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Abstract: We present an elementary construction of a (highly degenerate) Hopf pairing between the
universal enveloping algebra U(g) of a finite-dimensional Lie algebra g over arbitrary field k and the
Hopf algebra O(Aut(g)) of regular functions on the automorphism group of g. This pairing induces a
Hopf action of O(Aut(g)) on U(g) which together with an explicitly given coaction makes U(g) into a
braided commutative Yetter—Drinfeld O(Aut(g))-module algebra. From these data one constructs a Hopf
algebroid structure on the smash product algebra O(Aut(g))tU (g) retaining essential features from earlier
constructions of a Hopf algebroid structure on infinite-dimensional versions of Heisenberg double of U (g),
including a noncommutative phase space of Lie algebra type, while avoiding the need of completed tensor
products.

We prove a slightly more general result where algebra O(Aut(g)) is replaced by O(Aut(h)) and where b is
any finite-dimensional Leibniz algebra having g as its maximal Lie algebra quotient.
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1 Introduction

Yetter—Drinfeld modules over bialgebras (2.2 and [9, 10, 14]) are ubiquitous in quantum algebra, low
dimensional topology and representation theory. More intricate structure of a braided commutative monoid
in the category YDy of Yetter-Drinfeld modules is an ingredient in a construction of scalar extension
bialgebroids and Hopf algebroids. Namely, given a Hopf algebra H and a braided commutative Yetter—
Drinfeld H-module algebra A, the smash product algebra H#A has a structure of a Hopf algebroid over
A [1, 2, 11]. An important special case is the Heisenberg double A*fA of a finite-dimensional Hopf algebra A,
where A* is the dual Hopf algebra of A; the A*-coaction on A is given by an explicit formula involving basis
of A and the dual basis of A* (5], map  in Section 6). There are several important examples in literature,
some motivated by mathematical physics, when the underlying algebra of A is the universal enveloping
algebra U(g) of an n-dimensional Lie algebra g. In the example of a noncommutative phase space Hgy of Lie
algebra type [8], the Hopf algebra H is a realization via formal power series of the algebraic dual U(g)*
with its natural topological Hopf algebra structure. Historically, H4 as an algebra has been introduced by
extending U(g) by deformed derivatives (“momenta”) in [7] and in a rather nonrigorous treatment [13] it
has been argued that H, is actually the Heisenberg double of U(g); this made plausible that Hopf algebroid
structure on Hy could be exhibited analogously to Lu’s example of finite-dimensional double, leading to an
ad hoc version of completed Hopf algebroid structure in [8]. An abstract version of U(g)*§U(g) is described
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in [12] as an internal Hopf algebroid in the symmetric monoidal category of filtered cofiltered vector spaces.
These examples may be viewed as infinite-dimensional cases of Heisenberg double (in fact, this observation
from [13] influenced the Hopf algebroid approach in [8]), but a number of results in [12] show that there are
intricate conditions for which infinite-dimensional dually paired Hopf algebras H and A one can indeed form
a Hopf algebroid structure on the smash product algebra HfA, even in a completed sense or even when
one of the Hopf algebras is the restricted dual of another. In the case of U(g), formulas from [8] show that
there are special elements (’); € H="U(g)* for i,j € {1,...,n} such that the coaction on the generators is
given by the formulas (adapted to our conventions) U(g) 2 g 3z — >; O @ x; € U(g)* ® g. Moreover,
elements (9;- satisfy the relations which are satisfied by matrix elements of automorphisms of g. The prime
motivation of this article is to demystify this phenomenon and to find a much smaller Hopf algebra H
containing an abstract model for O; and avoiding any completions in describing Yetter—Drinfeld H-module
structure on U(g).

We show that the Hopf algebra of regular functions H = O(Aut(g)) on the automorphism group of g
will do, namely that U(g) is a braided commutative Yetter-Drinfeld module O(Aut(g))-algebra whose
structure is given by essentially the same formulas as in the case of U(g)* from [12]. General formulas for
scalar extensions from [11] describe the Hopf algebroid structure on the smash product O(Aut(g))tU(g). We
write formulas for the symmetric Hopf algebroid structure in full detail. In the work [15] we present several
other natural examples of Hopf algebras H equipped with a Hopf algebra homomorphism O(Aut(g)) —> H
and where U(g) is still a Yetter-Drinfeld module algebra over H without completions.

The main result of this article is actually proved in a slightly more general form than described above.
Namely, instead of the automorphism group of a Lie algebra g we can take the automorphism group of any
finite-dimensional Leibniz algebra h such that g is the maximal Lie algebra quotient hz;. of b, enabling a
structure of a Hopf algebroid on the smash product O(Aut(h))tU (hLse)-

2 Preliminaries

2.1 General conventions and preliminaries on pairings

Throughout the paper we freely use Sweedler notation with or without the summation sign [6, 9] and
the Kronecker symbol (5; Throughout, k is a fixed ground field and Vecy, the category of k-vector spaces.
If V e Vecg, V* := Homg(V, k). If A is a comultiplication on a k-coalgebra C' then for m > 1, A™ :=
(idgem—2®A)o...o(idc®A)oA: C — COM™FL I (A, u,n) is an associative k-algebra with multiplication
uw: A® A — A and unit map 7, consider its transpose p*: A* — (A ® A)*. Restricted dual A° < A*
consists of all f € A* such that p*(f) falls within the image of inclusion A* ® A* — (A® A)*. It follows
that p*(f) belongs also to the image of A° ® A° hence the restriction p*(f)|4o may be corestricted to a
map Ago: A° —» A° ® A° making A° into a coalgebra; if A is a bialgebra (resp. Hopf algebra) then A°
is. Pairings of vector spaces are bilinear maps into the ground field which are in this work not required
to be nondegenerate. For V, W € Vecg, a pairing (—,—): V® W — k induces a pairing between V ® V
and W ® W componentwise: (v @ v/, w @ w') := (v, w) -, V', w'>. If V € Vecg, and A is an algebra, and
f € A* such that there exists an element [’ € A* ® A* such that {f',g® h) = (f,g- h) for all g,h € A,
then the functional (f, —) € A° and (f’,—>e A°® A°. If V = C is a coalgebra then (A(f),—) e A* ® A*.
Thus, if (A(c),h® g) = {c,g- h) for all g,h € A, then ¢1: ¢ — {¢,—) := ¢1(c) is a map C — A°, and
(01 ® ¢1) o Ac = Ayo o ¢1. It is a coalgebra map if moreover {c,1) = ¢(c). Conversely, if ¢ — {¢,—)
corestricts to a coalgebra map ¢;: C' — A°, then the identities (A(c),h ® g) = {c,g - h) and {c,1) = €(c)
hold for all ce C, g,h € A. Both conditions hold if and only if a — (—,a) is a map of algebras A — C*.
A pairing between two bialgebras B and H is Hopf if (Ap(b),h® k) = (b, h - k), eg(b) =<b, 1) and the
symmetric conditions <b® ¢, A (h)) = (b- ¢, h), eg(h) = (1p, h). Clearly, the latter two conditions hold if
and only if h — {—, h) corestricts to a coalgebra map ¢2: H — B°. Alternatively, the pairing is Hopf if
and only if b — (b, —) corestricts to a bialgebra map ¢1: B — H°. If B and H are Hopf algebras, ¢; is a
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bialgebra map between Hopf algebras, hence it automatically respects the antipode. Thus, for every Hopf
pairing between Hopf algebras, identity {(Sg(b), h) = (b, Sg(h)) holds for all be B, h € H.

