(C3Mb). B is called the balancing subalgebra.

A left A-bialgebroid with balancing subalgebra B is not necessarily a left
associative A-bialgebroid in the standard sense, because (C3) does not always
hold. However, if B is the preimage 7 '(H x4 H) of the Takeuchi product
under the natural projection 7 then (C3) follows. Conversely, given a left
associative A-bialgebroid H = (H,m,«,3,A,€), we have presented above
that 7' (H x4 H) N 14 is a two sided ideal of the subalgebra 7' (H x 4 H).
Therefore, (C3) implies that it is a balancing subalgebra called the trivial
balancing subalgebra of H ®;, H. It follows that in a left associative A-
bialgebroid any subalgebra of 7'(H x4 H) containing 7~ '(Im A) is also
balancing. Therefore, on the level of bialgebroids, balancing algebras are
interesting only when either we can not determine whether In A C H x4 H,
or when it does not hold but there is a balancing subalgebra, which is in
the latter case automatically not a subalgebra of Takeuchi product H x 4 H.
However, for Hopf algebroids, as we shall see below, balancing subalgebras
provide more flexible approach to introducing the antipode than using Lu’s
section, while it is technically more compact (less structure and axioms) then
Bohm’s symmetric Hopf algebroids.

Observe a commutative diagram of A-bimodules where all arrows except
those into H ® 4 H are homomorphisms of algebras:

B H®, H (6)
LWB lﬂ
H 2 . B/UsNB)—=H®, H

Proposition 2.3. Let (H,u,a, 3,4, €) be the data defining an A ® A°P-
ring and A-coring satisfying (C1), (C2) and (C3a). Suppose there exist a
subalgebra B C H ®j H such that (C3MI) and (C3Ma) hold. Then (C3b) iff
(CM3Db). In other words, these data define an A-bialgebroid with balancing
subalgebra B iff they (without B) define an associative A-bialgebroid.

Proof. This is a rather simple observation: (C3a) and (C3Ma) together imply

that ImA C IA% N H x, H which has the structure of a subalgebra of
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B/(14NB) and also of H x 4 H; the multiplications in B/(I4NB) and in H x 4 H
are both defined componentwise, hence they are equal on the intersection. If
we assume (C3b), then algebra map A : H — H x4 H corestricts to algebra
map H — IA% N H x4 H which postcomposed with inclusion of algebras
into B/(I4 N B) is again an algebra map, hence A : H — B/(I, N B) is
also an algebra map, hence (C3Mb) holds. Likewise we infer (C3b) from
(C3Mb). O

3 Hopf algebroids: antipode
Definition 3.1. A Hopf A-algebroid in the sense of J-L. Lu [16] (or a

Lu-Hopf algebroid) is a left associative A-bialgebroid (H, pu,«, 5, A, €) with
an antipode map 7 : H — H, which is a linear antiautomorphism satisfying

8=« (7)
p(id @k 7)7A = e (8)
(T @4 1d)A = Ser 9)

for some linear section v: H ® 4 H — H ® H of the projection 7 : H @ H —
H®qH.

The reason for introducing v in (8)) is the fact that u(id ®4 7)A is not a
well defined map because p(id®g7)(14) # 0 in general. Indeed, 14 is a linear
span of the set of all elements of the form f(a)h®@k—h® a(a)k, where a € A
and h, k € H, and p(id®7)(B(a)h@k—h@a(a)k) = S(a)hT(k)—h7(k)7T(a(a))

which can be nonzero in general. No such problems occur with @ because

p(r ®@id)(B(a)h @ k — h @ a(a)k) = 7(h)7(B(a))k — 7(h)a(a)k = 0.

Definition 3.2. A Hopf A-algebroid with balancing subalgebra B is
a left A-bialgebroid (H, u,a, 8, A, €) with balancing subalgebra B together
with an algebra antihomomorphism 7 : H — H, called the antipode, such
that

p(id @k 7)(LaNB) =0 (10)
0 =« (11)

p(id ®4 7)A = e (12)

(T ®41d)A = Ser (13)
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Two equations are the same as in Definition : is identical to @
and to @ Equation ((12)) now makes sense because of . There is
no more need for a choice of a section 7. Choice of the subalgebra B which
accomplishes the same.

Remark 3.3. The map p(id @ 7) : h@ b — h7(h') is k-linear, but neither
a homomorphism nor an antihomomorphism of algebras. Hence, it is not
sufficient to check on the algebra generators of 14N B, and a fortiori, on
its generators as an ideal in B. This will be the central difficulty in Section [4]

Theorem 3.4. If a Hopf algebroid with a balancing subalgebra satisfies
(C3a) then it admits a (possibly nonunique) structure of Lu-Hopf algebroid.

