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Abstract: We present an elementary construction of a (highly degenerate) Hopf pairing between the
universal enveloping algebra 𝑈pgq of a finite-dimensional Lie algebra g over arbitrary field 𝑘 and the
Hopf algebra 𝒪pAutpgqq of regular functions on the automorphism group of g. This pairing induces a
Hopf action of 𝒪pAutpgqq on 𝑈pgq which together with an explicitly given coaction makes 𝑈pgq into a
braided commutative Yetter–Drinfeld 𝒪pAutpgqq-module algebra. From these data one constructs a Hopf
algebroid structure on the smash product algebra 𝒪pAutpgqq7𝑈pgq retaining essential features from earlier
constructions of a Hopf algebroid structure on infinite-dimensional versions of Heisenberg double of 𝑈pgq,
including a noncommutative phase space of Lie algebra type, while avoiding the need of completed tensor
products.
We prove a slightly more general result where algebra 𝒪pAutpgqq is replaced by 𝒪pAutphqq and where h is
any finite-dimensional Leibniz algebra having g as its maximal Lie algebra quotient.
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1 Introduction
Yetter–Drinfeld modules over bialgebras (2.2 and [9, 10, 14]) are ubiquitous in quantum algebra, low
dimensional topology and representation theory. More intricate structure of a braided commutative monoid
in the category 𝐻𝒴𝒟𝐻 of Yetter–Drinfeld modules is an ingredient in a construction of scalar extension
bialgebroids and Hopf algebroids. Namely, given a Hopf algebra 𝐻 and a braided commutative Yetter–
Drinfeld 𝐻-module algebra 𝐴, the smash product algebra 𝐻7𝐴 has a structure of a Hopf algebroid over
𝐴 [1, 2, 11]. An important special case is the Heisenberg double 𝐴˚7𝐴 of a finite-dimensional Hopf algebra 𝐴,
where 𝐴˚ is the dual Hopf algebra of 𝐴; the 𝐴˚-coaction on 𝐴 is given by an explicit formula involving basis
of 𝐴 and the dual basis of 𝐴˚ ([5], map 𝛽 in Section 6). There are several important examples in literature,
some motivated by mathematical physics, when the underlying algebra of 𝐴 is the universal enveloping
algebra 𝑈pgq of an 𝑛-dimensional Lie algebra g. In the example of a noncommutative phase space ℋg of Lie
algebra type [8], the Hopf algebra 𝐻 is a realization via formal power series of the algebraic dual 𝑈pgq˚

with its natural topological Hopf algebra structure. Historically, ℋg as an algebra has been introduced by
extending 𝑈pgq by deformed derivatives (“momenta”) in [7] and in a rather nonrigorous treatment [13] it
has been argued that ℋg is actually the Heisenberg double of 𝑈pgq; this made plausible that Hopf algebroid
structure on ℋg could be exhibited analogously to Lu’s example of finite-dimensional double, leading to an
ad hoc version of completed Hopf algebroid structure in [8]. An abstract version of 𝑈pgq˚7𝑈pgq is described
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in [12] as an internal Hopf algebroid in the symmetric monoidal category of filtered cofiltered vector spaces.
These examples may be viewed as infinite-dimensional cases of Heisenberg double (in fact, this observation
from [13] influenced the Hopf algebroid approach in [8]), but a number of results in [12] show that there are
intricate conditions for which infinite-dimensional dually paired Hopf algebras 𝐻 and 𝐴 one can indeed form
a Hopf algebroid structure on the smash product algebra 𝐻7𝐴, even in a completed sense or even when
one of the Hopf algebras is the restricted dual of another. In the case of 𝑈pgq, formulas from [8] show that
there are special elements 𝒪𝑖

𝑗 P 𝐻 “ 𝑈pgq˚ for 𝑖, 𝑗 P t1, . . . , 𝑛u such that the coaction on the generators is
given by the formulas (adapted to our conventions) 𝑈pgq Ą g Q 𝑥𝑘 ÞÑ

ř

𝑖 𝒪𝑖
𝑘 b 𝑥𝑖 P 𝑈pgq˚ b g. Moreover,

elements 𝒪𝑖
𝑗 satisfy the relations which are satisfied by matrix elements of automorphisms of g. The prime

motivation of this article is to demystify this phenomenon and to find a much smaller Hopf algebra 𝐻

containing an abstract model for 𝒪𝑖
𝑗 and avoiding any completions in describing Yetter–Drinfeld 𝐻-module

structure on 𝑈pgq.
We show that the Hopf algebra of regular functions 𝐻 “ 𝒪pAutpgqq on the automorphism group of g

will do, namely that 𝑈pgq is a braided commutative Yetter–Drinfeld module 𝒪pAutpgqq-algebra whose
structure is given by essentially the same formulas as in the case of 𝑈pgq˚ from [12]. General formulas for
scalar extensions from [11] describe the Hopf algebroid structure on the smash product 𝒪pAutpgqq7𝑈pgq. We
write formulas for the symmetric Hopf algebroid structure in full detail. In the work [15] we present several
other natural examples of Hopf algebras 𝐻 equipped with a Hopf algebra homomorphism 𝒪pAutpgqq Ñ 𝐻

and where 𝑈pgq is still a Yetter–Drinfeld module algebra over 𝐻 without completions.
The main result of this article is actually proved in a slightly more general form than described above.

Namely, instead of the automorphism group of a Lie algebra g we can take the automorphism group of any
finite-dimensional Leibniz algebra h such that g is the maximal Lie algebra quotient h𝐿𝑖𝑒 of h, enabling a
structure of a Hopf algebroid on the smash product 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q.

2 Preliminaries

2.1 General conventions and preliminaries on pairings

Throughout the paper we freely use Sweedler notation with or without the summation sign [6, 9] and
the Kronecker symbol 𝛿𝑖

𝑗 . Throughout, 𝑘 is a fixed ground field and Vec𝑘 the category of 𝑘-vector spaces.
If 𝑉 P Vec𝑘, 𝑉 ˚ :“ Hom𝑘p𝑉,𝑘q. If Δ is a comultiplication on a 𝑘-coalgebra 𝐶 then for 𝑚 ě 1, Δ𝑚 :“
pid𝐶b𝑚´2 b Δq ˝ . . . ˝ pid𝐶 b Δq ˝ Δ: 𝐶 Ñ 𝐶b𝑚`1. If p𝐴,𝜇, 𝜂q is an associative 𝑘-algebra with multiplication
𝜇 : 𝐴 b 𝐴 Ñ 𝐴 and unit map 𝜂, consider its transpose 𝜇˚ : 𝐴˚ Ñ p𝐴 b 𝐴q˚. Restricted dual 𝐴˝ Ă 𝐴˚

consists of all 𝑓 P 𝐴˚ such that 𝜇˚p𝑓q falls within the image of inclusion 𝐴˚ b𝐴˚ ãÑ p𝐴b𝐴q˚. It follows
that 𝜇˚p𝑓q belongs also to the image of 𝐴˝ b 𝐴˝ hence the restriction 𝜇˚p𝑓q|𝐴˝ may be corestricted to a
map Δ𝐴˝ : 𝐴˝ Ñ 𝐴˝ b 𝐴˝ making 𝐴˝ into a coalgebra; if 𝐴 is a bialgebra (resp. Hopf algebra) then 𝐴˝

is. Pairings of vector spaces are bilinear maps into the ground field which are in this work not required
to be nondegenerate. For 𝑉,𝑊 P Vec𝑘, a pairing x´,´y : 𝑉 b 𝑊 Ñ 𝑘 induces a pairing between 𝑉 b 𝑉

and 𝑊 b 𝑊 componentwise: x𝑣 b 𝑣1, 𝑤 b 𝑤1y :“ x𝑣, 𝑤y ¨𝑘 x𝑣1, 𝑤1y. If 𝑉 P Vec𝑘 and 𝐴 is an algebra, and
𝑓 P 𝐴˚ such that there exists an element 𝑓 1 P 𝐴˚ b 𝐴˚ such that x𝑓 1, 𝑔 b ℎy “ x𝑓, 𝑔 ¨ ℎy for all 𝑔, ℎ P 𝐴,
then the functional x𝑓,´y P 𝐴˝ and x𝑓 1,´y P 𝐴˝ b 𝐴˝. If 𝑉 “ 𝐶 is a coalgebra then xΔp𝑓q,´y P 𝐴˚ b 𝐴˚.
Thus, if xΔp𝑐q, ℎ b 𝑔y “ x𝑐, 𝑔 ¨ ℎy for all 𝑔, ℎ P 𝐴, then 𝜑1 : 𝑐 ÞÑ x𝑐,´y :“ 𝜑1p𝑐q is a map 𝐶 Ñ 𝐴˝, and
p𝜑1 b 𝜑1q ˝ Δ𝐶 “ Δ𝐴˝ ˝ 𝜑1. It is a coalgebra map if moreover x𝑐, 1y “ 𝜖p𝑐q. Conversely, if 𝑐 ÞÑ x𝑐,´y

corestricts to a coalgebra map 𝜑1 : 𝐶 Ñ 𝐴˝, then the identities xΔp𝑐q, ℎ b 𝑔y “ x𝑐, 𝑔 ¨ ℎy and x𝑐, 1y “ 𝜖p𝑐q

hold for all 𝑐 P 𝐶, 𝑔, ℎ P 𝐴. Both conditions hold if and only if 𝑎 ÞÑ x´, 𝑎y is a map of algebras 𝐴 Ñ 𝐶˚.
A pairing between two bialgebras 𝐵 and 𝐻 is Hopf if xΔ𝐵p𝑏q, ℎ b 𝑘y “ x𝑏, ℎ ¨ 𝑘y, 𝜖𝐵p𝑏q “ x𝑏, 1𝐻y and the
symmetric conditions x𝑏 b 𝑐,Δ𝐻pℎqy “ x𝑏 ¨ 𝑐, ℎy, 𝜖𝐻pℎq “ x1𝐵 , ℎy. Clearly, the latter two conditions hold if
and only if ℎ ÞÑ x´, ℎy corestricts to a coalgebra map 𝜑2 : 𝐻 Ñ 𝐵˝. Alternatively, the pairing is Hopf if
and only if 𝑏 ÞÑ x𝑏,´y corestricts to a bialgebra map 𝜑1 : 𝐵 Ñ 𝐻˝. If 𝐵 and 𝐻 are Hopf algebras, 𝜑1 is a
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bialgebra map between Hopf algebras, hence it automatically respects the antipode. Thus, for every Hopf
pairing between Hopf algebras, identity x𝑆𝐵p𝑏q, ℎy “ x𝑏, 𝑆𝐻pℎqy holds for all 𝑏 P 𝐵, ℎ P 𝐻.

Replacing Hopf pairing with a bialgebra map 𝜑1 : 𝐵 Ñ 𝐻˝ is useful in constructing new pairings from
old. Namely, if 𝐼 Ă 𝐵 is a biideal (ideal which is also a coideal in the sense that Δp𝐼q Ă 𝐼 b 𝐵 ` 𝐵 b 𝐼 and
𝜖p𝐼q “ 0), then there is an induced bialgebra map 𝜑1 : 𝐵{𝐼 Ñ 𝐻˝ if and only if 𝜑1p𝐼q “ 0 that is x𝑖, ℎy “ 0
for all 𝑖 P 𝐼, ℎ P 𝐻.