Replacing Hopf pairing with a bialgebra map ¢1: B — H® is useful in constructing new pairings from
old. Namely, if I ¢ B is a biideal (ideal which is also a coideal in the sense that A(I) c I® B+ B® I and
e(I) = 0), then there is an induced bialgebra map ¢1: B/I — H° if and only if ¢1(I) = 0 that is (¢,h) =0
forallie I,he H.

Lemma 2.1. Let (—,—): B® H — k be a bialgebra pairing.

(i) For the bialgebra pairing to vanish on I ® H where I < B is a coideal, it suffices that it vanishes on
I ® K where Ky is some set of algebra generators of H.

(ii) If I ¢ B is a biideal, K; < I a set of generators of I as an ideal and Kg a set of generators of H as
an algebra, then the bialgebra pairing vanishes on I ® H if, in addition to (i,h) =0 for alli e K and
h e Ky, one has that A%(h) ¢ H ® Spang(Kg v {1}) @ H for allhe K.

Proof. (i) Fix any i € I. Then A(i) = 3, ia ® ba + X 5b}; ® i} for some iq € I,bg € B. Then (i, hh') =
Salias Byba, By + 2 5¢bj5, h){is, h') = 0.

(ii) To show (bib’, h) = 0 one needs (b, h(1)){i, h(2)){b’, h(3y) = 0. The condition on AZ?(h) is sufficient
for this to hold for allie I, b,b' € B, he Kg. O

One often starts by constructing an auxiliary pairing where one of the bialgebras is free [9]. If C is
a coalgebra, then by the universal property of the tensor algebra T'(C) there is a unique algebra map
T(C) - T(C)®T(C) extending the composition C ¢ ®C — T(C)®T(C) along inclusion C' — T'(C);
this is a comultiplication on 7T'(C') making it into a bialgebra. Every coalgebra map C' — B to a bialgebra
admits a unique extension to a bialgebra map T(C) — B.

We need a different variant of this standard universal property. Suppose C' = V ® ku as a vector space
where w is grouplike, that is, A(u) = u®u, e(u) = 1. Ideal I,, in T(C') generated by u — 1 is a biideal because
Alu—1)=u®(u—-1)+ (u—1)®1 and e(u — 1) = 0. Composition T'(V) — T(V ® ku) - T(V ® ku)/I,
is an isomorphism of algebras (the inverse can easily be described); we transfer the comultiplication from
T(V ® ku)/I,, to T(V) along this isomorphism. By the above universal property, any coalgebra map
f: V@ ku— B, where B is a bialgebra, extends uniquely to a bialgebra map T'(V @ ku) — B; if f(u) =1
then it induces a bialgebra map T(V @ ku)/I, — B.

Lemma 2.2. Suppose V € Vecg, and C = (V@ k, A, ¢€) is a coalgebra such that 0@ 1 is grouplike. Then
T(V) has a canonical bialgebra structure such that the inclusion V@ k — T(V) is a coalgebra map and for

any bialgebra B, each coalgebra map C — B mapping 0@ 1 to 15 admits a unique extension to a bialgebra
map T'(V) - B.

2.2 Yetter—Drinfeld module algebras

In this subsection, fix a Hopf k-algebra H = (H,A,¢) with comultiplication A: h — > h) ® h(y)
and counit e: H — k. Recall that the category My of right H-modules is monoidal: if (M, «5s) and
(N, <) are H-modules then their tensor product is k-module M ®i N with H-action «: (m®n) ® h —
(m < h(1)) ® (n <N h(o)) and the unit object is k with action ¢« h = e(h)c, for me M, ne N, he H,
c € k. A right H-module algebra A is a monoid in My: a right H-module (A,«: AQ H — A) with
multiplication - such that >}(a « h(y)) - (b« ha)) = (a-b) « h and 1 <« h = €(h)1. One can then form a
smash product algebra H{A with underlying k-vector space H ® A and associative multiplication - given by
(hfa) - (kib) := hk(1)#(a <« k())b where hfa is an alias for h®a € HfA. We often identify a € A with afl and
h € H with 1th € A$H (thus for a,b€ A, h,k € H, a - (htb) denotes (1fa) - (hfb) and h - (kfb) = (hk)gb). We
extend « to a right action, also denoted «, of HfA on A by setting a « (hd) := (a « h)b e A.
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A right-left Yetter—Drinfeld H-module (M, <, \) is a unital right H-module (M, «) with a left H-coaction
At M — H®M, m— \m) = > m[_1] ® m[g], satisfying Yetter-Drinfeld compatibility condition

foy(m < fa)=11 ® (m « fy)jo] = mi—11f(1) ® (Mo « f(2)), forallme M, fe H. (1)

Morphisms of Yetter—Drinfeld modules are morphisms of underlying modules which are also morphisms
of comodules and the tensor product of Yetter—Drinfeld modules is the tensor product of the underlying
H-modules equipped with the coaction m @ n — nj_1ym_1] ® m[g] ® n[o) (notice the order!). Thus
we obtain a braided monoidal category ¥ YDy of (right-left) Yetter Drinfeld H-modules with braiding
om,N: M®N — N®M given by m®@n — (n<Nm[_1])®m[0]. For finite-dimensional H, HyDy is braided
monoidally equivalent to the Drinfeld-Majid center of the monoidal category Mg of right H-modules.