Proof. Choose a vector space splitting of H ®4 H into Im A and a linear
complement; for v take any linear section of the projection 7 : H ® H —
H ®4 H such that values v(p) over points p € Im A are in B (this can be
done by (C3Ma)) and on the linear complement prescribe any linear choice
for v, for instance 0. Condition (C3b) holds by (CM3b) and Proposition [2.3]
Then p(id ®g 7)yA(h) = p(id ® 4 7)A(h) as the right hand side is defined by
choosing any representative of A(h) in H ® H and evaluating u(id ®g 7).
Thus holds, and other conditions on the antipode become identities. [

As a corollary, Example 4.9 in [5] of B6hm’s Hopf algebroid which does not
carry Lu-Hopf structure is not a Hopf algebroid with a balancing subalgebra
either. We do not know if for any Lu-Hopf algebroid there is a balancing
subalgebra (containing the image of 7), but for most prominent classes of
Lu-Hopf algebroids we provide recipes for a balancing subalgebra. Notably,
in Section [4, we show that any scalar extension of a Hopf algebra by a
braided commutative Yetter-Drinfeld module algebra is a Hopf algebroid with
a balancing subalgebra given by specific generators. Clearly, every Hopf
algebroid over a commutative base is also in both classes.

Lu [16] exhibits an example which she calls a coarse Hopf algebroid, now-
days often called a minimal Hopf algebroid. Given a unital associative
algebra, the tensor product algebra A ® A carries the structure of Hopf
algebroid with source map a(a) = a ® 1, target map 3(b) = 1 ® b, comulti-
plication A(a ®b) = (a® 1) ®4 (1 ® b), counit €(a ® b) = ab and antipode
T(a®b) = b® a. It has the balancing subalgebra B = (A ® k) ®4 (k @ A°P).



4 Scalar extension Hopf algebroids

4.1 Scalar extensions, elements R(a) and section ~y

Given any associative k-algebra A equipped with a left Hopf action » of a
bialgebra T', vector space A ® T carries a structure of a unital associative
k-algebra with multiplication bilinearly extending formula (a ® t)(a’ ® ') =
Ya(tqy » a') ® tt’ and with unit 14 ® 1p. This algebra is called the
smashed product algebra ([22]) and denoted AfH. It comes along with
canonical algebra monomorphisms A = A®k — AfT and T = kT — AfT.
The images of these two embeddings will be denoted Af1 and 147

Let T be a Hopf k-algebra with a comultiplication Ay : T — T ® T
and a bijective antipode S. A braided-commutative left-right Yetter-
Drinfeld 7T-module algebra A is a unital associative algebra with a left
T-action »: T'® A — A which is Hopf in the sense that

b (ab) = (ta) B a)(ty > b), B 1, = e(t)ly,

and a right T-coaction a — ap ® ap; which is morphism of algebras A —
A® TP (see [6]), satisfying the left-right Yetter-Drinfeld condition

(tay » aq) @ (teyap) = (te) » a)g @ (te) » a)ujta), VteT,Vae A
and the braided commutativity -
xpo)(zpy » a) = ax, for Va,x € A (15)
Lemma 4.1. Braided commutativity condition is equivalent to the condition
(Sdpy) » a)dg = da, Vd,a € A. (16)
Proof. This is rather standard. Assuming braided commutativity ,
da = dg((dpSdjg) » a)

= djo0)(do)y ™ ((Sdp)) » a))
= ((Sd[l]) > a)d[o].

In other direction, assuming (|16

zo)(zp »a) = (S » (zp) » a))z))
= (Szpp » (zpp » @)z
= (e(z 1])1T > a)x[o]
= axr.
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If A is in fact a braided commutative Yetter-Drinfeld algebra over T
then the smash product H = AfT is a total algebra of a Hopf A-algebroid
called a scalar extension Hopf algebroid. For a Lu-Hopf algebroid this is
proven in [6], modifying slightly an earlier construction of Lu [16], Section 5,
where instead of Yetter-Drinfeld modules closely related modules over Drin-
feld double D(H) are considered. Both works entail a circular argument in
the proof that the antipode of the algebroid is an antihomomorphism, check-
ing the property on rather trivial case of binary products of generators of the
form afl and 14t only. Antihomomorphism property for products of general
elements is checked in [27], assuming that S is bijective. Lu-Brzezinski-
Militaru construction has been adapted to the symmetric Hopf algebroids of
Béhm [11, 2, 5, 27].

The A-bimodule structure of AgH is determined by the source and target
maps

a(a) =afl,  B(a) = agtap), (17)

and the comonoid structure of AfH is given by
Augr(aft) = (aft)) ®@a (182), eagr(aft) = aer(t). (18)
Finally, the antipode 7 for the Lu-Hopf algebroid is (cf. [6, [16])
T(att) = S(t)S*(ap)) - aj)- (19)

We often identify Afl = Im a with A and 147" with 7. By Definition [ the
right ideal [, C H ® 4 H is generated by the set of all elements of the form

I(a) = pla) @1 —1®a(a) = agfay ®1 —1®a, acA. (20)

There is also another set of generators R(a) of I4, more convenient for
our analysis below.

Proposition 4.2. In the case of scalar extension H = Af#T, right ideal
I, € H x4 H is generated by the set of all elements of the form

R(a):==a ®1—Sap ®@ap, acA. (21)
Proof. In the notation ,

I(a) = (apfl — Sapy @ ajgo) (ap @ 1) = R(ap))(ap @ 1).
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Notice that ag € A. On the other hand,
R(a) = (a[o][o]ﬁa[o]m ®R1-1® CL{m)(SCLm & 1) = ](a[g])(SCLm ® 1).
Therefore, the right ideal generated by {I(a) | a« € A} and the right ideal

generated by all R(a) coincide. O
Given a linear basis &1,...,Zqimg Of a finite dimensional Lie algebra g,
references [14], [15] introduce elements R, (@ = 1,...,dimg) in a related

example of a formally completed version of a scalar extension Hopf U(g)-
algebroid. In Subsection [4.4] we observe that R, = R(&,,).