Lemma 2.1. Let x´,´y : 𝐵 b 𝐻 Ñ 𝑘 be a bialgebra pairing.
(i) For the bialgebra pairing to vanish on 𝐼 b 𝐻 where 𝐼 Ă 𝐵 is a coideal, it suffices that it vanishes on

𝐼 b 𝐾𝐻 where 𝐾𝐻 is some set of algebra generators of 𝐻.
(ii) If 𝐼 Ă 𝐵 is a biideal, 𝐾𝐼 Ă 𝐼 a set of generators of 𝐼 as an ideal and 𝐾𝐻 a set of generators of 𝐻 as

an algebra, then the bialgebra pairing vanishes on 𝐼 b𝐻 if, in addition to x𝑖, ℎy “ 0 for all 𝑖 P 𝐾 and
ℎ P 𝐾𝐻 , one has that Δ2pℎq Ă 𝐻 b Span𝑘p𝐾𝐻 Y t1uq b𝐻 for all ℎ P 𝐾𝐻 .

Proof. (i) Fix any 𝑖 P 𝐼. Then Δp𝑖q “
ř

𝛼 𝑖𝛼 b 𝑏𝛼 `
ř

𝛽 𝑏
1
𝛽 b 𝑖1𝛽 for some 𝑖𝛼 P 𝐼, 𝑏𝛽 P 𝐵. Then x𝑖, ℎℎ1y “

ř

𝛼x𝑖𝛼, ℎyx𝑏𝛼, ℎ
1y `

ř

𝛽x𝑏1
𝛽 , ℎyx𝑖1𝛽 , ℎ

1y “ 0.
(ii) To show x𝑏𝑖𝑏1, ℎy “ 0 one needs x𝑏, ℎp1qyx𝑖, ℎp2qyx𝑏1, ℎp3qy “ 0. The condition on Δ2pℎq is sufficient

for this to hold for all 𝑖 P 𝐼, 𝑏, 𝑏1 P 𝐵, ℎ P 𝐾𝐻 .

One often starts by constructing an auxiliary pairing where one of the bialgebras is free [9]. If 𝐶 is
a coalgebra, then by the universal property of the tensor algebra 𝑇 p𝐶q there is a unique algebra map
𝑇 p𝐶q Ñ 𝑇 p𝐶q b 𝑇 p𝐶q extending the composition 𝐶

Δ
Ñ 𝐶 b 𝐶 ãÑ 𝑇 p𝐶q b 𝑇 p𝐶q along inclusion 𝐶 ãÑ 𝑇 p𝐶q;

this is a comultiplication on 𝑇 p𝐶q making it into a bialgebra. Every coalgebra map 𝐶 Ñ 𝐵 to a bialgebra
admits a unique extension to a bialgebra map 𝑇 p𝐶q Ñ 𝐵.

We need a different variant of this standard universal property. Suppose 𝐶 “ 𝑉 b 𝑘𝑢 as a vector space
where 𝑢 is grouplike, that is, Δp𝑢q “ 𝑢b𝑢, 𝜖p𝑢q “ 1. Ideal 𝐼𝑢 in 𝑇 p𝐶q generated by 𝑢´ 1 is a biideal because
Δp𝑢 ´ 1q “ 𝑢 b p𝑢 ´ 1q ` p𝑢 ´ 1q b 1 and 𝜖p𝑢 ´ 1q “ 0. Composition 𝑇 p𝑉 q ãÑ 𝑇 p𝑉 ‘ 𝑘𝑢q Ñ 𝑇 p𝑉 ‘ 𝑘𝑢q{𝐼𝑢

is an isomorphism of algebras (the inverse can easily be described); we transfer the comultiplication from
𝑇 p𝑉 b 𝑘𝑢q{𝐼𝑢 to 𝑇 p𝑉 q along this isomorphism. By the above universal property, any coalgebra map
𝑓 : 𝑉 ‘ 𝑘𝑢 Ñ 𝐵, where 𝐵 is a bialgebra, extends uniquely to a bialgebra map 𝑇 p𝑉 ‘ 𝑘𝑢q Ñ 𝐵; if 𝑓p𝑢q “ 1
then it induces a bialgebra map 𝑇 p𝑉 ‘ 𝑘𝑢q{𝐼𝑢 Ñ 𝐵.

Lemma 2.2. Suppose 𝑉 P Vec𝑘 and 𝐶 “ p𝑉 ‘ 𝑘,Δ, 𝜖q is a coalgebra such that 0 ‘ 1 is grouplike. Then
𝑇 p𝑉 q has a canonical bialgebra structure such that the inclusion 𝑉 ‘ 𝑘 ãÑ 𝑇 p𝑉 q is a coalgebra map and for
any bialgebra 𝐵, each coalgebra map 𝐶 Ñ 𝐵 mapping 0 ‘ 1 to 1𝐵 admits a unique extension to a bialgebra
map 𝑇 p𝑉 q Ñ 𝐵.

2.2 Yetter–Drinfeld module algebras

In this subsection, fix a Hopf 𝑘-algebra 𝐻 “ p𝐻,Δ, 𝜖q with comultiplication Δ: ℎ ÞÑ
ř

ℎp1q b ℎp2q

and counit 𝜖 : 𝐻 Ñ 𝑘. Recall that the category ℳ𝐻 of right 𝐻-modules is monoidal: if p𝑀, đ𝑀 q and
p𝑁, đ𝑁 q are 𝐻-modules then their tensor product is 𝑘-module 𝑀 b𝑘 𝑁 with 𝐻-action đ : p𝑚 b 𝑛q b ℎ ÞÑ

p𝑚 đ𝑀 ℎp1qq b p𝑛 đ𝑁 ℎp2qq and the unit object is 𝑘 with action 𝑐 đ ℎ “ 𝜖pℎq𝑐, for 𝑚 P 𝑀 , 𝑛 P 𝑁 , ℎ P 𝐻,
𝑐 P 𝑘. A right 𝐻-module algebra 𝐴 is a monoid in ℳ𝐻 : a right 𝐻-module p𝐴, đ : 𝐴 b 𝐻 Ñ 𝐴q with
multiplication ¨ such that

ř

p𝑎 đ ℎp1qq ¨ p𝑏 đ ℎp2qq “ p𝑎 ¨ 𝑏q đ ℎ and 1 đ ℎ “ 𝜖pℎq1. One can then form a
smash product algebra 𝐻7𝐴 with underlying 𝑘-vector space 𝐻 b 𝐴 and associative multiplication ¨ given by
pℎ7𝑎q ¨ p𝑘7𝑏q :“ ℎ𝑘p1q7p𝑎 đ 𝑘p2qq𝑏 where ℎ7𝑎 is an alias for ℎb 𝑎 P 𝐻7𝐴. We often identify 𝑎 P 𝐴 with 𝑎71 and
ℎ P 𝐻 with 17ℎ P 𝐴7𝐻 (thus for 𝑎, 𝑏 P 𝐴, ℎ, 𝑘 P 𝐻, 𝑎 ¨ pℎ7𝑏q denotes p17𝑎q ¨ pℎ7𝑏q and ℎ ¨ p𝑘7𝑏q “ pℎ𝑘q7𝑏). We
extend đ to a right action, also denoted đ, of 𝐻7𝐴 on 𝐴 by setting 𝑎 đ pℎ7𝑏q :“ p𝑎 đ ℎq𝑏 P 𝐴.
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A right-left Yetter–Drinfeld 𝐻-module p𝑀, đ, 𝜆q is a unital right 𝐻-module p𝑀, đq with a left 𝐻-coaction
𝜆 : 𝑀 Ñ 𝐻 b 𝑀 , 𝑚 ÞÑ 𝜆p𝑚q “

ř

𝑚r´1s b 𝑚r0s, satisfying Yetter–Drinfeld compatibility condition

𝑓p2qp𝑚 đ 𝑓p1qqr´1s b p𝑚 đ 𝑓p1qqr0s “ 𝑚r´1s𝑓p1q b p𝑚r0s đ 𝑓p2qq, for all 𝑚 P 𝑀,𝑓 P 𝐻. (1)

Morphisms of Yetter–Drinfeld modules are morphisms of underlying modules which are also morphisms
of comodules and the tensor product of Yetter–Drinfeld modules is the tensor product of the underlying
𝐻-modules equipped with the coaction 𝑚 b 𝑛 ÞÑ 𝑛r´1s𝑚r´1s b 𝑚r0s b 𝑛r0s (notice the order!). Thus
we obtain a braided monoidal category 𝐻𝒴𝒟𝐻 of (right-left) Yetter–Drinfeld 𝐻-modules with braiding
𝜎𝑀,𝑁 : 𝑀b𝑁 Ñ 𝑁b𝑀 given by 𝑚b𝑛 ÞÑ p𝑛đ𝑁 𝑚r´1sqb𝑚r0s. For finite-dimensional 𝐻, 𝐻𝒴𝒟𝐻 is braided
monoidally equivalent to the Drinfeld–Majid center of the monoidal category ℳ𝐻 of right 𝐻-modules.

If 𝐴 is a right 𝐻-module algebra with a left 𝐻-coaction 𝜆 and if we identify the underlying vector spaces
of 𝐻7𝐴 and 𝐻 b 𝐴, then the Yetter–Drinfeld compatibility may be rewritten in terms of the multiplication
in 𝐻7𝐴, as

𝑓p2q ¨ 𝜆p𝑎 đ 𝑓p1qq “ 𝜆p𝑎q ¨ 𝑓, for all 𝑎 P 𝐴, 𝑓 P 𝐻. (2)

Monoids in 𝐻𝒴𝒟𝐻 are called (right-left) Yetter–Drinfeld 𝐻-module algebras. They are Yetter–Drinfeld
modules with multiplication such that they become 𝐻-module algebras and 𝐻op-comodule algebras. Notice
that an 𝐻-comodule is the same thing as an 𝐻op-comodule, but saying that it is a comodule algebra is
different. If p𝐴, đ, 𝜆q is a Yetter–Drinfeld module and 𝜇 : 𝐴 b 𝐴 Ñ 𝐴 a 𝑘-linear map, then 𝜇 is braided
commutative if 𝜎𝐴,𝐴 ˝ 𝜇 “ 𝜇, that is, p𝑎 đ 𝑏r´1sq𝑏r0s “ 𝑏𝑎 for all 𝑎, 𝑏 P 𝐴. An 𝐻-module algebra p𝐴, đq is
braided commutative if its multiplication is braided commutative.

Lemma 2.3. Consider an 𝐻-module algebra p𝐴, đq with multiplication 𝜇 and a coaction 𝜆 so that p𝐴, đ, 𝜆q

is a Yetter–Drinfeld 𝐻-module.
(i) Multiplication 𝜇 is braided commutative in 𝐻𝒴𝒟𝐻 if and only if for the extended action đ of the smash

product 𝐻7𝐴 relation 𝑎 đ 𝜆p𝑏q “ 𝑏𝑎 holds.
(ii) Multiplication 𝜇 is braided commutative if and only if all elements of the form 17𝑎, 𝑎 P 𝐴, commute

with all elements of the form 𝜆p𝑏q, 𝑏 P 𝐴, viewed inside algebra 𝐻7𝐴.
(iii)Suppose 𝜇 is braided commutative. Then 𝐴 is an 𝐻op-comodule algebra (hence also a Yetter–Drinfeld

module algebra) if and only if 𝜆 considered as a map with values in smash product algebra 𝐻7𝐴 is
antimultiplicative.