If A is a right H-module algebra with a left H-coaction A and if we identify the underlying vector spaces
of H{A and H ® A, then the Yetter—Drinfeld compatibility may be rewritten in terms of the multiplication
in H§A, as

feoy - Ma<fay) =Aa)-f, foralaeA, feH. (2)

Monoids in 7 YDy are called (right-left) Yetter-Drinfeld H-module algebras. They are Yetter-Drinfeld
modules with multiplication such that they become H-module algebras and H°P-comodule algebras. Notice
that an H-comodule is the same thing as an H°P-comodule, but saying that it is a comodule algebra is
different. If (A4, <, ) is a Yetter—Drinfeld module and pu: A® A — A a k-linear map, then u is braided
commutative if 04,4 o p = p, that is, (a « b_1)bjg) = ba for all a,b € A. An H-module algebra (4, ) is
braided commutative if its multiplication is braided commutative.

Lemma 2.3. Consider an H-module algebra (A, <) with multiplication p and a coaction A so that (A, <, \)

is a Yetter—Drinfeld H-module.

(i) Multiplication p is braided commutative in " YDy if and only if for the extended action « of the smash
product HEA relation a « A\(b) = ba holds.

(il) Multiplication u is braided commutative if and only if all elements of the form 1fa, a € A, commute
with all elements of the form \(b), b e A, viewed inside algebra HEA.

(iii) Suppose p is braided commutative. Then A is an H°P-comodule algebra (hence also a Yetter—Drinfeld
module algebra) if and only if A considered as a map with values in smash product algebra HYA is
antimultiplicative.

Proof. For (i) indeed, the left hand side is a « (bj_1)#ibjo]) = (a <« b_1])b[o}- Parts (ii) and (iii) are left to the
reader. They are implicit in [2]. O

2.3 Leibniz algebras

Left and right Leibniz algebras are nonassociative algebras slightly generalizing Lie algebras by dropping
the condition of antisymmetry.

A k-vector space h equipped with a linear map [—,—]: h ®x b — b is a left Leibniz algebra [4] if for
every x € h the map adz: y — [z,y] is a derivation on b, that is, if left Leibniz identity [z, [y, z]] =
[[z,y], 2] + [y, [z, 2]] holds for all 2,7y, z € h. Let h? be a copy of vector space b, with elements denoted I,
x € b, with operations transported via & — [,.. Denote by b, the Lie algebra obtained as a quotient of b
by two-sided ideal I[, ;] »cp generated by all commutators [z, z], z € b. It is a Lie algebra and it is maximal
in the sense that if chark # 2, every map h — g to a Lie algebra g factors through b, (if chark = 2,
relation [z, z] = 0 is stronger than the antisymmetry).

Lemma 2.4. Let b be a left Leibniz algebra. Universal enveloping algebra U(hr;.) of Lie algebra hp;e =
b/ [z 2),zep is isomorphic to T(h")/I!, where I' is the ideal in T(h') generated by lay] = la®ly + 1y @y,
T,y €b.
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Proof. Left to the reader. Included in the preprint version, arXiv:2308.15467. O

We say that k-vector space h) together with a linear map [—, —]: h ®g h — b is a right Leibniz algebra if
for every = € b the map y — [y, z] is a derivation on b, that is, if the right Leibniz identity [[z,y], 2] =
[z, z],y] + [z, [y, z]] holds for all z,y, z € h. By quotienting h by the ideal generated by [z, x],z € b, we get
a maximal quotient Lie algebra, h — hpe-

Lemma 2.5. Let by be a right Leibniz algebra. Universal enveloping algebra U(brqe) of Lie algebra hrie =
0/1[2,2),ze is isomorphic to T(H")/I", where I" is the ideal in T'(h") generated by riy 4] — Tz @y + 71y @Tz,
x,yebh.

3 U(bri) as a Yetter—Drinfeld O(Aut(h))-module algebra

In this section, we prove the central result of this article: for any finite-dimensional Leibniz algebra h over
any field k, the universal enveloping algebra U(h;.) of its maximal quotient Lie algebra b, is a braided
commutative Yetter—Drinfeld module algebra over the Hopf algebra O(Aut(h)) of regular functions on the
algebraic group of automorphisms of §. This result immediately implies that the smash product algebra
O(Aut(h))tU (hLie) is a total algebra of a Hopf algebroid over U(h )P, U(hLie), see Section 4.

3.1 Hopf algebra O(Aut(L))

Let (L, -1) be any nonassociative algebra of finite dimension n over a field k. The general linear group of the
underlying vector space, GL(L) is an affine algebraic group with algebra of regular functions O(GL(L)) that
is therefore a Hopf algebra via A(f)(M,N) = f(M o N) and €(f) = f(1) for any M, N € GL(L) [3]. For a
chosen ordered basis b = (x1,...,z,) of L, interpreting matrices as operators amounts to an isomorphism
tp: GL(n, k) 3 GL(L). Structure constants ij = C{;ij are defined by

n
T -xj = Z C”gijxk, i,je{l,...,n}, (3)
k=1

and we introduce as algebra generators of O(GL(n, k)) regular functions Ut: M — M7, Ut M — (M ™)},
where M; is the (7, j)-th entry of matrix M € GL(n, k). As an abstract algebra, O(GL(n, k)) is the free
algebra on n? generators U ]Zf, U ; modulo the n? relations Y, U, ;; U ]’? = 5; The comultiplication is then given
by A(U;) =2, Ul ® U]k and A(U;) =D Uf ® Ui with counit e(U;) = e(U]’) = 5; By definition, an
element ¢ € GL(L) is an automorphism if ¢(a) -, ¥(b) = ¥(a -1 b) for all a,b e L. These relations cut out
the subgroup Aut(L) < GL(L). To see that it is a Zariski closed subgroup, write a = 3, afay, b = 3, bFay,
and observe that this condition amounts to a system of n3 polynomial equations in GL(n, k),

Sk = Y glymc .

l,m

In other words, t, induces an identification ¢} : O(Aut(L)) = O(Aut(L))p with the quotient O(Aut(L))p
of O(GL(n, k)) by the ideal I5 ()b generated by relations

Yekulum =Y ukcr. (4)
L,m T

Regarding that the inclusion of subvarieties Aut(L) < GL(L) is also an inclusion of groups, this ideal is
Hopf and O(Aut(L)) is the quotient Hopf algebra of functions on the subgroup. One can also directly check
that the ideal Ioy¢(z)p is a Hopf ideal.