Lu’s section for scalar extension bialgebroids. For any scalar exten-
sion H = A4T, J-H. Lu [16] exhibits a section v : H ®4 H — H ® H by the
unique k-linear extension of the formula

v:h®g (afit) = Bla)h ®p (18t), he Hyac At €T. (22)
Section v is well defined by , namely on the generators

Bb)h @ (ctt) — h @ a(b)(cht)

of the ideal 14 the formula evaluates to 5(c)B(b)h® (1ft) — 5(bc)h @ (16t) = 0.
Linear map ~ is a section of the projection 7 : H ®, H — H ®4 H because
h@a (att) = h @4 ala)(14t) = Ala)h @4 (14t) = (7 07)(h @4 (att)).

In particular, formula gives

(v 0 A)(aft) = (alitq)) @k (15t2). (23)

4.2 Subalgebra W C H ® H where H = AfT is a scalar
extension Hopf A-algebroid

Notation 4.3. Let T be a Hopf algebra and A a braided commutative al-
gebra in the category of left-right Yetter-Drinfeld T-modules. For a scalar
extension AT let W C (A4T) @ (A4T) be the smallest unital subalgebra such
that all elements of the form a ® 1 and all elements of the form Sap) ® aj
(where a € A= Al C AfT) are in W. Let W™ be the two sided ideal in W
generated by all elements of the form R(a) = a® 1 — Sap ® ajg) where a € A
(compare (21))).

Let W™ C W be the linear subspace of W spanned by all elements of the
form (z ® 1 — Sxp ® 2)) (2’ ® 1) where z, 2" € A= Afl.
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We now formulate two lemmas which together imply W™ = WT.
Lemma 4.4. For z,z € A we have (z ® 1)(2 ® 1 — Sz ® zp)) € Wy

Proof. Multiplying out, and using x5(t) = S(tq))t2)xS(ts)) = S(tw)(te) »
x) for z € A, t € T, we obtain

rz®@1—xS(2p) @219 = 22®@1—8(2) (212 » ) ® 2
= by braided commutativity
= Z[g](z[” | x) ®1-— S(z[l])(z[g} | 2 x) @ Zo]
= (2100 ® 1 = S(z0) @ 2qojo)) (2121 > 2 © 1)

and the right hand side is clearly in W, as claimed. ]
Lemma 4.5. R(z)R(z) = (z®1— Sz ® .r[o])(z ®1—-5® Z[o}) € Wd‘_

Proof. Since x — x};) ® 7o is a morphism of algebras A — TP ®;, A and
T @k A — AT Qi AT = H ®; H inclusion of algebras, we conclude that
x — Sxp ® x)g) is a morphism of algebras A — H ®; H (with respect to the
componentwise multiplication in H ®g H). Therefore,

(r®1— Sz ® x[o])(z ®1—52® Z[O]) =

= (@1 =Srp @) (2@ 1)+ 2821 @20 — 2@ 1+ 2201 =S (22)1 ® (22)[
= (2®1=S2®2()) (2@1)+(—2®1) (2@1 =Sz ®2)g )+ (22@1 =S (22) 1@ (22)[0])-
The first and the third summands on the right hand side are manifestly in
W,F while for the second summand we apply Lemma 4.4, O
Corollary 4.6. (i) Va,z € A, (Szp @ 2jg) (2 ® 1 — Szp) ® z9) € W',

(ii) Wy is a two-sided ideal in W,

(i) W+ =Wy

Proof. (i) follows by subtracting the expression (z ® 1 — Sz ®@ zp)) (2 ® 1 —
Szpy ® z) which is in W by Lemma [4.5( from the expression (z ® 1)(z ®
1 — Sz ® 2pg) which is in W' by Lemma [4.4]

(i) Wy is a right ideal: by its definition, we can multiply by z ® 1 from
the right; this together with the assertion of Lemma implies that we can
also multiply by Sz ® 2[g from the right.

13



(ii) Wy' is a left ideal: using Lemmald.d] (z®@1)R(z)(z'®1) € Wy (2/®1)
which is in W, because it is a right ideal. Combining with Lemma we
also conclude that (Szp) @ xp))R(z)(z ® 1) € W

For (iii) notice first that, trivially, W~ C W*. For the converse inclusion,
W+ C Wy, it is sufficient to observe that R(a) € W, apply (ii) and the
definition of WT. O

Theorem 4.7. p(id @, 7)WT = {0}.

Proof. By Corollary (iii) W = W;", which is the span of the elements of
the form
(r®1—Sop @) (2®@1), where z,2 € A.

Taking the standard formula for the antipode for the scalar extensions ,
T(afit) = S(t)S*(ap)) - ajo), we can now compute £(id ® 7) on such an element
as

Tz — S(x[z])zSQ(xm)a:[o} = xz — ((Szpy) » 2)z9 = 0.

by the braided commutativity. O]

4.3 Subalgebra B and two-sided ideal B* C B

In this section, we want to show that every scalar extension Lu-Hopf alge-
broid H = AfT is also a Hopf algebroid with a (carefully chosen) balancing
subalgebra B.