Proof. For (i) indeed, the left hand side is 𝑎 đ p𝑏r´1s7𝑏r0sq “ p𝑎 đ 𝑏r´1sq𝑏r0s. Parts (ii) and (iii) are left to the
reader. They are implicit in [2].

2.3 Leibniz algebras

Left and right Leibniz algebras are nonassociative algebras slightly generalizing Lie algebras by dropping
the condition of antisymmetry.

A 𝑘-vector space h equipped with a linear map r´,´s : h b𝑘 h Ñ h is a left Leibniz algebra [4] if for
every 𝑥 P h the map ad𝑥 : 𝑦 ÞÑ r𝑥, 𝑦s is a derivation on h, that is, if left Leibniz identity r𝑥, r𝑦, 𝑧ss “

rr𝑥, 𝑦s, 𝑧s ` r𝑦, r𝑥, 𝑧ss holds for all 𝑥, 𝑦, 𝑧 P h. Let h𝑙 be a copy of vector space h, with elements denoted 𝑙𝑥,
𝑥 P h, with operations transported via 𝑥 ÞÑ 𝑙𝑥. Denote by h𝐿𝑖𝑒 the Lie algebra obtained as a quotient of h
by two-sided ideal 𝐼r𝑥,𝑥s,𝑥Ph generated by all commutators r𝑥, 𝑥s, 𝑥 P h. It is a Lie algebra and it is maximal
in the sense that if char 𝑘 ‰ 2, every map h Ñ g to a Lie algebra g factors through h𝐿𝑖𝑒 (if char 𝑘 “ 2,
relation r𝑥, 𝑥s “ 0 is stronger than the antisymmetry).

Lemma 2.4. Let h be a left Leibniz algebra. Universal enveloping algebra 𝑈ph𝐿𝑖𝑒q of Lie algebra h𝐿𝑖𝑒 –

h{𝐼r𝑥,𝑥s,𝑥Ph is isomorphic to 𝑇 ph𝑙q{𝐼𝑙, where 𝐼𝑙 is the ideal in 𝑇 ph𝑙q generated by 𝑙r𝑥,𝑦s ´ 𝑙𝑥 b 𝑙𝑦 ` 𝑙𝑦 b 𝑙𝑥,
𝑥, 𝑦 P h.
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Proof. Left to the reader. Included in the preprint version, arXiv:2308.15467.

We say that 𝑘-vector space h together with a linear map r´,´s : h b𝑘 h Ñ h is a right Leibniz algebra if
for every 𝑥 P h the map 𝑦 ÞÑ r𝑦, 𝑥s is a derivation on h, that is, if the right Leibniz identity rr𝑥, 𝑦s, 𝑧s “

rr𝑥, 𝑧s, 𝑦s ` r𝑥, r𝑦, 𝑧ss holds for all 𝑥, 𝑦, 𝑧 P h. By quotienting h by the ideal generated by r𝑥, 𝑥s, 𝑥 P h, we get
a maximal quotient Lie algebra, h Ñ h𝐿𝑖𝑒.

Lemma 2.5. Let h be a right Leibniz algebra. Universal enveloping algebra 𝑈ph𝐿𝑖𝑒q of Lie algebra h𝐿𝑖𝑒 –

h{𝐼r𝑥,𝑥s,𝑥Ph is isomorphic to 𝑇 ph𝑟q{𝐼𝑟, where 𝐼𝑟 is the ideal in 𝑇 ph𝑟q generated by 𝑟r𝑥,𝑦s ´ 𝑟𝑥 b 𝑟𝑦 ` 𝑟𝑦 b 𝑟𝑥,
𝑥, 𝑦 P h.

3 𝑈ph𝐿𝑖𝑒q as a Yetter–Drinfeld 𝒪pAutphqq-module algebra
In this section, we prove the central result of this article: for any finite-dimensional Leibniz algebra h over
any field 𝑘, the universal enveloping algebra 𝑈ph𝐿𝑖𝑒q of its maximal quotient Lie algebra h𝐿𝑖𝑒 is a braided
commutative Yetter–Drinfeld module algebra over the Hopf algebra 𝒪pAutphqq of regular functions on the
algebraic group of automorphisms of h. This result immediately implies that the smash product algebra
𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q is a total algebra of a Hopf algebroid over 𝑈ph𝐿𝑖𝑒qop, 𝑈ph𝐿𝑖𝑒q, see Section 4.

3.1 Hopf algebra 𝒪pAutp𝐿qq

Let p𝐿, ¨𝐿q be any nonassociative algebra of finite dimension 𝑛 over a field 𝑘. The general linear group of the
underlying vector space, GLp𝐿q is an affine algebraic group with algebra of regular functions 𝒪pGLp𝐿qq that
is therefore a Hopf algebra via Δp𝑓qp𝑀,𝑁q “ 𝑓p𝑀 ˝ 𝑁q and 𝜖p𝑓q “ 𝑓p1q for any 𝑀,𝑁 P GLp𝐿q [3]. For a
chosen ordered basis b “ p𝑥1, . . . , 𝑥𝑛q of 𝐿, interpreting matrices as operators amounts to an isomorphism
𝜄b : GLp𝑛,𝑘q

–
Ñ GLp𝐿q. Structure constants 𝐶𝑘

𝑖𝑗 “ 𝐶𝑘
b𝑖𝑗 are defined by

𝑥𝑖 ¨ 𝑥𝑗 “

𝑛
ÿ

𝑘“1
𝐶𝑘

b𝑖𝑗𝑥𝑘, 𝑖, 𝑗 P t1, . . . , 𝑛u, (3)

and we introduce as algebra generators of 𝒪pGLp𝑛,𝑘qq regular functions 𝑈 𝑖
𝑗 : 𝑀 ÞÑ 𝑀 𝑖

𝑗 , 𝑈̄
𝑖
𝑗 : 𝑀 ÞÑ p𝑀´1q𝑖

𝑗 ,
where 𝑀 𝑖

𝑗 is the p𝑖, 𝑗q-th entry of matrix 𝑀 P GLp𝑛,𝑘q. As an abstract algebra, 𝒪pGLp𝑛,𝑘qq is the free
algebra on 𝑛2 generators 𝑈 𝑖

𝑗 , 𝑈̄
𝑖
𝑗 modulo the 𝑛2 relations

ř

𝑘 𝑈
𝑖
𝑘𝑈̄

𝑘
𝑗 “ 𝛿𝑖

𝑗 . The comultiplication is then given
by Δp𝑈 𝑖

𝑗 q “
ř

𝑘 𝑈
𝑖
𝑘 b 𝑈𝑘

𝑗 and Δp𝑈̄ 𝑖
𝑗 q “

ř

𝑘 𝑈̄
𝑘
𝑗 b 𝑈̄ 𝑖

𝑘 with counit 𝜖p𝑈 𝑖
𝑗 q “ 𝜖p𝑈̄ 𝑖

𝑗 q “ 𝛿𝑖
𝑗 . By definition, an

element 𝜓 P GLp𝐿q is an automorphism if 𝜓p𝑎q ¨𝐿 𝜓p𝑏q “ 𝜓p𝑎 ¨𝐿 𝑏q for all 𝑎, 𝑏 P 𝐿. These relations cut out
the subgroup Autp𝐿q Ă GLp𝐿q. To see that it is a Zariski closed subgroup, write 𝑎 “

ř

𝑘 𝑎
𝑘𝑥𝑘, 𝑏 “

ř

𝑘 𝑏
𝑘𝑥𝑘

and observe that this condition amounts to a system of 𝑛3 polynomial equations in GLp𝑛,𝑘q,
ÿ

𝑟

𝐶𝑟
𝑖𝑗𝜓

𝑘
𝑟 “

ÿ

𝑙,𝑚

𝜓𝑙
𝑖𝜓

𝑚
𝑗 𝐶

𝑘
𝑙𝑚.

In other words, 𝜄b induces an identification 𝜄˚b : 𝒪pAutp𝐿qq
–
Ñ 𝒪pAutp𝐿qqb with the quotient 𝒪pAutp𝐿qqb

of 𝒪pGLp𝑛,𝑘qq by the ideal 𝐼Autp𝐿qb generated by relations
ÿ

𝑙,𝑚

𝐶𝑘
𝑙𝑚𝑈

𝑙
𝑖𝑈

𝑚
𝑗 “

ÿ

𝑟

𝑈𝑘
𝑟 𝐶

𝑟
𝑖𝑗 . (4)

Regarding that the inclusion of subvarieties Autp𝐿q Ă GLp𝐿q is also an inclusion of groups, this ideal is
Hopf and 𝒪pAutp𝐿qq is the quotient Hopf algebra of functions on the subgroup. One can also directly check
that the ideal 𝐼Autp𝐿qb is a Hopf ideal.

Denote by 𝒢𝑖
𝑗 “ 𝒢𝑖

b𝑗 “ 𝑈 𝑖
𝑗 ` 𝐼Autp𝐿qb and 𝒢𝑖

𝑗 “ 𝒢𝑖
b𝑗 “ 𝑈̄ 𝑖

𝑗 ` 𝐼Autp𝐿qb the generators of 𝒪pAutp𝐿qqb. If
𝑇 “ p𝑇 𝑖

𝑗 q𝑛
𝑖,𝑗“1 is a transition matrix to a basis b1 “ p𝑥1

1, . . . , 𝑥
1
𝑛q, 𝑥1

𝑗 “
ř

𝑖 𝑇
𝑖
𝑗𝑥𝑖, then 𝜄´1

b1 ˝ 𝜄b : GLp𝑛,𝑘q Ñ
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GLp𝑛,𝑘q, 𝐴 ÞÑ 𝑇𝐴𝑇´1. Then 𝒢𝑖
b1𝑗 ÞÑ

ř

𝑙,𝑚 𝑇 𝑖
𝑙 𝒢𝑙

b𝑚𝑇
´1𝑚

𝑗 extends to a Hopf algebra isomorphism
𝜃bb1 : 𝒪pAutp𝐿qqb1 Ñ 𝒪pAutp𝐿qqb and 𝜃b1b “ 𝜃´1

bb1 . This implies 𝜄˚´1
b1 p𝒢𝑖

b1𝑗q “
ř

𝑙,𝑚 𝑇 𝑖
𝑙 𝜄

˚´1
b p𝒢𝑙

b𝑚q𝑇´1𝑚
𝑗

within 𝒪pAutphqq. When it is clear which basis b is fixed, 𝜄˚´1
b p𝒢𝑖

b𝑗q P 𝒪pAutp𝐿qq will also be denoted by
𝒢𝑖

b𝑗 or simply 𝒢𝑖
𝑗 . Assuming the identification 𝜄˚´1

b , we write

𝒢𝑖
b1𝑗 “

ÿ

𝑙,𝑚

𝑇 𝑖
𝑙 𝒢𝑙

b𝑚𝑇
´1𝑚

𝑗 . (5)

Assuming the identification 𝜄˚´1
b , if 𝜓 is an automorphism of 𝐿,

ř

𝑖 𝒢𝑖
b𝑗p𝜓q𝑥𝑖 “ 𝜓p𝑥𝑗q. The standard

reasoning above is summarized in the following proposition.