Degote by g;i = g{)j = U; + Iaue(z)b and g;'. = géj = U; + Iaue(L)b th@ generators of O(Aut(L))y. If
T = (T}); ;= is a transition matrix to a basis b’ = (z),...,2}), x; =2, Tjxi, then Lg,l olp: GL(n, k) —
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GL(n,k), A — TAT™'. Then Gy, — X, TiGl, T~'7" extends to a Hopf algebra isomorphism
Ok : O(Aut(L))p — O(Aut(L))p and Op = Oy, This implies iy (G ;) = Xy Tiep ™' (Gh, )T
within O(Aut(h)). When it is clear which basis b is fixed, L:;*l(g{;j) € O(Aut(L)) will also be denoted by
géj or simply g; Assuming the identification Ll’ifl, we write

i il -1
Ghrj = 2 TiGhmT - (5)
l,m
Assuming the identification Lf)_l, if ¢ is an automorphism of L, >, géj(d})xi = 9(x;). The standard
reasoning above is summarized in the following proposition.

Proposition 3.1. Let L be a nonassociative algebra of finite dimension n with a k-basis b and structure
constants C’fj = C”gij (3). Hopf algebra O(Aut(L)) of regular functions on the affine algebraic group of
automorphisms of L is as an algebra isomorphic to a commutative algebra O(Aut(L))p with 2n?-generators
g;'., Q_;, i,j €{1,...,n} and defining relations

DCEGIGT =D .GrC, Y GiGE =065 =>.GiGF, g ke{l,...,n}. (6)
Lm T k k
As a direct consequence the following identities hold for all i,j,k e {1,...,n}:
D GHCh Gt = > Cln Gy, (7)
m,p m
> CEGIGT = > Gy (8)
l,m r

Isomorphism O(Aut(L))y, = O(Aut(L)) is a Hopf algebra isomorphism if O(Aut(L))y is given the unique
comultiplication A and counit € which are algebra maps satisfying

AG) = X0L00) AG) =10 00 G =G =5, (9)

and the antipode S satisfying S( ;) = g;, S(g;:) = Q} foralli,je{l,...,n}.

3.2 Hopf pairing

If (B, A,e€) is a k-bialgebra, then a differentiation of B is any k-linear map D: B — k such that Leibniz
rule D(bc) = D(b)e(c) + €(b)D(c) holds. In other words, it is a k.-valued derivation of B, where k. is k with
the trivial B-(bi)module structure coming from the counit. In Hopf algebraic language, a differentiation is a
primitive element in the restricted dual bialgebra B°. The following lemma is standard and elementary.

Lemma 3.2. Let B be any bialgebra such that its underlying algebra is the free unital commutative algebra
with a set of free generators Fg. There is a canonical isomorphism between the vector space kB of set
maps Fg — k and the space of differentiations of B which extend these maps.

Assume V € Vecg and C' =V @ k is a coalgebra such that A(1) =1® 1 and A(v) =1®v +v®1 for all
v e V. Suppose V is paired with B such that map v — (v, —) corestricts to a coalgebra map ¢1: C' — B°
for which ¢1(1) = 1go = ep. Then ¢1(v) is a differentiation of B. Conversely, by Lemma 3.2 each such
¢1(v) is determined by ¢1(v)|F,, where the values for the latter can be chosen independently.

Proposition 3.3. Let by be a left Leibniz k-algebra with a vector space basis b = (x1,...,xy) and structure
cqnsfqnts C}k determined from [z, x] = >, C;kxi, j ke {1,...,n}. In the notation of Subsection 3.1,
G:,G;, 4,5 €{1,...,n} are the generators of the algebra O(Aut(h)). Denote also by & the image of x € b in
hLie'
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Then there is a well defined and unique Hopf pairing
(=, =>: U(bhLic) ® O(Aut(h)) — k

such that (T, g;> = C,ij foralli,j ke {l,...,n}. This Hopf pairing does not depend on the choice of basis.

Proof. Notice that Cf; = (ad )}, the (i, j)-th matrix element of ad zy, hence (z,G}) = (adx)} for all
T eb.
Uniqueness. If such a pairing exists, then, Vz € b, 0 = ey y,,.) (&) = (Z, 1), hence

0= <*%7 6_7],]-> = <572 g:rLg;n> = <AU(bLie)(‘%)72gin ® g;n>
= D& G XL G + (1,6, <E, G = D (ad &), €(G]") + (G, )<F, G-

Thus, <i,g}> = -, (ad i)ﬁne@]m) = —(ad :E); and, in particular, (%, §;> = —C’,ij.

Denote O1F := Spank‘{gjil =1 © O(Aut(h)). By (9), AO') € O @ O', hence (g, -4~:zkm,g;i>_;
@y ® - Tk, , Amfl(g;» is a polynomial in expressions of the form (T, G¢). Similarly, (T, - - - Tg,,, G})
are determined by (Zy,G"). ‘

For any v € U(hLie), (v, Gﬁ .. é;;:> = (A™ 1 (v), Gﬁ ®R--® G;::}, where each G;i stands for either
g;: or C;;Z . After expanding A™~!(v), the right-hand side is written in terms of expressions of the form
Bhy - Tk, » G;> Therefore, if such a pairing exists, it is unique.

Existence. We first consider the free commutative algebra B, on the 2n? generators, still denoted
g;,é;, and with the same rule (9) for a bialgebra structure (this is the bialgebra of regular functions
on the variety of pairs of arbitrary n x n matrices). A unique pairing of h! with B is by Lemma 3.2
extending <lxk7g;-> = C’,ij, Uz s Q;) = —Clij by Leibniz rule, requiring that <l, ,—) is a differentiation of
B,,. We now want to show that there is an induced pairing between h' and the quotient Hopf algebra
B, /I = O(Aut(h)); functionals (I, , —) remain differentiations on the quotient. We need to show that the
pairing restricted to h! ® I vanishes. The biideal of relations I has a generating set K of all elements of the
form 33, ,, cﬁmggg;n — foC’[j, Sk Q,@Qf — 6; or Y, C;}ngk — 63 Observe that ¢(s) = 0 for all s € K. Thus for
differentiation D = (I, , —) we obtain D(bs) = D(b)e(s) + €(b)D(s) = 0 for all b e B and s € K. Therefore
if the pairing vanishes on K then it vanishes on the ideal generated by K.