Using the inclusion T'®y T — AT ® AfT', we identify the image of the
coproduct Ap : T" — T ® T of the Hopf algebra T" with a subalgebra of
H ®j H which will be denoted by Ar(T).

Definition 4.8. Subalgebra B C AfT ® AT is the subalgebra generated
by W and Ar(T) or, equivalently, by the set

{a (24 1, S(l[l] (24 aol | a < A} U AT(T>

The elements of this set are called the distinguished generators of B.
Recall now elements R(a) € 14 N B defined by formula (21). Let B* be the
two-sided ideal in B generated by the subset

{R(a) | ac A} ={a®1— Sap®@aqq | a € A} CB,

whose elements R(a) are called the distinguished generators of B7.

14



Theorem 4.9. (i) Bt =1,NB.
(ii) (C3MI) holds: 14N B is a two-sided ideal in B.
(iii) (C3Ma) holds: Im A C B/(14 N B)

)
)
(iv) The scalar extension is a bialgebroid with the balancing subalgebra .
(v) BCn ' (H x4 H).

)

(vi) Inclusion from (v) induces an inclusion of algebras B/B, — H x4 H
whose image is Ap(A$T) C AfT ®4 AfT. On generators this isomor-
phism onto the image is given by k-linear extension of the correspon-
dence a ® 1 +— affl ®4 1, Sap ® ajg) = affl ®4 1 for a € A, and
Ar(t) =t (1) @ to) > 1ty ®a 1t for t € T

Proof. (i) follows immediately from Deﬁnition for Bt and Proposition .

(ii) follows from (i) and the definition of B*. (iii) is an immediate check
knowing the generators and (i).

For (iv) use (ii), (iii), Proposition[2.3)and the fact that the (C3b) is known
for scalar extensions [6, [16].

For (v) we have two proofs. One is to check for each distinguished gener-
ator separately that it belongs to 7' (H x 4 H). Another is to write I(a) in
terms of R(a), use that R(a) € I4NB and hence bR(a) € bBT C BT because
R(a) € Bt and the latter is a two-sided ideal.

(vi) Clearly, a ® 1 — Sap ® ajg) = R(a) € BN 14— 14, hence the values
on a® 1 and Sap) @ ap are the same. O

Lemma 4.10. Let >° K" ® L} € {z®1, Szp @z |ze A} U{fa ®
fioy| f € T} be a distinguished generator. Then for any a € A,

> K (afil) - T(LY) € Afl.

Pi

Proof. We inspect the claim case by case as follows.

(a) If Zpi K@ L' e {x ® 1, Sz @ x| |z € A}, then by

> K (afl) - T(LE) ZKP« afl - S*(LY) - Ly, (24)
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The dot product sign - denotes here the multiplication in the smash
product AfT; A is identified there with Afl and T with 1§7". There
are now two subcases, (al) and (a2).

(al) For }° KI'®@L' =z®]1, equals za = zafl which is in Af1.

(a2) For 3 K["®Lj = Sxp@z(), equals Sxpy-a-S*(xp)) -z =
((Sz)py » a)-(Sz)2S((Sx))-xpe) = ((Sx)py » a)-xp) = ra which
is in Afl.

(b) If >°, K" ® LY = fa) ® fo), f € T, then > K -afl-7(L}) =
fay - atl - S(fi2)) = (f » a)il which is again in Afl.

Therefore the claim ) = K[ - afl - 7(L{") € Al follows. O

Lemma 4.11. Let U be a product of finitely many distinguished generators
of B. Then
p(id® 7)(U) € Afl.

Proof. Let U = (3_, K{* ®@ L{*)--- (32, Kf» @ Lp). The antipode 7 is an

algebra antihomomorphism, hence

pid@T)(U) = Y KUKy - Krr(Ly)---7(L5). (25)

We prove that

ST KR K)o r(L) € A,

Prn—ps--sPn

by induction on p where 0 < p < n — 1, the assertion of the lemma is then
the case p = n — 1. For the base of induction, p = 0, this is the identity
>, Kprr(Lor) € Afl which follows from Lemma when a = 1. The step
of the induction on p is clearly also a special case of Lemma [4.10]

By it follows that u(id®g7)(U) € Afl; in other words, u(id®g7)(U)
is of the form df1 for some d € A. m

Theorem 4.12. Let 7 : AfT — AgT given by the formula be the
antipode of the scalar extension as a Lu-Hopf algebroid. Then

(i) p(id ® r)B* = {0}.
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(ii) 7 makes the corresponding A-bialgebroid with a balancing subalgebra
from Theorem [4.12] into a Hopf A-algebroid with a balancing subalge-
bra.

Proof. (i) A general element of B* is a linear combination of the elements of
the form

1D MeNy (ze1-Seyeaq) - [[D KXo L, (26)

j=1 oj k=1 pg

where - M ® N7, 37 Ki* @ Li* are some distinguished generators of
B, and the middle factor z ® 1 — Sz ® o) is some distinguished generator
in B*. Notice that M;’, N’ Ki*, Li{* € Af1U 14T and = € A.