Proposition 3.1. Let 𝐿 be a nonassociative algebra of finite dimension 𝑛 with a 𝑘-basis b and structure
constants 𝐶𝑘

𝑖𝑗 “ 𝐶𝑘
b𝑖𝑗 (3). Hopf algebra 𝒪pAutp𝐿qq of regular functions on the affine algebraic group of

automorphisms of 𝐿 is as an algebra isomorphic to a commutative algebra 𝒪pAutp𝐿qqb with 2𝑛2-generators
𝒢𝑖

𝑗 , 𝒢𝑖
𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u and defining relations

ÿ

𝑙,𝑚

𝐶𝑘
𝑙𝑚𝒢𝑙

𝑖𝒢𝑚
𝑗 “

ÿ

𝑟

𝒢𝑘
𝑟𝐶

𝑟
𝑖𝑗 ,

ÿ

𝑘

𝒢𝑖
𝑘𝒢𝑘

𝑗 “ 𝛿𝑖
𝑗 “

ÿ

𝑘

𝒢𝑖
𝑘𝒢𝑘

𝑗 , 𝑖, 𝑗, 𝑘 P t1, . . . , 𝑛u. (6)

As a direct consequence the following identities hold for all 𝑖, 𝑗, 𝑘 P t1, . . . , 𝑛u:
ÿ

𝑚,𝑝

𝒢𝑖
𝑝𝐶

𝑝
𝑚𝑗𝒢𝑚

𝑘 “
ÿ

𝑚

𝐶𝑖
𝑘𝑚𝒢𝑚

𝑗 , (7)

ÿ

𝑙,𝑚

𝐶𝑘
𝑙𝑚𝒢𝑙

𝑖𝒢𝑚
𝑗 “

ÿ

𝑟

𝒢𝑘
𝑟𝐶

𝑟
𝑖𝑗 . (8)

Isomorphism 𝒪pAutp𝐿qqb – 𝒪pAutp𝐿qq is a Hopf algebra isomorphism if 𝒪pAutp𝐿qqb is given the unique
comultiplication Δ and counit 𝜖 which are algebra maps satisfying

Δp𝒢𝑖
𝑗q “

ÿ

𝑘

𝒢𝑖
𝑘 b 𝒢𝑘

𝑗 , Δp𝒢𝑖
𝑗q “

ÿ

𝑘

𝒢𝑘
𝑗 b 𝒢𝑖

𝑘, 𝜖p𝒢𝑖
𝑗q “ 𝜖p𝒢𝑖

𝑗q “ 𝛿𝑖
𝑗 , (9)

and the antipode 𝑆 satisfying 𝑆p𝒢𝑖
𝑗q “ 𝒢𝑖

𝑗 , 𝑆p𝒢𝑖
𝑗q “ 𝒢𝑖

𝑗 for all 𝑖, 𝑗 P t1, . . . , 𝑛u.

3.2 Hopf pairing

If p𝐵,Δ, 𝜖q is a 𝑘-bialgebra, then a differentiation of 𝐵 is any 𝑘-linear map 𝐷 : 𝐵 Ñ 𝑘 such that Leibniz
rule 𝐷p𝑏𝑐q “ 𝐷p𝑏q𝜖p𝑐q ` 𝜖p𝑏q𝐷p𝑐q holds. In other words, it is a 𝑘𝜖-valued derivation of 𝐵, where 𝑘𝜖 is 𝑘 with
the trivial 𝐵-(bi)module structure coming from the counit. In Hopf algebraic language, a differentiation is a
primitive element in the restricted dual bialgebra 𝐵˝. The following lemma is standard and elementary.

Lemma 3.2. Let 𝐵 be any bialgebra such that its underlying algebra is the free unital commutative algebra
with a set of free generators 𝐹𝐵. There is a canonical isomorphism between the vector space 𝑘𝐹𝐵 of set
maps 𝐹𝐵 Ñ 𝑘 and the space of differentiations of 𝐵 which extend these maps.

Assume 𝑉 P Vec𝑘 and 𝐶 “ 𝑉 ‘ 𝑘 is a coalgebra such that Δp1q “ 1 b 1 and Δp𝑣q “ 1 b 𝑣 ` 𝑣 b 1 for all
𝑣 P 𝑉 . Suppose 𝑉 is paired with 𝐵 such that map 𝑣 ÞÑ x𝑣,´y corestricts to a coalgebra map 𝜑1 : 𝐶 Ñ 𝐵˝

for which 𝜑1p1q “ 1𝐵˝ “ 𝜖𝐵 . Then 𝜑1p𝑣q is a differentiation of 𝐵. Conversely, by Lemma 3.2 each such
𝜑1p𝑣q is determined by 𝜑1p𝑣q|𝐹𝐵

, where the values for the latter can be chosen independently.

Proposition 3.3. Let h be a left Leibniz 𝑘-algebra with a vector space basis b “ p𝑥1, . . . , 𝑥𝑛q and structure
constants 𝐶𝑖

𝑗𝑘 determined from r𝑥𝑗 , 𝑥𝑘s “
ř

𝑖 𝐶
𝑖
𝑗𝑘𝑥𝑖, 𝑗, 𝑘 P t1, . . . , 𝑛u. In the notation of Subsection 3.1,

𝒢𝑖
𝑗 ,𝒢𝑖

𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u are the generators of the algebra 𝒪pAutphqq. Denote also by 𝑥̃ the image of 𝑥 P h in
h𝐿𝑖𝑒.
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Then there is a well defined and unique Hopf pairing

x´,´y : 𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑘

such that x𝑥̃𝑘,𝒢𝑖
𝑗y “ 𝐶𝑖

𝑘𝑗 for all 𝑖, 𝑗, 𝑘 P t1, . . . , 𝑛u. This Hopf pairing does not depend on the choice of basis.

Proof. Notice that 𝐶𝑖
𝑘𝑗 “ pad𝑥𝑘q𝑖

𝑗 , the p𝑖, 𝑗q-th matrix element of ad𝑥𝑘, hence x𝑥̃,𝒢𝑖
𝑗y “ pad𝑥q𝑖

𝑗 for all
𝑥̃ P h.

Uniqueness. If such a pairing exists, then, @𝑥 P h, 0 “ 𝜖𝑈ph𝐿𝑖𝑒qp𝑥̃q “ x𝑥̃, 1y, hence

0 “ x𝑥̃, 𝛿𝑖
𝑗1y “ x𝑥̃,

ÿ

𝑚

𝒢𝑖
𝑚𝒢𝑚

𝑗 y “ xΔ𝑈phLieqp𝑥̃q,
ÿ

𝑚

𝒢𝑖
𝑚 b 𝒢𝑚

𝑗 y

“
ÿ

𝑚

x𝑥̃,𝒢𝑖
𝑚yx1,𝒢𝑚

𝑗 y ` x1,𝒢𝑖
𝑚yx𝑥̃,𝒢𝑚

𝑗 y “
ÿ

𝑚

pad 𝑥̃q
𝑖
𝑚𝜖p𝒢𝑚

𝑗 q ` 𝜖p𝒢𝑖
𝑚qx𝑥̃,𝒢𝑖

𝑚y.

Thus, x𝑥̃,𝒢𝑖
𝑗y “ ´

ř

𝑚pad 𝑥̃q𝑖
𝑚𝜖p𝒢𝑚

𝑗 q “ ´pad 𝑥̃q𝑖
𝑗 and, in particular, x𝑥̃𝑘,𝒢𝑖

𝑗y “ ´𝐶𝑖
𝑘𝑗 .

Denote 𝒪1` :“ Span𝑘t𝒢𝑖
𝑗u𝑛

𝑖,𝑗“1 Ă 𝒪pAutphqq. By (9), Δp𝒪1`q P 𝒪1` b 𝒪1`, hence x𝑥̃𝑘1 ¨ ¨ ¨ 𝑥̃𝑘𝑚
,𝒢𝑖

𝑗y “

x𝑥̃𝑘1 b ¨ ¨ ¨ b 𝑥̃𝑘𝑚
,Δ𝑚´1p𝒢𝑖

𝑗qy is a polynomial in expressions of the form x𝑥̃𝑘,𝒢𝑟
𝑠 y. Similarly, x𝑥̃𝑘1 ¨ ¨ ¨ 𝑥̃𝑘𝑚

,𝒢𝑖
𝑗y

are determined by x𝑥̃𝑘,𝒢𝑟
𝑠 y.

For any 𝑣 P 𝑈ph𝐿𝑖𝑒q, x𝑣,𝒢𝑖1
𝑗1

¨ ¨ ¨ 𝒢𝑖𝑚
𝑗𝑚

y “ xΔ𝑚´1p𝑣q,𝒢𝑖1
𝑗1

b ¨ ¨ ¨ b 𝒢𝑖𝑚
𝑗𝑚

y, where each 𝒢𝑖𝑝

𝑗𝑝
stands for either

𝒢𝑖𝑝

𝑗𝑝
or 𝒢𝑖𝑝

𝑗𝑝
. After expanding Δ𝑚´1p𝑣q, the right-hand side is written in terms of expressions of the form

x𝑥̃𝑘1 ¨ ¨ ¨ 𝑥̃𝑘𝑚
,𝒢𝑖

𝑗y. Therefore, if such a pairing exists, it is unique.
Existence. We first consider the free commutative algebra 𝐵𝑛 on the 2𝑛2 generators, still denoted

𝒢𝑖
𝑗 ,𝒢𝑖

𝑗 , and with the same rule (9) for a bialgebra structure (this is the bialgebra of regular functions
on the variety of pairs of arbitrary 𝑛 ˆ 𝑛 matrices). A unique pairing of h𝑙 with 𝐵 is by Lemma 3.2
extending x𝑙𝑥𝑘 ,𝒢𝑖

𝑗y “ 𝐶𝑖
𝑘𝑗 , x𝑙𝑥𝑘 ,𝒢𝑖

𝑗y “ ´𝐶𝑖
𝑘𝑗 by Leibniz rule, requiring that x𝑙𝑥𝑘 ,´y is a differentiation of

𝐵𝑛. We now want to show that there is an induced pairing between h𝑙 and the quotient Hopf algebra
𝐵𝑛{𝐼 “ 𝒪pAutphqq; functionals x𝑙𝑥𝑘 ,´y remain differentiations on the quotient. We need to show that the
pairing restricted to h𝑙 b 𝐼 vanishes. The biideal of relations 𝐼 has a generating set 𝐾𝐼 of all elements of the
form

ř

𝑙,𝑚 𝐶𝑘
𝑙𝑚𝒢𝑙

𝑖𝒢𝑚
𝑗 ´ 𝒢𝑘

𝑟𝐶
𝑟
𝑖𝑗 ,

ř

𝑘 𝒢𝑖
𝑘𝒢𝑘

𝑗 ´ 𝛿𝑖
𝑗 or

ř

𝑘 𝒢𝑖
𝑘𝒢𝑘

𝑗 ´ 𝛿𝑖
𝑗 . Observe that 𝜖p𝑠q “ 0 for all 𝑠 P 𝐾𝐼 . Thus for

differentiation 𝐷 “ x𝑙𝑥𝑘 ,´y we obtain 𝐷p𝑏𝑠q “ 𝐷p𝑏q𝜖p𝑠q ` 𝜖p𝑏q𝐷p𝑠q “ 0 for all 𝑏 P 𝐵 and 𝑠 P 𝐾𝐼 . Therefore
if the pairing vanishes on 𝐾𝐼 then it vanishes on the ideal generated by 𝐾𝐼 .