Thusivwe' need to check (lz,, > Cj?mg;gjm = {ups2m gﬁC{;} and (g, 2; g;ig,@ = <l$p76i> =
Uz, Zj g;gp for all 4, j,k,p e {1,...,n}. The first equation is

2 CChi+ 2 CE.Cp = 210G,

which is left Leibniz identity [[x},x;], ;] + [z, [*p, 2;]] = [p, [xs, 2;]] in terms of the structure constants.
By using the differentiation rule, the second equation is simply {l,,Gi> + {lz,,GL> = 0, which holds for
generators by definition. Therefore, there is a well defined pairing (h' @ k) ® O(Aut(h)) — k such that
(1, fy=e(f) for all fe O(Aut(h)) and {l,,—) is a differentiation of O(Aut(h)) for all z € b, that is,

Uy f9) = oy [e(g) + €(f Ky g), Vo €h,Vf, g€ O(Aut(h)). (10)

This means that ! @k is equipped with a comultiplication A such that A(l,) = 1®1, + 1, ®1 and €(l;) = 0
and the pairing respects A: in the notation of Subsection 2.1, ¢ +— (¢, —) restricts to a coalgebra map
é1: h' @k — O(Aut(h))° sending 1 to Lo(Aut(h))° = €0(Aut(p))- By Lemma 2.2 and the equivalence between
Hopf pairings and bialgebra maps T'(h!) — O(Aut(h))°, we extend this pairing to a unique Hopf pairing
T(h") ® O(Aut(h)) — k; it is determined by the formula

s, o o ) = g, ® - ® Ly, LA™ L(f)).

Denote by I' the ideal in T(h') generated by e, := lzy) =l ®ly + 1y ®ly, z,y € h. By Lemma 2.4,
U(brie) = T(h")/I'. Moreover, Argiy(ezy) = 1®ezy + €2y ®1 and €(ez,y) = 0, hence I' is a biideal.
Clearly, U(bhrie) = T(b')/I' as Hopf algebras as well.
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We now check that the ideal generators e, ,, of I' are paired with every element of O(Aut(h)) as 0.
Relation ([, 2,1+ lz, ®lxk7g;'-> =z, Qlg, s g;> is equivalent to >, C,?;C;lj +2 CflpC,’;j =2 ClipCﬁj,
which restates the left Leibniz identity [[zx, zp], 2;]+ [T, [Tk, 7] = [Tk, [Tn, 7;]]. Similarly, {1z, 2.1+, ®
lags Q;) =z, ® l$,,L,Q;> computes to the same identity. Since I is a biideal and O := Spank{g;-, Q; ?,jzl
satisfies Ao(Aut(h))(Ol) c O' ® 0!, we can apply Lemma 2.1, part (ii), for Kz = O! to conclude
that the pairing vanishes on the entire I ® O(Aut(h)). Therefore, there is a well defined Hopf pairing
U(hrie) ® O(Aut(h)) — k satisfying (73, G1) = Cf ;.

To show that the pairing does not depend on the choice of basis b, note that we started from a pairing
(=, —)p defined on bl®Spank{g§)j,Qﬁj riz1 < h'® B, by <l$,g£j>b = ad(:t)%j and <lw,géj>b = —ad(m)i,j.
For a base change by a numerical matrix T, <lx,gé,j>b/ = (ad(w)b/)é- = Yimil Tfn(ad(w)b)E"Tflé- =
St Tl gg;>bT*1§ = (s (TGT ™) = U, O (G ;)b Likewise for G. Induced pairing U(hpe) ®
O(Aut(h)) — k is uniquely defined by the pairing on h? ®Spank{gf) i Q{) ]}f j—1 and by abstract properties of
the extension. Thus, it respects bialgebra isomorphism 6y, in the second argument. Once we quotient from
B,, down to O(Aut(h)), Opps becomes an identification Lgl* ouf, (extending (5)), yielding the invariance. [

Proposition 3.4. Let b be a right Leibniz k-algebra and b = (y1,...,yn) a k-basis of h. Denote by C;k
structure constants determined from [y;,yr] = C;kyi, forj,ke{l,...,n}. Let g;, g;, 1,5 €{1,...,n} be the
generators of the algebra O(Aut(h)) from Subsection 3.1. Denote by § the image of y € b in hre.

Then there is a well defined and unique Hopf pairing

(=, =) U(bLic) ® O(Aut(h)) — k

such that <gk7g§.> = —C;-k foralli,j,k e {1,...,n}. This Hopf pairing does not depend on the choice of
basis.
Proof. Notice that (gp, g;> = —(ad, yk); where ad, y: z — [z,y] is the right adjoint action; thus the main
difference from Proposition 3.3 is change of side.

The entire proof is analogous to the proof of Proposition 3.3, hence we skip it. One first observes that,
if the pairing exists, (g, Q;i>b = Céjk must hold. We are presenting U(hr;.) as T'(h")/I" from Lemma 2.5.
Key calculations with elements [ ., x € h, which in Proposition 3.3 boil down to the left Leibniz identity are
now replaced by calculations with elements ry,y € b, (from Lemma 2.5) and boil down to the right Leibniz
identity. For example, {ry,,> ,, Cfmgfg;”> =Ty 2im gﬁC’%) is

Yekos, + Y ek om =N ok on,
which is right Leibniz identity [[ys, ypl, 5] + [Wi- [ ¥pl] = [[¥i, 5], Up)- O

Remark 3.5. (Geometric origin of the pairing.) If k is R or C and b is a Lie algebra g over k, then Aut(g)
is a linear Lie group and its Lie algebra is Der(g). Differential dfiq of function f € O(Aut(g)) at the unit
id of Aut(g) is a linear functional on Tiq(Aut(g)) = Der(g), and therefore dfiq € Der(g)*. Let ad X: g — g,
ad X: Z — [X, Z]. Then ad X € Der(g).

We prove that the pairing U(g) ® O(Aut(g)) — k from Proposition 3.3, in the case when k is R or C and
b is a Lie algebra g, agrees on subset g O(Aut(g)) of its domain with the pairing (—, =) : g®O(Aut(g)) — k
defined by

(X, fY =dfiq(ad X), for X € gand f e O(Aut(g)).
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First we check that indeed d(g Via(ad Xp) = C’,i i The exponential map exp maps a neighborhood of 0 in
Der(g) to a neighborhood of id in Aut(g). We have that

d(G})ia(ad X)) = (ad Xi)(G})(id) = lim 4 G} (exp(tad X))

0 dt
0O 0
a ; (tad Xi)" _ taka
tHO dt g (Zo 7! tﬁo dt Z ,
r= = J
. o 7 ad X)" i i i
= (Zl oo ) T @dX; =Gy
r= J

Similarly, one checks that d(g Nia(ad Xp) = —C,ij, by using that exp(tad X;)~! = exp(tad(—X})). By
linearity, we conclude that the pairings agree for all X € g and generators g;; Q;, i,j € {1,...,n}. Since the
pairing also has the property

(X, fg) =(X®1+1®X,f®g), for X e gand f,g e O(Aut(g)),

we conclude that they agree for all X € g and f € O(Aut(g)).