By the linearity of u(id ® 7) it is sufficient to prove the assertion for one
element of the form above. Rewrite (26) as,

LD (M7 a1 K@ (N]7 - L) = (M7 1Sy - K @ (N} -l - Ly).
j:k 035,Pk

(27)
By Lemma |4.11] we can define d € A by

dil = K0 Kb r (L6 - r(L0Y) € Afl. (28)

We apply map u(id ® 7) to and subtitute (28). Notice that 7, being an
antihomomorphism, reverses the order. Thus we need the vanishing of

Z My Mo (241 - dil — 18Sap) - dil - T(zp)fl)) 7(Ngm) - - 7(NTY).

o (29)

Therefore to finish the proof of the assertion (i) it is sufficient to show
that for all z, d € A we have

:L‘jjl : dﬁl = 1jjSl‘[1] . dﬁl : T(ZL‘[O}ﬁl),

where, by the formula for the antipode (19), 7(zg#l) = S*(zp) - (-
This amounts to showing

vdfl = ((Sz)u) » d) £ (S2) S((S7)p) - 28l

that is,
xdfl = ((SZL‘)M > d) :B[O]ﬁl,
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which is by Lemma an expression of the braided commutativity for
A. Therefore, (i) is proven.

For the part (ii), according to Theorem [4.9] part (iv), it remains only to
check the axioms for the antipode. The antipode requirements and
have the same content as in the case of Lu-Hopf algebroid definition hence
they are true. Now, thanks to (ii) the left-hand side of the equation (12)),
that is, pu(id ®4 7)A, does not depend on the representatives of A(at) =
(afity) @ (18t(2)) in H ®, H where a € A and t € T. So we need to show
that

(afit)) (S*(te) - (t))) = att,

which boils down to the same computation as for the Lu’s choice of v, see .
Our result is stronger only in the sense that we allow for an additional freedom
in B, and that B is a balancing subalgebra in the bialgebroid sense. O

4.4 Comparison with the examples of Meljanac

S. Meljanac has devised his method [14], [I5] to the study topological Hopf
algebroids related to a Lie algebra g, with the universal enveloping algebra
U(gx) in physics literature called the xk-Minkowski space. Some extensions
of this Hopf algebroid (including some symmetries into the algebra) from the
point of view of Lu-Hopf algebroid have been studied in [I7] in an informal
style of mathematical physics and, in just slightly more mathematical treat-
ment, in [I8]. Works [14], [I5] made it clear that their construction applies
to any finite dimensional Lie algebra g in characteristic zero. We comment
below on how our construction of B relates to theirs for general g. As stated
in the introduction, we neglect here the issues related to the adaptation of
the notion of Hopf algebroid to the completed tensor products [21], 27].

We use the notation from [21]. Generators of the Lie algebra g are de-
noted 21, ...,&, with commutators [Z,,2,] = C;)Vﬁ:,\ and the generators of
the symmetric algebra of the dual S(g*) by d',...,9". The completed dual
T = S(g*) is a topological Hopf algebra, namely the coproduct Ay : S(g*) —
S(g*)®S(g*) may be identified with the dual (transpose) map to the multi-
plication U(g) — U(g) ® U(g). The identification is made with help of the
symmetrization map S(g) = U(g), which is an isomorphism of coalgebras [21]
and its dual isomorphism of algebras S(g*) = U(g)*. Now A = U(g) becomes
a braided-commutative Yetter-Drinfeld module algebra over 7' (internally in
a symmetric category of filtered-cofiltered vector spaces, [27]). Regarding
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that 7" is a formal dual of U(g), the Heisenberg double U(g)4T" can be either
produced as a usual smash product where T' is equipped with a right Hopf
action of a Hopf algebra U(g) (as in [2I], where however, for a bialgebroid, an
additional completion on the smash product has been performed at a later
stage) or a smash product in which 7" is understood as a topological Hopf
algebra and U(g) is equipped with an internal left Hopf action of 7. The
latter interpretation supplies the internal version of a scalar extension Hopf
algebroid [27].

If R(a) is defined by , then 2, @&,p) = £,0(O )7 where 07, (O~1)2
are certain elements in 7" (see [21] for the definition and properties), O~ ! is a
matrix inverse of O, ArOF = O ® O and S(O~!)* = 0. Thus we obtain,

R(&,) =23, ®1 = STy ® &) = &, ® 1 — OF @ &4 (30)

We observe that R(Z,) is identical to R, of [I5][14]. Using identities [OF, %, ] =
C#,09 (formula (17) in [21]) and C},0} = C,, 0407 (formula (20) in [21]),
we obtain

[R(‘%,LJ? R(ﬁjv)] = CZVR(‘%U)ﬂ (31>
[ ® 1, R(2,)] = C, R(3). (32)

(generalizing Eq. (32),(33) in arXiv version of [14], (3.2),(3.3) in journal v.).
Moreover, is the only relation among R,-s, hence the subalgebra in H ®y,
H generated by {R,, | # = 1,...,n}, is isomorphic to the universal enveloping
algebra U(g), but with generators R,, in place of Z,. Following [14], denote
this subalgebra by U(R). The relation [14] (32) shows that the products of
the form r(ufl®1) where r € U(R) and uf1l ® 1 € U(g)tl @ k C U(g)1T 4
U(g)tT span a subalgebra in H ® H. This is precisely our subalgebra W
in this case. However, the relations (3.3),(3.4) in [14] for g, case, and the
generalizations , for general g, used to show that W is a subalgebra of
H ®y H, do not have a simple analogue for general scalar extension A§T" (not
of enveloping algebra type). It is also not clear what is the precise structure
of the subalgebra generated by R(a)-s for all @ € A, in general. On the
other hand, our Hopf algebraic definition of R(a) and the corresponding
definition of W in the subsection 4.2falong with the lemmas therein guarantee
that such general W is a subalgebra in H ®; H in full generality.