Thus we need to check x𝑙𝑥𝑝 ,
ř

𝑟,𝑚 𝐶𝑘
𝑟𝑚𝒢𝑟

𝑖 𝒢𝑚
𝑗 y “ x𝑙𝑥𝑝 ,

ř

𝑛 𝒢𝑘
𝑛𝐶

𝑛
𝑖𝑗y and x𝑙𝑥𝑝 ,

ř

𝑗 𝒢𝑖
𝑗𝒢𝑗

𝑘y “ x𝑙𝑥𝑝 , 𝛿
𝑖
𝑘y “

x𝑙𝑥𝑝 ,
ř

𝑗 𝒢𝑖
𝑗𝒢𝑗

𝑘y for all 𝑖, 𝑗, 𝑘, 𝑝 P t1, . . . , 𝑛u. The first equation is
ÿ

𝑟

𝐶𝑘
𝑟𝑗𝐶

𝑟
𝑝𝑖 `

ÿ

𝑚

𝐶𝑘
𝑖𝑚𝐶

𝑚
𝑝𝑗 “

ÿ

𝑛

𝐶𝑘
𝑝𝑛𝐶

𝑛
𝑖𝑗 ,

which is left Leibniz identity rr𝑥𝑝, 𝑥𝑖s, 𝑥𝑗s ` r𝑥𝑖, r𝑥𝑝, 𝑥𝑗ss “ r𝑥𝑝, r𝑥𝑖, 𝑥𝑗ss in terms of the structure constants.
By using the differentiation rule, the second equation is simply x𝑙𝑥𝑝 ,𝒢𝑖

𝑘y ` x𝑙𝑥𝑝 ,𝒢𝑖
𝑘y “ 0, which holds for

generators by definition. Therefore, there is a well defined pairing ph𝑙 ‘ 𝑘q b 𝒪pAutphqq Ñ 𝑘 such that
x1, 𝑓y “ 𝜖p𝑓q for all 𝑓 P 𝒪pAutphqq and x𝑙𝑥,´y is a differentiation of 𝒪pAutphqq for all 𝑥 P h, that is,

x𝑙𝑥, 𝑓𝑔y “ x𝑙𝑥, 𝑓y𝜖p𝑔q ` 𝜖p𝑓qx𝑙𝑥, 𝑔y, @𝑥 P h, @𝑓, 𝑔 P 𝒪pAutphqq. (10)

This means that h𝑙 ‘ 𝑘 is equipped with a comultiplication Δ such that Δp𝑙𝑥q “ 1 b 𝑙𝑥 ` 𝑙𝑥 b 1 and 𝜖p𝑙𝑥q “ 0
and the pairing respects Δ: in the notation of Subsection 2.1, 𝑐 ÞÑ x𝑐,´y restricts to a coalgebra map
𝜑1 : h𝑙 ‘ 𝑘 Ñ 𝒪pAutphqq˝ sending 1 to 1𝒪pAutphqq˝ “ 𝜖𝒪pAutphqq. By Lemma 2.2 and the equivalence between
Hopf pairings and bialgebra maps 𝑇 ph𝑙q Ñ 𝒪pAutphqq˝, we extend this pairing to a unique Hopf pairing
𝑇 ph𝑙q b 𝒪pAutphqq Ñ 𝑘; it is determined by the formula

x𝑙𝑥𝑖1
¨ ¨ ¨ 𝑙𝑥𝑖𝑚

, 𝑓y “ x𝑙𝑥𝑖1
b ¨ ¨ ¨ b 𝑙𝑥𝑖𝑚

,Δ𝑚´1
p𝑓qy.

Denote by 𝐼𝑙 the ideal in 𝑇 ph𝑙q generated by 𝑒𝑥,𝑦 :“ 𝑙r𝑥,𝑦s ´ 𝑙𝑥 b 𝑙𝑦 ` 𝑙𝑦 b 𝑙𝑥, 𝑥, 𝑦 P h. By Lemma 2.4,
𝑈ph𝐿𝑖𝑒q – 𝑇 ph𝑙q{𝐼𝑙. Moreover, Δ𝑇 ph𝑙qp𝑒𝑥,𝑦q “ 1 b 𝑒𝑥,𝑦 ` 𝑒𝑥,𝑦 b 1 and 𝜖p𝑒𝑥,𝑦q “ 0, hence 𝐼𝑙 is a biideal.
Clearly, 𝑈ph𝐿𝑖𝑒q – 𝑇 ph𝑙q{𝐼𝑙 as Hopf algebras as well.
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We now check that the ideal generators 𝑒𝑥,𝑦 of 𝐼𝑙 are paired with every element of 𝒪pAutphqq as 0.
Relation x𝑙r𝑥𝑘,𝑥𝑛s ` 𝑙𝑥𝑛 b 𝑙𝑥𝑘 ,𝒢𝑖

𝑗y “ x𝑙𝑥𝑘 b 𝑙𝑥𝑛 ,𝒢𝑖
𝑗y is equivalent to

ř

𝑚 𝐶𝑚
𝑘𝑛𝐶

𝑖
𝑚𝑗 `

ř

𝑝 𝐶
𝑖
𝑛𝑝𝐶

𝑝
𝑘𝑗 “

ř

𝑝 𝐶
𝑖
𝑘𝑝𝐶

𝑝
𝑛𝑗 ,

which restates the left Leibniz identity rr𝑥𝑘, 𝑥𝑛s, 𝑥𝑗s`r𝑥𝑛, r𝑥𝑘, 𝑥𝑗ss “ r𝑥𝑘, r𝑥𝑛, 𝑥𝑗ss. Similarly, x𝑙r𝑥𝑘,𝑥𝑛s`𝑙𝑥𝑛 b

𝑙𝑥𝑘 ,𝒢𝑖
𝑗y “ x𝑙𝑥𝑘 b 𝑙𝑥𝑛 ,𝒢𝑖

𝑗y computes to the same identity. Since 𝐼 is a biideal and 𝒪1 :“ Span𝑘t𝒢𝑖
𝑗 ,𝒢𝑖

𝑗u𝑛
𝑖,𝑗“1

satisfies Δ𝒪pAutphqqp𝒪1q Ă 𝒪1 b 𝒪1, we can apply Lemma 2.1, part (ii), for 𝐾𝐻 “ 𝒪1 to conclude
that the pairing vanishes on the entire 𝐼 b 𝒪pAutphqq. Therefore, there is a well defined Hopf pairing
𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑘 satisfying x𝑥̃𝑘,𝒢𝑖

𝑗y “ 𝐶𝑖
𝑘𝑗 .

To show that the pairing does not depend on the choice of basis b, note that we started from a pairing
x´,´yb defined on h𝑙 bSpan𝑘t𝒢𝑖

b𝑗 ,𝒢
𝑖
b𝑗u𝑛

𝑖,𝑗“1 Ă h𝑙 b𝐵𝑛 by x𝑙𝑥,𝒢𝑖
b𝑗yb “ adp𝑥q𝑖

b𝑗 and x𝑙𝑥,𝒢𝑖
b𝑗yb “ ´ adp𝑥q𝑖

b𝑗 .
For a base change by a numerical matrix 𝑇 , x𝑙𝑥,𝒢𝑖

b1𝑗yb1 “ padp𝑥qb1 q𝑖
𝑗 “

ř

𝑚,𝑙 𝑇
𝑖
𝑚padp𝑥qbq𝑚

𝑙 𝑇
´1𝑙

𝑗 “
ř

𝑚,𝑙 𝑇
𝑖
𝑚x𝑙𝑥,𝒢𝑚

b𝑙yb𝑇
´1𝑙

𝑗 “ x𝑙𝑥, p𝑇𝒢b𝑇
´1q𝑖

𝑗yb “ x𝑙𝑥, 𝜃bb1 p𝒢𝑖
b1𝑗qyb. Likewise for 𝒢. Induced pairing 𝑈ph𝐿𝑖𝑒q b

𝒪pAutphqq Ñ 𝑘 is uniquely defined by the pairing on h𝑙 bSpan𝑘t𝒢𝑖
b𝑗 ,𝒢

𝑖
b𝑗u𝑛

𝑖,𝑗“1 and by abstract properties of
the extension. Thus, it respects bialgebra isomorphism 𝜃bb1 in the second argument. Once we quotient from
𝐵𝑛 down to 𝒪pAutphqq, 𝜃bb1 becomes an identification 𝜄´1˚

b ˝ 𝜄˚b1 (extending (5)), yielding the invariance.

Proposition 3.4. Let h be a right Leibniz 𝑘-algebra and b “ p𝑦1, . . . , 𝑦𝑛q a 𝑘-basis of h. Denote by 𝐶𝑖
𝑗𝑘

structure constants determined from r𝑦𝑗 , 𝑦𝑘s “ 𝐶𝑖
𝑗𝑘𝑦𝑖, for 𝑗, 𝑘 P t1, . . . , 𝑛u. Let 𝒢𝑖

𝑗 ,𝒢𝑖
𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u be the

generators of the algebra 𝒪pAutphqq from Subsection 3.1. Denote by 𝑦 the image of 𝑦 P h in h𝐿𝑖𝑒.
Then there is a well defined and unique Hopf pairing

x´,´y : 𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑘

such that x𝑦𝑘,𝒢𝑖
𝑗y “ ´𝐶𝑖

𝑗𝑘 for all 𝑖, 𝑗, 𝑘 P t1, . . . , 𝑛u. This Hopf pairing does not depend on the choice of
basis.

Proof. Notice that x𝑦𝑘,𝒢𝑖
𝑗y “ ´pad𝑟 𝑦𝑘q𝑖

𝑗 where ad𝑟 𝑦 : 𝑧 ÞÑ r𝑧, 𝑦s is the right adjoint action; thus the main
difference from Proposition 3.3 is change of side.

The entire proof is analogous to the proof of Proposition 3.3, hence we skip it. One first observes that,
if the pairing exists, x𝑦𝑘,𝒢𝑖

𝑗yb “ 𝐶𝑖
b𝑗𝑘 must hold. We are presenting 𝑈ph𝐿𝑖𝑒q as 𝑇 ph𝑟q{𝐼𝑟 from Lemma 2.5.

Key calculations with elements 𝑙𝑥, 𝑥 P h, which in Proposition 3.3 boil down to the left Leibniz identity are
now replaced by calculations with elements 𝑟𝑦, 𝑦 P h, (from Lemma 2.5) and boil down to the right Leibniz
identity. For example, x𝑟𝑦𝑝 ,

ř

𝑠,𝑚 𝐶𝑘
𝑠𝑚𝒢𝑠

𝑖 𝒢𝑚
𝑗 y “ x𝑟𝑦𝑝 ,

ř

𝑛 𝒢𝑘
𝑛𝐶

𝑛
𝑖𝑗y is

ÿ

𝑠

𝐶𝑘
𝑠𝑗𝐶

𝑠
𝑖𝑝 `

ÿ

𝑚

𝐶𝑘
𝑖𝑚𝐶

𝑚
𝑗𝑝 “

ÿ

𝑛

𝐶𝑘
𝑛𝑝𝐶

𝑛
𝑖𝑗 ,

which is right Leibniz identity rr𝑦𝑖, 𝑦𝑝s, 𝑦𝑗s ` r𝑦𝑖, r𝑦𝑗 , 𝑦𝑝ss “ rr𝑦𝑖, 𝑦𝑗s, 𝑦𝑝s.