3.3 Main theorem

Theorem 3.6. Let b be a left Leibniz k-algebra with vector space basis b = (x1,...,2y) and structure

constants ij determined from [x;, ;] = 3 Cikjack, i,j € {1,...,n}. Let g}g’;i, i,j € {1,...,n} be the

generators of the algebra O(Aut(h)) from Subsection 3.1. Denote by T the image of x € b in hrie. Then the

following holds.

(i) Hopf pairing U(hrie) ® O(Aut(h)) — k from Proposition 3.3 induces a right Hopf action «: U(DLie) ®
O(Aut(h)) —» U(hrie) by formula

fi=Eay, DEay,  for&eUlhLie) and f € O(Aut(h)), (11)

which further induces the structure of a smash product algebra O(Aut(h))4U (hrse). This action and the
smash product do not depend on the choice of basis b.
(ii) There is a unique k-linear unital antimultiplicative map

U(hrie) — O(Aut(h))tU (hLie)

such that
=Y. Giti, forjefl,... n} (12)

Map X\ does not depend on the choice of basis b.
(iii) Elements of Im A commute with elements of 18U (hrie) in O(Aut(h)U (hLie).
(iv) Map X is a left O(Aut(h))-coaction on U(Brie).
(v) (U(BLie),«,A) is a braided commutative right-left Yetter—Drinfeld module algebra over O(Aut(h)).

Proof. (i) Every Hopf pairing induces a right Hopf action in this way. By Proposition 3.3, the pairing, hence
also the action, does not depend on the choice of basis.

(ii) We prove that such X exists. We first define auxiliary map )\ as a linear map h! — O(Aut(h))tU (hrie)
such that (I, 2 =2k g 4%; for j € {1,...,n}, then expand it to A: T(h') — O(Aut(h))4U(hrie) by
antlmultlphcatlwty and then we check that MIY = {0}, where I' is the ideal in T(h') generated by
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Z[I,y] —lz ®ly + ly ®ly, x,y € h. We compute
Moy ®1sy) = M) - M) = (D G1800) - (NG 800) = 3, GG @+ G

k,m,p
> GiGPH(S e — CFp)iim Zg’“g Bpdm — . GYGPCI 4im
k,m,p k,m,p
S GEGr i, z G, Oty
k,m

Analogously, A(l 2 ®lz;) = 2km Q{”Qfﬁimik — 2km G,qu]ﬁim After subtracting,

)\(l% ®lxj - lacj ®Z:c1) = Z gmg ﬂ -lexm Z g ji i BT + Z gk Uﬁmm

k,m k,m
= GGMtak, tm] — Z GrCTE + Y. G ClitEm
k,m k,m k,m

= 2 GGrCY 4y — Y GrCTEL + Y. GEClitim
k,m k,m
ZC GP b, — 2 Gr.Citin + . GR'Clitim
k,m k,m

Z CltiFm.

s

On the other hand, A(l[, ;1) = A2, Clls,) = Ypm cgé;"g:zm. Equality A(le, ®ls; —la;®lz;) = Ml[z;,2,])
is now proven. Therefore, by quotienting the domain of X by ideal I', we induce a well defined map
A U(Brie) = O(Aut(h)U (hrie). Additionally, we note that clearly

Awz) = A(2)A(v), for all v,z € U(hrse). (13)
To see that A\ = Ap defined by Ap(Z;) = >, Q,ijﬁii (12) does not depend on the basis b, we com-
pute A (e)) = S, Giitr's = SuiGhtTit = Sij TT G0, TitE 2 Sy TiGh b0 =
s T (F) = Ao (X, TjE:) = Ap(27)).
(iii) First we check that A(Z;) and Zj, commute for all j, ke {1,...,n}.
T MEj) = Tk Y. GitE = ) Gk <« Gy
[ i,m

= GM(0hdn + Cl)Ei = Y\ G (EkFm + [Fm, Ti]) =

i,m m
= G"Emin = A(i)) - Fp.
m
By using (13), it is easy to prove the claim inductively for all elements of U(hp;e),

z2-Av) =A() -z, forallv,zeU(bpie). (14)

(iv) Coaction axiom (A ®id) o A = (id ® A) o A on generators &, j € {1,...,n}, is apparent from
definitions (9) and (12). Both sides of it evaluate to X, ; g_]k ® Giti;. It is now sufficient to show that, if the
coaction axiom is true for v,z € U(hL;e), then it is true for the product vz € U(hr;e). We compute

(13)

(14)
A(zv) "= AW)A(2) = D v 1pvpo) - - 1j820] = 2, V[—1]2[-1)87[0] (15)
from which it follows that, because v and z are assumed to satisfy the coaction axiom identity,

(Id®A) 0 N)(v2) = Y v[_172[-1] ® Mz[0)V[0])

—Z 11%[~1] @ Y[o][-1]%[0][-1] ® Z[0][0]V[0][0]

= —1](1) @ V[-1](2)#[~1](2) ® Z[0]V[0]
Z ~112-1) (1) ® (V[-1)2[-1]) (2) ® Z[0]V[0]
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and, on the other hand,
(A®id) o N)(2v) = (A®id) (Z v[ 2= 1182[0]v[0])
= 2 (0121 (1) @ (V-1121-11)2) © 2[0)V[o)-

Counitality of A is checked first for generators, ((e®id)oA)(Z;) = >, €( _§)§:i = &; forevery j € {1,...,n},
and then easily proven inductively by using formula (15).
(v) First, we prove the Yetter—Drinfeld property:

Zf(g) AW« fy) =Aw)- f, forallveU(hri) and f e O(Aut(h)).

It is k-linear both in v and in f, hence it is sufficient to show it for v and f being words in generators, by
induction on the length of a word. For v = ) and f = g;i,

Zg A xk < gz ) = ngA(él T + Ci:m) gz + chmg;n’
29$ﬁxm gi - 2 OGP G4 (m « G) = 2 I Gil(0PEm + CP, )

=GP GitEm + Y gﬁg;cgj

m m,p

+ Y gier g2 gix +chmgm
m,p

The Yetter—Drinfeld property for generators v = ) and f = (j; is proven analogously.