The issues are more complicated when we pass from W to B. In the
enveloping algebra case, the subalgebra B (denoted B in [14]) is defined in [14]
rather simply as the subalgebra of all elements of the form }, w;Ag . (t:)
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where w; € W, t; € T = S(g*) are arbitrary (the sums may be infinite, in
an appropriate completion). Equations (3.3),(3.4) in [I4], can be abstracted
and generalized to an arbitrary finite dimensional Lie algebra as the following
proposition.

Proposition 4.13. For general g,

[AO*, R(2,)] =0

[AO, 3,81 @ 1] € Arp(T). (33)

Regarding that 0" generate a dense subalgebra of T', this implies immedi-
ately that {>_, w; Mg (t) | wi € Wit; € T} is a subalgebra of H ®y H, and
that B has a very simple structure of all sums of products of the form: an
element in U(R) times an element in Afl ®, k C H ® H times an element
of the form Ar(t;) with ¢; € T. We have exhibited above a similar structure
— as a sum of products of elements from three subalgebras in this fixed or-
der — for general scalar extension Hopf algebroids. In this generality, P; do
not commute with elements in W and multiple products (e.g. of the form
wtw't'w”) of elements in W and elements in Ap(7") may appear, as analysed
in the subsection [4.3] Regarding that p(id ®g 7) is not an antihomomor-
phism, the multiple products bring the main difficulty in our proof that the
antipode 7 is well defined (see Theorem [£.12] (i)).

Analogous comparisons may be made for the ideal B, which is in [14]
not defined as the intersection 74 N B, but an equivalent description is given,
constructing it in analogy to B, but with the enveloping algebra U(R) re-
placed by its ideal U, (R) C U(R) of elements which are not degree 0 in
the standard filtration of the universal enveloping algebra. This explains the
notation B;. The commutation relations (3.1)-(3.4) in [14] imply that such
B, is indeed a two-sided ideal in B.

Our approach also differs from [I4] in insisting that the coproduct is still
defined as taking values in H ® 4 H (rather than in B/(I4NB) as an abstract
algebra); the two-sided ideal trick is used only to make sense of the require-
ment and to check that the induced map into B/(14 N B) is a morphism of
algebras. Moreover, they view B as an abstract algebra constructed from
its pieces U(R), Afl ® k and Ap(T) = T. In our approach, the coher-
ently associative tensor product of bimodules ® 4 is used to formulate the
coassociativity of the coproduct as in the standard definition of a bialge-
broid [2, Bl 6, 16, B1]. In [I4] the coproduct is taking values in B/(14 N B)
by definition and, in the spirit of their viewpoint, the higher iterations of the
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coproduct in subalgebras
BY Cc H®pH®p - @k H (j tensor factors),

which define higher analogues of the subalgebra B? =B c H®,H. One
also considers the higher analogues BSf) = Iﬁf) NBY) of I,NB in order to deal
with the (co)associativity issues. For example, B®) is generated by all ordered
products of the form r- (a®1®1)- (A®id)(A(t)) wherea € A, t € T and r
belongs to the subalgebra generated by { R(a)®1 | a € A}JU{1®R(b) | b € A}.
The right ideal II(L{) is the smallest right ideal in H®* containing right ideals
Ip® H®U-2D H® I, @ H?U-3 . H®0-2 @ J,. These are interesting
structures, but in our view more cumbersome than the familiar usage of the
bimodule tensor product ® 4.

5 Weak Hopf algebras

It is well-known that from the data of any weak Hopf algebra one can con-
struct a corresponding Lu-Hopf algebroid. Upon looking at our axiomatics,
G. Bohm has observed and sketched to us how to construct a Hopf algebroid
with balancing subalgebra from a weak Hopf algebra. We present her results
in this section, starting with a short review of weak Hopf algebras.

5.1 Weak bialgebras, standard definitions

A weak k-bialgebra H (see [4]) is a tuple (H, i, n, A, €) where (A, i, n) is an
associative unital k-algebra, (H, A, €) is a coassociative counital k-coalgebra,
and the following compatibilities hold:

(i) A is multiplicative, A(ab) = A(a)A(b) for all a,b € H.
(ii) Weak multiplicativity of the counit
e(zyz) = e(zyn))e(y@)?), (34)
e(y2) = e(zy)elyn ) (35)
(ili) Weak comultiplicativity of the unit:

A®(1) = (A1) ® 1)(1® A(1))
1

AG(1) = (12 A)) (A1) & 1) (36)
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where we denoted A® := (id ® A)A = (A ® id)A.