Remark 3.5. (Geometric origin of the pairing.) If 𝑘 is R or C and h is a Lie algebra g over 𝑘, then Autpgq

is a linear Lie group and its Lie algebra is Derpgq. Differential 𝑑𝑓id of function 𝑓 P 𝒪pAutpgqq at the unit
id of Autpgq is a linear functional on 𝑇idpAutpgqq – Derpgq, and therefore 𝑑𝑓id P Derpgq˚. Let ad𝑋 : g Ñ g,
ad𝑋 : 𝑍 ÞÑ r𝑋,𝑍s. Then ad𝑋 P Derpgq.

We prove that the pairing 𝑈pgq b𝒪pAutpgqq Ñ 𝑘 from Proposition 3.3, in the case when 𝑘 is R or C and
h is a Lie algebra g, agrees on subset gb𝒪pAutpgqq of its domain with the pairing x´,´y1 : gb𝒪pAutpgqq Ñ 𝑘

defined by
x𝑋, 𝑓y

1
“ 𝑑𝑓idpad𝑋q, for 𝑋 P g and 𝑓 P 𝒪pAutpgqq.
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First we check that indeed 𝑑p𝒢𝑖
𝑗qidpad𝑋𝑘q “ 𝐶𝑖

𝑘𝑗 . The exponential map exp maps a neighborhood of 0 in
Derpgq to a neighborhood of id in Autpgq. We have that

𝑑p𝒢𝑖
𝑗qidpad𝑋𝑘q “ pad𝑋𝑘qp𝒢𝑖

𝑗qpidq “ lim
𝑡Ñ0

𝑑

𝑑𝑡
𝒢𝑖

𝑗pexpp𝑡 ad𝑋𝑘qq

“ lim
𝑡Ñ0

𝑑

𝑑𝑡
𝒢𝑖

𝑗

˜

8
ÿ

𝑟“0

p𝑡 ad𝑋𝑘q𝑟

𝑟!

¸

“ lim
𝑡Ñ0

𝑑

𝑑𝑡

˜

8
ÿ

𝑟“0

p𝑡 ad𝑋𝑘q𝑟

𝑟!

¸𝑖

𝑗

“ lim
𝑡Ñ0

˜

8
ÿ

𝑟“1

𝑡𝑟´1pad𝑋𝑘q𝑟

p𝑟 ´ 1q!

¸𝑖

𝑗

“ pad𝑋𝑘q
𝑖
𝑗 “ 𝐶𝑖

𝑘𝑗 .

Similarly, one checks that 𝑑p𝒢𝑖
𝑗qidpad𝑋𝑘q “ ´𝐶𝑖

𝑘𝑗 , by using that expp𝑡 ad𝑋𝑘q´1 “ expp𝑡 adp´𝑋𝑘qq. By
linearity, we conclude that the pairings agree for all 𝑋 P g and generators 𝒢𝑖

𝑗 ,𝒢𝑖
𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u. Since the

pairing also has the property

x𝑋, 𝑓𝑔y
1

“ x𝑋 b 1 ` 1 b 𝑋, 𝑓 b 𝑔y
1, for 𝑋 P g and 𝑓, 𝑔 P 𝒪pAutpgqq,

we conclude that they agree for all 𝑋 P g and 𝑓 P 𝒪pAutpgqq.

3.3 Main theorem

Theorem 3.6. Let h be a left Leibniz 𝑘-algebra with vector space basis b “ p𝑥1, . . . , 𝑥𝑛q and structure
constants 𝐶𝑘

𝑖𝑗 determined from r𝑥𝑖, 𝑥𝑗s “
ř

𝑘 𝐶
𝑘
𝑖𝑗𝑥𝑘, 𝑖, 𝑗 P t1, . . . , 𝑛u. Let 𝒢𝑖

𝑗 ,𝒢𝑖
𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u be the

generators of the algebra 𝒪pAutphqq from Subsection 3.1. Denote by 𝑥̃ the image of 𝑥 P h in h𝐿𝑖𝑒. Then the
following holds.
(i) Hopf pairing 𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑘 from Proposition 3.3 induces a right Hopf action đ : 𝑈ph𝐿𝑖𝑒q b

𝒪pAutphqq Ñ 𝑈ph𝐿𝑖𝑒q by formula

𝑥̃ đ 𝑓 :“ x𝑥̃p1q, 𝑓y𝑥̃p2q, for 𝑥̃ P 𝑈ph𝐿𝑖𝑒q and 𝑓 P 𝒪pAutphqq, (11)

which further induces the structure of a smash product algebra 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q. This action and the
smash product do not depend on the choice of basis b.

(ii) There is a unique 𝑘-linear unital antimultiplicative map

𝜆 : 𝑈ph𝐿𝑖𝑒q Ñ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q

such that
𝜆p𝑥̃𝑗q “

ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖, for 𝑗 P t1, . . . , 𝑛u. (12)

Map 𝜆 does not depend on the choice of basis b.
(iii)Elements of Im𝜆 commute with elements of 17𝑈ph𝐿𝑖𝑒q in 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q.
(iv) Map 𝜆 is a left 𝒪pAutphqq-coaction on 𝑈ph𝐿𝑖𝑒q.
(v) p𝑈ph𝐿𝑖𝑒q, đ, 𝜆q is a braided commutative right-left Yetter–Drinfeld module algebra over 𝒪pAutphqq.

Proof. (i) Every Hopf pairing induces a right Hopf action in this way. By Proposition 3.3, the pairing, hence
also the action, does not depend on the choice of basis.

(ii) We prove that such 𝜆 exists. We first define auxiliary map 𝜆̃ as a linear map h𝑙 Ñ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q

such that 𝜆̃p𝑙𝑥𝑗 q “
ř

𝑖 𝒢𝑖
𝑗7𝑥̃𝑖 for 𝑗 P t1, . . . , 𝑛u, then expand it to 𝜆̃ : 𝑇 ph𝑙q Ñ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q by

antimultiplicativity and then we check that 𝜆̃p𝐼𝑙q “ t0u, where 𝐼𝑙 is the ideal in 𝑇 ph𝑙q generated by
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𝑙r𝑥,𝑦s ´ 𝑙𝑥 b 𝑙𝑦 ` 𝑙𝑦 b 𝑙𝑥, 𝑥, 𝑦 P h. We compute

𝜆̃p𝑙𝑥𝑖 b 𝑙𝑥𝑗 q “ 𝜆̃p𝑙𝑥𝑗 q ¨ 𝜆̃p𝑙𝑥𝑖 q “ p
ÿ

𝑘

𝒢𝑘
𝑗 7𝑥̃𝑘q ¨ p

ÿ

𝑚

𝒢𝑚
𝑖 7𝑥̃𝑚q “

ÿ

𝑘,𝑚,𝑝

𝒢𝑘
𝑗 𝒢𝑝

𝑖 p𝑥̃𝑘 đ 𝒢𝑚
𝑝 q𝑥̃𝑚

“
ÿ

𝑘,𝑚,𝑝

𝒢𝑘
𝑗 𝒢𝑝

𝑖 7p𝛿𝑚
𝑝 𝑥̃𝑘 ´ 𝐶𝑚

𝑘𝑝q𝑥̃𝑚 “
ÿ

𝑘,𝑚

𝒢𝑘
𝑗 𝒢𝑚

𝑖 7𝑥̃𝑘𝑥̃𝑚 ´
ÿ

𝑘,𝑚,𝑝

𝒢𝑘
𝑗 𝒢𝑝

𝑖 𝐶
𝑚
𝑘𝑝7𝑥̃𝑚

p8q
“

ÿ

𝑘,𝑚

𝒢𝑘
𝑗 𝒢𝑚

𝑖 7𝑥̃𝑘𝑥̃𝑚 ´
ÿ

𝑘,𝑚

𝒢𝑘
𝑚𝐶

𝑚
𝑗𝑖 7𝑥̃𝑘.

Analogously, 𝜆̃p𝑙𝑥𝑗 b 𝑙𝑥𝑖 q “
ř

𝑘,𝑚 𝒢𝑚
𝑖 𝒢𝑘

𝑗 7𝑥̃𝑚𝑥̃𝑘 ´
ř

𝑘,𝑚 𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚. After subtracting,

𝜆̃p𝑙𝑥𝑖 b 𝑙𝑥𝑗 ´ 𝑙𝑥𝑗 b 𝑙𝑥𝑖 q “
ÿ

𝑘,𝑚

𝒢𝑚
𝑖 𝒢𝑘

𝑗 7r𝑥̃𝑘, 𝑥̃𝑚s ´
ÿ

𝑘,𝑚

𝒢𝑘
𝑚𝐶

𝑚
𝑗𝑖 7𝑥̃𝑘 `

ÿ

𝑘,𝑚

𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚

“
ÿ

𝑘,𝑚

𝒢𝑚
𝑖 𝒢𝑘

𝑗 7 Čr𝑥𝑘, 𝑥𝑚s ´
ÿ

𝑘,𝑚

𝒢𝑘
𝑚𝐶

𝑚
𝑗𝑖 7𝑥̃𝑘 `

ÿ

𝑘,𝑚

𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚

“
ÿ

𝑘,𝑚

𝒢𝑚
𝑖 𝒢𝑘

𝑗 𝐶
𝑝
𝑘𝑚7𝑥̃𝑝 ´

ÿ

𝑘,𝑚

𝒢𝑘
𝑚𝐶

𝑚
𝑗𝑖 7𝑥̃𝑘 `

ÿ

𝑘,𝑚

𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚

“
ÿ

𝑚

𝐶𝑚
𝑗𝑖 𝒢𝑝

𝑚7𝑥̃𝑝 ´
ÿ

𝑘,𝑚

𝒢𝑘
𝑚𝐶

𝑚
𝑗𝑖 7𝑥̃𝑘 `

ÿ

𝑘,𝑚

𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚

“
ÿ

𝑘,𝑚

𝒢𝑚
𝑘 𝐶

𝑘
𝑖𝑗7𝑥̃𝑚.