If the identity is true for some v,z € U(hr;e) and any f € O(Aut(h)) of the form Q;, then it also holds for
the product vz and all generators of O(Aut(h)), because A(g;i) =36 ®G7" and A(é;) =>m Q;" ®G: .
Indeed,

D AM(wz) « fay) = D) FaA (v« fu) (2« f2))) Ef Az« fo))A(v « f1))
13
= M) fep M« fay) = A@AE) - £ 2 Awa) - f.
Therefore, by induction, the identity is true for all v € U(h;.) and f being g;'. or Q_Jz
If the identity holds for some f and g in O(Aut(h)) and all v € U(hr;e), then it also holds for the
product fg € O(Aut(h)) and all ve U(hrse), by
DDAV« (f9) 1) = 2. foy g M « (Fy9a)))

:ZZf2)9(2 (v« f)) < 901))
=33 f v« f1))g = Aw) fg.

We conclude inductively that the Yetter—Drinfeld property holds.
Next, the comodule algebra property is actually proven in (15), by using (14).
Finally, let us prove the braided commutativity property:

z4A(v) =vz, forallv,zeU(brie).
First we check this on generators. For any two j,k € {1,...,n} we have
Bp Y. Qi = Y (0iakds — Chydi) = gl — [Ek, 5] = 5T
i i

Next, we use induction on the length of the word acted on by A(Z;) on the right, for every Z;,j € {1,...,n}.
The step of induction is

Zg 12 = >, (V4 Gz« Gl = Y (04 G )Emz = Fjvz, Y,z € U(bLic)-

i,m i,m
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At last, the step of induction on the length of the word on the right is
w <« A(zv) = (W<« A(v) < A(2) = (vw) <« A(2) = (z2v)w, Vw,z,v€U(bhLic)-
O

Theorem 3.7. Let by be a right Leibniz k-algebra with k-basis b = (y1,...,Yn) and structure constants C’fj
determined from [y;,y;] = 2 Cikjyk, i,je{l,...,n}. Let g;i,(j;i, i,j €{l,...,n} be the generators of the
algebra O(Aut(h)) from Subsection 3.1. Denote by § the image of y € b in Hrie.

Then the Hopf pairing U(hre) ® O(Aut(h)) — k defined in Proposition 3.4 induces a right Hopf action
<: U(hrie) ® O(Aut(h)) — U(bLie) by formula

g« f =), Nie)y, for e U(hrie) and f € O(Aut(h)),

which further induces the structure of a smash product algebra O(Aut(h))4U (hLie)-
Then there also exists a unique k-linear unital antimultiplicative map A: U(hrie) — O(Aut(h)EU (hLie)
such that

A(g5) = Zg;ﬂgi, forje{l,...,n}.

This unique map A is a left coaction.
Furthermore, (U(HLie), <, A) s a braided commutative right-left Yetter—Drinfeld O(Aut(h))-module
algebra. Maps « and X do not depend on the choice of basis b.

Proof. Analogous to the proof of Theorem 3.6. O

4 Hopf algebroid from Yetter—Drinfeld module U(h;.)

Given an (associative) algebra A ("base algebra’), a left (associative) A-bialgebroid is given by a tuple
(K, p, a0, B, Ay €) where (IC, ) is an algebra ('total algebra’), a: A — K and 3: A°° — [ are algebra maps
called source and target maps respectively which satisfy a(a)5(b) = 5(b)a(a) for all a,b € A hence equipping
K with a structure of A-bimodule via a.k.b = a(a)B(b)k for a,b € A, h € K (and moreover of an A® A°P-ring).
Comultiplication A: K — K ®4 K and counit €:  — A are required to be A-bimodule maps which make
AK 4 into a comonoid in the category of A-bimodules. Nontrivial compatibilities of the comonoid structure
with A ® A°P-ring structure on K are required [1, 2, 5] which radically simplify if the base algebra A is
commutative. A right A-bialgebroid is structure (K, p, a, 8, A, €) [1, 5] such that (I, u, 3, a, A°P €) is a
left A°P-bialgebroid. A Hopf A-algebroid [1, 5] should be an A-bialgebroid with an antihomomorphism
of algebras 7: K — K called antipode and with axioms generalizing that of antipode of a Hopf algebra.
Commutative Hopf algebroids are a classical subject studied since 1960-s and appear as function algebras
on groupoids. Several nonequivalent definitions of Hopf algebroids over a noncommutative base algebra
appeared in 1990-s, including Lu—Hopf algebroids [5] which lack symmetries and involve a somewhat ad hoc
section map. We consider symmetric Hopf algebroids [1] where K has a structure of a left Ap-bialgebroid
(K, u,ar, Br, AL, er) and a right Ag-bialgebroid (I, u, ar, Br, AR, €g) with given isomorphism of algebras
AP 5 Ag and antipode 7: K — K satisfying a list of axioms [1, 8].

Given any Hopf algebra H with a bijective antipode and a braided commutative Yetter—Drinfeld
module algebra A over H, smash product HfA is a symmetric Hopf algebroid with Ay = A°P, Ar = A
by [1, 11], adapting constructions from [2, 5]. This can be applied in the case H = O(Aut(h)), A = U(hrie)
from Section 3. Hopf algebroid O(Aut(h))U (hrie) is, in the case when b is a Lie algebra, related to more
geometric examples in [15] and to the completed Hopf algebroid in [8].
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4.1 Formulas for the Hopf algebroid O(Aut(h))tU (hr..)

Here we write general formulas for the Hopf algebroid O(Aut(h))fU (1) for a left Leibniz algebra b
and specify them also on generators. We use formulas for the right bialgebroid given in Proposition 4.1
of [11], and formulas for the left bialgebroid written in terms of the above smash product and formula
for the antipode given in Corollary 4.1 of [11]. For the latter, one uses certain natural antiisomorphism
¢: UBLie)®® => U(brie) or 0: U(hrie) = U(hLie)°P, as explained in [11], such that in the resulting Hopf
algebroid ¢ = eg oy and 0 = e, o ag. All above formulas are displayed in short in the table below
Corollary 4.1 in [11]. Formulas for a right Leibniz algebra can be derived similarly.
After that, we specify these formulas in the case of Lie algebra noncommutative phase space of [8].