For every weak bialgebra there are k-linear maps I1%, I1% : A — A with
properties ITFIT#% = I1% and IT*I1* = IT* and defined by

HL(LE) = 6(1(1)£L‘)1(2), HR(ZL’) = 1(1)6(1’1(2)).

These expressions are met below in two of the axioms for the antipode of a
weak Hopf algebra. Less frequently, one also encounters idempotents IT%, IT#
given by

() = e(ly2)l), (@) = lge@ly).

Now

e(zz) = e(xl2) = e(zle)e(lnyz) = e(e(zle)layz) = e(IIf(z)

The images of the idempotents I17 and 1%,
HY .= II%(H), H* = II*(H),

are mutually dual as k-linear spaces via the canonical nondegenerate pairing
HY @ HE — k given by (z,y) — €(yx).

The identities TIX(zI15(y)) = ¥ (xy) and TE(I17(z)y) = 117(xy) hold.
Dually also A(HY) ¢ H® HY, A(H?) ¢ H? @ H, and A(1) € HE @ HE.

5.2 Bohm’s recipes

It is known that a weak Hopf algebra H can be regarded as a Lu-Hopf
algebroid over A := IIY(H) where the source map « being the inclusion
I1X(H) C H and where the target map is given by

ﬁ(a) = l:[L(a) = 6(1(2)CL)1(1) for a € A, (37)

and the comultiplication A’ = 7 o A of the bialgebroid is the comultiplica-
tion A : H — H ®; H of the weak Hopf algebra followed by the canonical
projection 7 : H ® H — H ®pz gy H.

Lemma 5.1. 1®1—A(1) € 14.
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Proof. By definition, I, is generated by all expressions of the form
I(h) = B(II*(h) ® 1 —1® a(l*(n), heH

Now IT*(h) = €(1¢1yh)1(2) hence by

BIIE(R) = e(lee(lanh)le)l
= e(lgle)el 1/)h) ) (38)
L (1ph)1g

!/

where 1(;) ® 1{;) denotes another copy of A(1).

I(h) = e(lgh)lny®1—1®e(lu)h)le

— () @ 1 — 1@ TE(h). (39)

It is sufficient to prove that 1 ® 1 — A(1) = I(12))(11) ® 1) because the
right hand side manifestly belongs to 4. From (39)) we calculate

I(1p) (1 ® 1) = Eﬂ@ﬁbﬂhnﬂnéél 1<)®€ﬂuﬂbﬂh)
= (1))@ ® 1 —11) @ €(li2)le)
— 191- A,

where in the middle line the axioms on A® were used for the second
summand. O

Lemma 5.2. A(1)/(h) =0.
Proof.

Lye(lanh)lan @ 1e) = e((Laylan)e)Aalan)me(lenh)lan @ 1)
= Eﬂ@ﬂwﬂdh>hﬂuﬂu>®1®
= e(lolenh)lnlay @ 1
(Lh)1la) ® 1
( (Lz)h)1s)
( (L) lanh) el
( (1) Lezy)e(Tanh) syl
( @€(lanh) )

I
— = s =

]

Corollary 5.3. The right ideal I4 coincides with the principal right ideal
generated by 1 ® 1 — A(1).
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Proof. By Lemmaelement 1®1—A(1) € 14 and by Lemma for every
heH, I(h)=(1®1—A(1))I(h), hence also Iy C (1®1— A(1))H. O

Theorem 5.4. For a weak bialgebra (H, i, n, A, €), define the subalgebra
B:=A(l)(He® H)A(1) C H® H.

Then (H, u, X (H), ITE, 7| g0 A, TIE) is a left T (H)-bialgebroid with balancing
subalgebra B.

Proof. 1t is clear that B is a subalgebra with unit A(1) and that Im A C B.
By Lemma [5.2] the intersection BN Iy C A(1)I4 = 0 is the zero ideal
of B hence (C3MI) holds and A" : H — H ®qzm) H factorizes, indeed,
through an algebra homomorphism H — B/(B N 14). It is clear that
A(h) = A(1)A(h)A(1) € B for every h € H, hence (C3Ma) holds. Then
mlg : B = B/(BN1,), hence as A is homomorphism, its corestriction A[B
to B is homomorphism and, finally, the corestriction followed by the restric-
tion of the projection |z o A|® is a homomorphism. Other properties (e.g.
that (H, A, IT%) is a ITF(H)-coring) are well known as they coincide with the
axioms of a left associative A-bialgebroid. O]

5.3 Antipode

A weak k-bialgebra H is a weak Hopf algebra if there is a k-linear map
S : H — H (which is then called an antipode) such that for all z € H

r1)S(22)) = e(L)z)1(2), (40)
S(zay)ze) = Loe(rly), (41)
S(xay)z@)S(r@) = () (42)

Notice that the right hand side of equals IT(x) and the right hand
side of equals TI7(x). Suppose the antipode S is bijective. Set the
antipode of the corresponding Hopf algebroid with a balancing subalge-
bra to be 7 = S. Since Iy N B = {0} any k-linear map vanishes on
it; hence so does the map o (id ®j 7) of (10). Axiom can be re-
stated as (S o 8o II¥)(h) = II*(h). To show this identity, notice that
(Sopoll’)(h) = S(e(1yh)1()) by and then it is enough to quote
S(1ay)e(l@x) = I*(z), which is the identity (2.24a) in [4]. Axiom
reads h(1)S(h@) = M4(h) which is manifestly (40). Axiom follows

. 138)
by calculation S(h(l))h(g) = ﬂ(HL(S(h))) 1(1)6(1(2)S(h)) = 1(1)€(h1(2)),
where the last equality is (2.23b) in [4], proven using axiom .
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6 Twisting by invertible 2-cocycles

Ping Xu [31] has generalized Drinfeld’s procedure of twisting of bialgebras
by invertible counital 2-cocycles to associative bialgebroids. Basic treatment
involves several subtle points [31] not appearing in bialgebra case. These do
not readily generalize to arbitrary bialgebroids with balancing subalgebra, so
we take conservative (strong) assumptions.