On the other hand, 𝜆̃p𝑙r𝑥𝑖,𝑥𝑗 sq “ 𝜆̃p
ř

𝑝 𝐶
𝑝
𝑖𝑗 𝑙𝑥𝑝 q “

ř

𝑝,𝑚 𝐶𝑝
𝑖𝑗𝒢𝑚

𝑝 7𝑥̃𝑚. Equality 𝜆̃p𝑙𝑥𝑖 b𝑙𝑥𝑗 ´𝑙𝑥𝑗 b𝑙𝑥𝑖 q “ 𝜆̃p𝑙r𝑥𝑖,𝑥𝑗 sq

is now proven. Therefore, by quotienting the domain of 𝜆̃ by ideal 𝐼𝑙, we induce a well defined map
𝜆 : 𝑈ph𝐿𝑖𝑒q Ñ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q. Additionally, we note that clearly

𝜆p𝑣𝑧q “ 𝜆p𝑧q𝜆p𝑣q, for all 𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q. (13)

To see that 𝜆 “ 𝜆b defined by 𝜆bp𝑥̃𝑗q “
ř

𝑖 𝒢𝑖
b𝑗7𝑥̃𝑖 (12) does not depend on the basis b, we com-

pute 𝜆b1 p𝑥1
𝑗q “

ř

𝑠 𝒢𝑠
b1𝑗7𝑥1

𝑠 “
ř

𝑠,𝑖 𝒢𝑠
b1𝑗7𝑇 𝑖

𝑠 𝑥̃𝑖 “
ř

𝑖,𝑗,𝑟,𝑠 𝑇
𝑖
𝑙 𝑇

´1𝑙
𝑠𝒢𝑠

b1𝑟𝑇
𝑟
𝑗 7𝑥̃𝑖

p5q
“

ř

𝑖,𝑙,𝑚,𝑠 𝑇
𝑖
𝑙 𝒢𝑙

b𝑗7𝑥̃𝑖 “
ř

𝑠 𝑇
𝑖
𝑗𝜆bp𝑥̃𝑖q “ 𝜆bp

ř

𝑠 𝑇
𝑖
𝑗 𝑥̃𝑖q “ 𝜆bp r𝑥1

𝑗q.
(iii) First we check that 𝜆p𝑥̃𝑗q and 𝑥̃𝑘 commute for all 𝑗, 𝑘 P t1, . . . , 𝑛u.

𝑥̃𝑘 ¨ 𝜆p𝑥̃𝑗q “ 𝑥̃𝑘 ¨
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 “

ÿ

𝑖,𝑚

𝒢𝑚
𝑗 7p𝑥̃𝑘 đ 𝒢𝑖

𝑚q𝑥̃𝑖

“
ÿ

𝑖,𝑚

𝒢𝑚
𝑗 7p𝛿𝑖

𝑚𝑥̃𝑘 ` 𝐶𝑖
𝑚𝑘q𝑥̃𝑖 “

ÿ

𝑚

𝒢𝑚
𝑗 7p𝑥̃𝑘𝑥̃𝑚 ` r𝑥̃𝑚, 𝑥̃𝑘sq “

“
ÿ

𝑚

𝒢𝑚
𝑗 7𝑥̃𝑚𝑥̃𝑘 “ 𝜆p𝑥̃𝑗q ¨ 𝑥̃𝑘.

By using (13), it is easy to prove the claim inductively for all elements of 𝑈ph𝐿𝑖𝑒q,

𝑧 ¨ 𝜆p𝑣q “ 𝜆p𝑣q ¨ 𝑧, for all 𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q. (14)

(iv) Coaction axiom pΔ b idq ˝ 𝜆 “ pid b 𝜆q ˝ 𝜆 on generators 𝑥̃𝑗 , 𝑗 P t1, . . . , 𝑛u, is apparent from
definitions (9) and (12). Both sides of it evaluate to

ř

𝑘,𝑖 𝒢𝑘
𝑗 b 𝒢𝑖

𝑘7𝑥̃𝑖. It is now sufficient to show that, if the
coaction axiom is true for 𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q, then it is true for the product 𝑣𝑧 P 𝑈ph𝐿𝑖𝑒q. We compute

𝜆p𝑧𝑣q
p13q
“ 𝜆p𝑣q𝜆p𝑧q “

ÿ

𝑣r´1s7𝑣r0s ¨ 𝑧r´1s7𝑧r0s

p14q
“

ÿ

𝑣r´1s𝑧r´1s7𝑧r0s𝑣r0s, (15)

from which it follows that, because 𝑣 and 𝑧 are assumed to satisfy the coaction axiom identity,

ppid b 𝜆q ˝ 𝜆qp𝑣𝑧q “
ÿ

𝑣r´1s𝑧r´1s b 𝜆p𝑧r0s𝑣r0sq

“
ÿ

𝑣r´1s𝑧r´1s b 𝑣r0sr´1s𝑧r0sr´1s b 𝑧r0sr0s𝑣r0sr0s

“
ÿ

𝑣r´1sp1q𝑧r´1sp1q b 𝑣r´1sp2q𝑧r´1sp2q b 𝑧r0s𝑣r0s

“
ÿ

p𝑣r´1s𝑧r´1sqp1q b p𝑣r´1s𝑧r´1sqp2q b 𝑧r0s𝑣r0s
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and, on the other hand,

ppΔ b idq ˝ 𝜆qp𝑧𝑣q “ pΔ b idqp
ÿ

𝑣r´1s𝑧r´1s7𝑧r0s𝑣r0sq

“
ÿ

p𝑣r´1s𝑧r´1sqp1q b p𝑣r´1s𝑧r´1sqp2q b 𝑧r0s𝑣r0s.

Counitality of 𝜆 is checked first for generators, pp𝜖bidq˝𝜆qp𝑥̃𝑗q “
ř

𝑖 𝜖p𝒢𝑖
𝑗q𝑥̃𝑖 “ 𝑥̃𝑗 for every 𝑗 P t1, . . . , 𝑛u,

and then easily proven inductively by using formula (15).
(v) First, we prove the Yetter–Drinfeld property:

ÿ

𝑓p2q ¨ 𝜆p𝑣 đ 𝑓p1qq “ 𝜆p𝑣q ¨ 𝑓, for all 𝑣 P 𝑈ph𝐿𝑖𝑒q and 𝑓 P 𝒪pAutphqq.

It is 𝑘-linear both in 𝑣 and in 𝑓 , hence it is sufficient to show it for 𝑣 and 𝑓 being words in generators, by
induction on the length of a word. For 𝑣 “ 𝑥̃𝑘 and 𝑓 “ 𝒢𝑖

𝑗 ,
ÿ

𝑚

𝒢𝑚
𝑗 𝜆p𝑥̃𝑘 đ 𝒢𝑖

𝑚q “
ÿ

𝑚

𝒢𝑚
𝑗 𝜆p𝛿𝑖

𝑚𝑥̃𝑘 ` 𝐶𝑖
𝑘𝑚q “ 𝒢𝑖

𝑗𝜆p𝑥̃𝑘q `
ÿ

𝑚

𝐶𝑖
𝑘𝑚𝒢𝑚

𝑗 ,

𝜆p𝑥̃𝑘q ¨ 𝒢𝑖
𝑗 “

ÿ

𝑚

𝒢𝑚
𝑘 7𝑥̃𝑚 ¨ 𝒢𝑖

𝑗 “
ÿ

𝑚,𝑝

𝒢𝑚
𝑘 𝒢𝑖

𝑝7p𝑥̃𝑚 đ 𝒢𝑝
𝑗 q “

ÿ

𝑚,𝑝

𝒢𝑚
𝑘 𝒢𝑖

𝑝7p𝛿𝑝
𝑗 𝑥̃𝑚 ` 𝐶𝑝

𝑚𝑗q

“
ÿ

𝑚

𝒢𝑚
𝑘 𝒢𝑖

𝑗7𝑥̃𝑚 `
ÿ

𝑚,𝑝

𝒢𝑚
𝑘 𝒢𝑖

𝑝𝐶
𝑝
𝑚𝑗

“ 𝒢𝑖
𝑗𝜆p𝑥̃𝑘q `

ÿ

𝑚,𝑝

𝒢𝑖
𝑝𝐶

𝑝
𝑚𝑗𝒢𝑚

𝑘
p7q
“ 𝒢𝑖

𝑗𝜆p𝑥̃𝑘q `
ÿ

𝑚

𝐶𝑖
𝑘𝑚𝒢𝑚

𝑗 .

The Yetter–Drinfeld property for generators 𝑣 “ 𝑥̃𝑘 and 𝑓 “ 𝒢𝑖
𝑗 is proven analogously.

If the identity is true for some 𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q and any 𝑓 P 𝒪pAutphqq of the form 𝒢𝑖
𝑗 , then it also holds for

the product 𝑣𝑧 and all generators of 𝒪pAutphqq, because Δp𝒢𝑖
𝑗q “

ř

𝑚 𝒢𝑖
𝑚 b 𝒢𝑚

𝑗 and Δp𝐺̄𝑖
𝑗q “

ř

𝑚 𝒢𝑚
𝑗 b 𝒢𝑖

𝑚.
Indeed,

ÿ

𝑓p2q𝜆pp𝑣𝑧q đ 𝑓p1qq “
ÿ

𝑓p3q𝜆pp𝑣 đ 𝑓p1qqp𝑧 đ 𝑓p2qqq
p13q
“

ÿ

𝑓p3q𝜆p𝑧 đ 𝑓p2qq𝜆p𝑣 đ 𝑓p1qq

“
ÿ

𝜆p𝑧q ¨ 𝑓p2q𝜆p𝑣 đ 𝑓p1qq “ 𝜆p𝑧q𝜆p𝑣q ¨ 𝑓
p13q
“ 𝜆p𝑣𝑧q ¨ 𝑓.

Therefore, by induction, the identity is true for all 𝑣 P 𝑈ph𝐿𝑖𝑒q and 𝑓 being 𝒢𝑖
𝑗 or 𝒢𝑖

𝑗 .
If the identity holds for some 𝑓 and 𝑔 in 𝒪pAutphqq and all 𝑣 P 𝑈ph𝐿𝑖𝑒q, then it also holds for the

product 𝑓𝑔 P 𝒪pAutphqq and all 𝑣 P 𝑈ph𝐿𝑖𝑒q, by
ÿ

p𝑓𝑔qp2q𝜆p𝑣 đ p𝑓𝑔qp1qq “
ÿ ÿ

𝑓p2q𝑔p2q𝜆p𝑣 đ p𝑓p1q𝑔p1qqq

“
ÿ ÿ

𝑓p2q𝑔p2q𝜆pp𝑣 đ 𝑓p1qq đ 𝑔p1qq

“
ÿ ÿ

𝑓p2q𝜆p𝑣 đ 𝑓p1qq𝑔 “ 𝜆p𝑣q𝑓𝑔.

We conclude inductively that the Yetter–Drinfeld property holds.
Next, the comodule algebra property is actually proven in (15), by using (14).
Finally, let us prove the braided commutativity property:

𝑧 đ 𝜆p𝑣q “ 𝑣𝑧, for all 𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q.

First we check this on generators. For any two 𝑗, 𝑘 P t1, . . . , 𝑛u we have

𝑥̃𝑘 đ
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 “

ÿ

𝑖

p𝛿𝑖
𝑗 𝑥̃𝑘𝑥̃𝑖 ´ 𝐶𝑖

𝑘𝑗 𝑥̃𝑖q “ 𝑥̃𝑘𝑥̃𝑗 ´ r𝑥̃𝑘, 𝑥̃𝑗s “ 𝑥̃𝑗 𝑥̃𝑘.