4.1.1 For a left Leibniz algebra

For a left Leibniz algebra b, in the notation of [11] H = O(Aut(h)), R = U(hLie) and antiisomorphism

¢: U(brie)°®® — U(bLi.) maps generators iig,... f)f; of U(hri)°P by &° ¢ — Zj, j € {1,...,n}, to

generators Z1,...,Zn of U(hrie). Since (U(Brse),«, A) is a braided commutative right-left Yetter—Drinfeld
module algebra over O(Aut(h)) by Theorem 3.6, by Corollary 4.1 part (2) in [11], HfR = O(Aut(h))4U (hLie)
is a symmetric Hopf algebroid over U (hre)°P, U(hLie): it is (i) a right bialgebroid over U (h ;e ) with structure
maps

ar: U(brie) = HEU (hLie), agr(®) =1
Br: U(brie) — HEU(bLie), Br(E) = \(&),

Apr: HiU(YLie) = HEU(BLie) ®u(yy,.) HEU (BLic)s Ar(fi2) = f)iluhL..) ®u(bLi.) f2)iT,
er: H{U(hrie) = U(bLie), er(fi7) = e(f)z,

(ii) a left bialgebroid over U(hp)°P with structure maps

o Ulbie)™ — HEU(bric), ap(EP) = AB(EP)) = $(EP)_HH(EP) )
ar(@jp) = M) = ZQ}MH

Br: UbLie)® — HiU(bLie), BL(EP) = ¢(P)[g) « ST (B(EP)[_17),
BL(Efy) = Zi"i <G =1pti; + ZcfjﬁlU(bLie)v

Ap: HYU(brie) = HEU (B Lie) ®u(p,,o)or HEU (Lie), AL(fE2) = f()ilu(hL..) Ouny..)er f2)8T,
€r: HiU(brie) = U(brie)®®, en(fiz) = ¢_1(~[ o] « S*(@[-1))S 1),
en(fii;) = sz «GiSf)

= e()i — ((Fj, fr + e(f)ZCZj)lum)op,
eL(lutd;) = 2 Z%lmmm

with (iii) antipode

7: H{U(hric) — HU(DLie), T(fEE) = [ - S (F[-17)S T,
T(f42;) Exz GiSf = ngf(z )@« S(f1))) 2 S U,

T(lHﬂl'] Eg Iixl Zc’l‘jﬁlU Hrie)s
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where in formulas & € U(hre), P € U(hrie)®?, f € H, and j € {1,...,n} as index of generators &; of
U(hLie)'

Alternatively, formulas for the left bialgebroid can be written in terms of the antiisomorphism

0: U(brie) — U(bLic)°P. Denote by Z7},..., &, the generators of U(hr.)°P defined by i;g = 0(z;),

P

je{l,...,n}. Note that the generators :ﬁ;’ o are generally different from the generators i?g. The formulas

for the structure maps of (ii’) the left bialgebroid over U(hp;.)°P written by using 6 are:
ar: U(hLie)®™ — HiU(hie), ar(TP) = 071 (@) () - SH(O7H(FP) 1),
ar (@) = Yiwi- G5 = 2 G54 = 3, CiGitlun,...)
i i ik

= 29588 = 2, Ciitlu i),
7 7

BL: U(bLie)®® — HIU(hLie), BL(E°P) = 1540~ (7°P),

Ap: HU(hrie) = HiU (b Lie) Qu(ppi)er HEU (DLie),  AL(f1Z) = f(1)8luhrie) ®Uhri)or f2)bT,
er: H3U(bLie) — U(brie) ™, eL(f17) = 0( « STH(f)),

4.1.2 Lie algebra type noncommutative phase space

For convenience, we here write formulas for the structure maps of the Hopf algebroid O(Aut(g?))4U (g%) over
U(hL),U(g") that is inside an ad hoc completed version S(g*)tU (g%) = U(g*)#5(g*) of a Hopf algebroid
that is the Lie algebra type noncommutative phase space in [8].
In the setup of [8], h = g, H = O(Aut(g?)), R = U(g®), 91, ..., 9n are generators of gf*, 21,..., 2, are
the corresponding generators of g=', and 6: U(g®) — U(g’) is the antiisomorphism 6(g;) = &, j € {1,...,n}.
We use the formulas above by writing ¢ instead of Z, §j; instead of Z;, & instead of Z°P, Z; instead of fv'?g,
O instead of G and O instead of G, —C’;k instead of C;k, Z; instead of iqg, and S instead of 7.
Now H#R = O(Aut(g?))4U (g") is a Hopf algebroid over U(g%), U(g™): it is (i) a right bialgebroid over
U(g®) with structure maps
ar: U(g™) — HiU(g"), ar(9) = 1uty,
Br: U(g") — HiU(g"), Br(9) = N¥) = 91—119[0],
Br(;) = X, O}t
Ag: HiU (") — H{U (5%) @y gry HiU (g"), Ar(f19) = f()filugr) Qu(gr) f(2)89:
er: HiU(g") — U(g"), er(f19) = ()3,
(ii) a left bialgebroid over U(hp;e)°P with structure maps
ap: Ugh) — HiU(g"), ap(@) =671 (@)) - SO0 (@) 1)),
ap (&) =Y 9 Of = Y, Ot + Y. Cij,

=

Br: U(gh) — HU(g"), BL(@) = 1t~ (2),
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Ap: HiU (") — H{U (8") ®p(qry HIU (87), AL(f19) = f)ilu(ar) ®u(grt) f(2)89:
er: HYU(g™) - U(g"), er(f49) = 09« SH()),

e (1mty;) = 25,
L(f49;) = €()2; — <95 ),

>

with (iii) antipode

S: H{U (") — HiU ("),  S(f49) = o) - S*(9-17)S 1,
S(ft9;) Zyz OiSf = ZOS (fo)t(@i « S(fa +ZCUSfu1U o)

S(Luty;) Zyl' i'_O‘L () ZO ﬂyi‘*‘zciij:aL(ﬁj)—i-Zij,

S(ar(#)) =TZ@, Z(’)Z(’)kﬁyk—i—Z(’) C,ﬂ—y]-i-ZCw
k,i k,i

S(ar(z))) Z(’)lﬁy, =D k- OF - 0% = g,
i,k

where in formulas § € U(gf?), 2 € U(g"), fe H, and j € {1,...,n}.

Remark 4.1. The second formula in (52) and the first formula in (53) in [8] have a mistake in sign: the
minus sign should be replaced by a plus sign, and vice versa. The correct formulas are

S(0u) = (@) = 9u = Coins S72(@0) = S7H(G) = 2 + Cpi, (16)
§(#) = 3u = Ciixs - S72(@) = G+ C, (17)

since the antipode S maps £, = £, + C//L\A — §u — x,. Within this remark, summation over repeated
indices is understood.
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