Definition 6.1. Let H be a left associative A-bialgebroid with balancing
subalgebra B C H ® H. An element F € H ®4 H is called a 2-cocycle if
either F € Bor B C H x4 H holds and if

[(A @A id)(F)(F @k 1) = [(id @4 A)(F)](1 @k F) (43)

in H®a H®4 H. 2-cocycle F is counital if (id®4¢)F =1 = (e®,id)F. If
we write F = Y. FI'@ [?" := F'® F?, then the counitality can be rewritten
as B(e(F*))F =1 = a(e(FY)F2

This equation (43) makes sense by assumptions F € Bor B C H x4 H.
The latter case is by Proposition not quite a novel case of a bialgebroid.
Still, we are interested in a recipe for the change of a balancing subalgebra
under twisting. For a € A we define

Br(a) == B(F*w» a)F', ar(a):=a(F' » a)F> (44)

Xu have proved that the twisted product xr on A defined by a xz b =
ar(a)Br(b) is associative and unital. For the F-twisted base algebra Ar =
(A, %) maps ar : Ar — H and Sz : AY — H are morphisms of k-algebras
with mutually commuting images. In particular, H becomes an Az-bimodule
and an Ar @ AP-ring; use H” to emphasize the twisted structures. Xu has
further shown that

F(Br(a) @1 —1® ar(a)) € I4. (45)

Define I+ as the right ideal in H ®j H generated by all elements of the form
Br(a) ®1—1® az(a). Then implies FIz C I4. One says that F is
invertible if there is an element F~' € H ®; H such that F~'I4 C Ir
and for F~!:= F~! 4+ I the identities FF ' =1®, 1 + 4 and F ' F =
1 ®p 14 Ir hold. Denote also by F € H ® H any representative of F. This
is not the original definition of invertibility, but it is equivalent to it [26]. It
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follows that FIr = I4. Clearly, H ®4, H” = H @ H/Ir. If we define
Az(h) == FYAh)F : H® — H” @4, H”, this map of Az-bimodules is
coassociative due the 2-cocycle property, with counit ez = €. Notice that
Ax(h)Ir = FYAR)FIr ¢ F'Ah)I C F 'y = Ir. In other words,
ImAr C H” x4, H”, where the factorwise multiplication is well defined.
Conjugation with F (in the sense up to corresponding ideals) can easily be
checked to preserve the multiplicativity property of Az. Thus Xu obtains
a new twisted Az-bialgebroid H” from the old A-bialgebroid H. We want
to modify this a bit to allow for a balancing subalgebra. For this we first
describe twisted Takeuchi product in terms of the original one. Suppose

Y.bi®@alti € Hxy H, that is ), (b;0r(a) @ b, — b; @4 bia(a)) € I4. Then

S b0, F'Br(a) @4 BLF S BB 2 b a)Fl F @ b F?

M
(143)
= S bB(FE F > a) P @4 VR F

S biFt @4 Vi F2ax(a)

Transformations in this calculations are allowed because elements in Takeuchi
product multiply elements in H ®4 H from the left, and the maps (h ®4
g) — B(gra)h and (h ®4 g) — a(h>a)g are well defined. We obtain
S biF Br(a) Qb E? =Y b Fr @b F?ar(a) € I4. Multiplying this by F~*
from the left, we obtain

F! (Z bi ®a bg) FeF =1 (46)

Therefore, F~'(H x4 H)F C H” xa, H”, and similarly for the converse
inclusion, obtaining

F Y H xs H)F = H" x4, H”

Since 14 is right ideal and FF~! = 1®, 1+ I, there are inclusions [4F ! C
Iy = IZFF ' C I4F!, hence I4F~! = I,. Define the twisted balancing
subalgebra by Br := F!BF. Then [rNBr = (F 4)NBr = F Y (I4NB).F.
It is a conjugate of a two-sided ideal within algebra H ®; H, hence itself a
two-sided ideal. If A: H — B/(I14 N B) is a morphism of k-algebras, then
clearly F'A(=)F: H® — Br/(Ir N Bz) is. Thus we obtain a twisted
bialgebroid with a balancing subalgebra.
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Xu [31] does not consider the antipode. A general proof that Drinfeld-
Xu twist can be used to twist the antipode by using a canonical formula
has been missing for 20 years due technical difficulties resolved only in [26],
for Hopf algebroids with an invertible antipode in the sense of Bohm and
Szlachényi [5]. We leave the extension of twisting to antipode in the setting
of balancing subalgebras to a future treatment.
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