Next, we use induction on the length of the word acted on by 𝜆p𝑥̃𝑗q on the right, for every 𝑥̃𝑗 , 𝑗 P t1, . . . , 𝑛u.
The step of induction is

p𝑣𝑧q đ
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 “

ÿ

𝑖,𝑚

p𝑣 đ 𝒢𝑚
𝑗 qp𝑧 đ 𝒢𝑖

𝑚q𝑥̃𝑖 “
ÿ

𝑖,𝑚

p𝑣 đ 𝒢𝑚
𝑗 q𝑥̃𝑚𝑧 “ 𝑥̃𝑗𝑣𝑧, @𝑣, 𝑧 P 𝑈ph𝐿𝑖𝑒q.
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At last, the step of induction on the length of the word on the right is

𝑤 đ 𝜆p𝑧𝑣q “ p𝑤 đ 𝜆p𝑣qq đ 𝜆p𝑧q “ p𝑣𝑤q đ 𝜆p𝑧q “ p𝑧𝑣q𝑤, @𝑤, 𝑧, 𝑣 P 𝑈ph𝐿𝑖𝑒q.

Theorem 3.7. Let h be a right Leibniz 𝑘-algebra with 𝑘-basis b “ p𝑦1, . . . , 𝑦𝑛q and structure constants 𝐶𝑘
𝑖𝑗

determined from r𝑦𝑖, 𝑦𝑗s “
ř

𝑘 𝐶
𝑘
𝑖𝑗𝑦𝑘, 𝑖, 𝑗 P t1, . . . , 𝑛u. Let 𝒢𝑖

𝑗 ,𝒢𝑖
𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑛u be the generators of the

algebra 𝒪pAutphqq from Subsection 3.1. Denote by 𝑦 the image of 𝑦 P h in h𝐿𝑖𝑒.
Then the Hopf pairing 𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑘 defined in Proposition 3.4 induces a right Hopf action

đ : 𝑈ph𝐿𝑖𝑒q b 𝒪pAutphqq Ñ 𝑈ph𝐿𝑖𝑒q by formula

𝑦 đ 𝑓 :“ x𝑦p1q, 𝑓y𝑦p2q, for 𝑦 P 𝑈ph𝐿𝑖𝑒q and 𝑓 P 𝒪pAutphqq,

which further induces the structure of a smash product algebra 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q.
Then there also exists a unique 𝑘-linear unital antimultiplicative map 𝜆 : 𝑈ph𝐿𝑖𝑒q Ñ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q

such that
𝜆p𝑦𝑗q “

ÿ

𝑖

𝒢𝑖
𝑗7𝑦𝑖, for 𝑗 P t1, . . . , 𝑛u.

This unique map 𝜆 is a left coaction.
Furthermore, p𝑈ph𝐿𝑖𝑒q, đ, 𝜆q is a braided commutative right-left Yetter–Drinfeld 𝒪pAutphqq-module

algebra. Maps đ and 𝜆 do not depend on the choice of basis b.

Proof. Analogous to the proof of Theorem 3.6.

4 Hopf algebroid from Yetter–Drinfeld module 𝑈ph𝐿𝑖𝑒q

Given an (associative) algebra 𝐴 (’base algebra’), a left (associative) 𝐴-bialgebroid is given by a tuple
p𝒦, 𝜇, 𝛼, 𝛽,Δ, 𝜖q where p𝒦, 𝜇q is an algebra (’total algebra’), 𝛼 : 𝐴 Ñ 𝒦 and 𝛽 : 𝐴op Ñ 𝒦 are algebra maps
called source and target maps respectively which satisfy 𝛼p𝑎q𝛽p𝑏q “ 𝛽p𝑏q𝛼p𝑎q for all 𝑎, 𝑏 P 𝐴 hence equipping
𝒦 with a structure of 𝐴-bimodule via 𝑎.𝑘.𝑏 “ 𝛼p𝑎q𝛽p𝑏q𝑘 for 𝑎, 𝑏 P 𝐴, ℎ P 𝒦 (and moreover of an 𝐴b𝐴op-ring).
Comultiplication Δ: 𝒦 Ñ 𝒦 b𝐴 𝒦 and counit 𝜖 : 𝒦 Ñ 𝐴 are required to be 𝐴-bimodule maps which make
𝐴𝒦𝐴 into a comonoid in the category of 𝐴-bimodules. Nontrivial compatibilities of the comonoid structure
with 𝐴 b 𝐴op-ring structure on 𝒦 are required [1, 2, 5] which radically simplify if the base algebra 𝐴 is
commutative. A right 𝐴-bialgebroid is structure p𝒦, 𝜇, 𝛼, 𝛽,Δ, 𝜖q [1, 5] such that p𝒦, 𝜇, 𝛽, 𝛼,Δop, 𝜖q is a
left 𝐴op-bialgebroid. A Hopf 𝐴-algebroid [1, 5] should be an 𝐴-bialgebroid with an antihomomorphism
of algebras 𝜏 : 𝒦 Ñ 𝒦 called antipode and with axioms generalizing that of antipode of a Hopf algebra.
Commutative Hopf algebroids are a classical subject studied since 1960-s and appear as function algebras
on groupoids. Several nonequivalent definitions of Hopf algebroids over a noncommutative base algebra
appeared in 1990-s, including Lu–Hopf algebroids [5] which lack symmetries and involve a somewhat ad hoc
section map. We consider symmetric Hopf algebroids [1] where 𝒦 has a structure of a left 𝐴𝐿-bialgebroid
p𝒦, 𝜇, 𝛼𝐿, 𝛽𝐿,Δ𝐿, 𝜖𝐿q and a right 𝐴𝑅-bialgebroid p𝒦, 𝜇, 𝛼𝑅, 𝛽𝑅,Δ𝑅, 𝜖𝑅q with given isomorphism of algebras
𝐴op

𝐿
–
Ñ 𝐴𝑅 and antipode 𝜏 : 𝒦 Ñ 𝒦 satisfying a list of axioms [1, 8].
Given any Hopf algebra 𝐻 with a bijective antipode and a braided commutative Yetter–Drinfeld

module algebra 𝐴 over 𝐻, smash product 𝐻7𝐴 is a symmetric Hopf algebroid with 𝐴𝐿 “ 𝐴op, 𝐴𝑅 “ 𝐴

by [1, 11], adapting constructions from [2, 5]. This can be applied in the case 𝐻 “ 𝒪pAutphqq, 𝐴 “ 𝑈ph𝐿𝑖𝑒q

from Section 3. Hopf algebroid 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q is, in the case when h is a Lie algebra, related to more
geometric examples in [15] and to the completed Hopf algebroid in [8].
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4.1 Formulas for the Hopf algebroid 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q

Here we write general formulas for the Hopf algebroid 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q for a left Leibniz algebra h

and specify them also on generators. We use formulas for the right bialgebroid given in Proposition 4.1
of [11], and formulas for the left bialgebroid written in terms of the above smash product and formula
for the antipode given in Corollary 4.1 of [11]. For the latter, one uses certain natural antiisomorphism
𝜑 : 𝑈ph𝐿𝑖𝑒qop Ñ 𝑈ph𝐿𝑖𝑒q or 𝜃 : 𝑈ph𝐿𝑖𝑒q Ñ 𝑈ph𝐿𝑖𝑒qop, as explained in [11], such that in the resulting Hopf
algebroid 𝜑 “ 𝜖𝑅 ˝ 𝛼𝐿 and 𝜃 “ 𝜖𝐿 ˝ 𝛼𝑅. All above formulas are displayed in short in the table below
Corollary 4.1 in [11]. Formulas for a right Leibniz algebra can be derived similarly.

After that, we specify these formulas in the case of Lie algebra noncommutative phase space of [8].

4.1.1 For a left Leibniz algebra

For a left Leibniz algebra h, in the notation of [11] 𝐻 “ 𝒪pAutphqq, 𝑅 “ 𝑈ph𝐿𝑖𝑒q and antiisomorphism
𝜑 : 𝑈ph𝐿𝑖𝑒qop Ñ 𝑈ph𝐿𝑖𝑒q maps generators 𝑥̃op

1𝜑, . . . , 𝑥̃
op
𝑛𝜑 of 𝑈ph𝐿𝑖𝑒qop by 𝑥̃op

𝑗𝜑 ÞÑ 𝑥̃𝑗 , 𝑗 P t1, . . . , 𝑛u, to
generators 𝑥̃1, . . . , 𝑥̃𝑛 of 𝑈ph𝐿𝑖𝑒q. Since p𝑈ph𝐿𝑖𝑒q, đ, 𝜆q is a braided commutative right-left Yetter–Drinfeld
module algebra over 𝒪pAutphqq by Theorem 3.6, by Corollary 4.1 part (2) in [11], 𝐻7𝑅 “ 𝒪pAutphqq7𝑈ph𝐿𝑖𝑒q

is a symmetric Hopf algebroid over 𝑈ph𝐿𝑖𝑒qop, 𝑈ph𝐿𝑖𝑒q: it is (i) a right bialgebroid over 𝑈ph𝐿𝑖𝑒q with structure
maps

𝛼𝑅 : 𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛼𝑅p𝑥̃q “ 1𝐻7𝑥̃,

𝛽𝑅 : 𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛽𝑅p𝑥̃q “ 𝜆p𝑥̃q,

𝛽𝑅p𝑥̃𝑗q “
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖,

Δ𝑅 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒q 𝐻7𝑈ph𝐿𝑖𝑒q, Δ𝑅p𝑓7𝑥̃q “ 𝑓p1q71𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒q 𝑓p2q7𝑥̃,

𝜖𝑅 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝑈ph𝐿𝑖𝑒q, 𝜖𝑅p𝑓7𝑥̃q “ 𝜖p𝑓q𝑥̃,

(ii) a left bialgebroid over 𝑈ph𝐿𝑖𝑒qop with structure maps

𝛼𝐿 : 𝑈ph𝐿𝑖𝑒q
op

Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛼𝐿p𝑥̃op
q “ 𝜆p𝜑p𝑥̃op

qq “ 𝜑p𝑥̃op
qr´1s7𝜑p𝑥̃op

qr0s,

𝛼𝐿p𝑥̃op
𝑗𝜑q “ 𝜆p𝑥̃𝑗q “

ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖,

𝛽𝐿 : 𝑈ph𝐿𝑖𝑒q
op

Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛽𝐿p𝑥̃op
q “ 𝜑p𝑥̃op

qr0s đ 𝑆´1
p𝜑p𝑥̃op

qr´1sq,

𝛽𝐿p𝑥̃op
𝑗𝜑q “

ÿ

𝑖

𝑥̃𝑖 đ 𝒢𝑖
𝑗 “ 1𝐻7𝑥̃𝑗 `

ÿ

𝑖

𝐶𝑖
𝑖𝑗71𝑈ph𝐿𝑖𝑒q,

Δ𝐿 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒qop 𝐻7𝑈ph𝐿𝑖𝑒q, Δ𝐿p𝑓7𝑥̃q “ 𝑓p1q71𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒qop 𝑓p2q7𝑥̃,

𝜖𝐿 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝑈ph𝐿𝑖𝑒q
op, 𝜖𝐿p𝑓7𝑥̃q “ 𝜑´1

p𝑥̃r0s đ 𝑆2
p𝑥̃r´1sq𝑆𝑓q,

𝜖𝐿p𝑓7𝑥̃𝑗q “ 𝜑´1
p
ÿ

𝑖

𝑥̃𝑖 đ 𝒢𝑖
𝑗𝑆𝑓q

“ 𝜖p𝑓q𝑥̃op
𝑗𝜑 ´

`

x𝑥̃𝑗 , 𝑓y ` 𝜖p𝑓q
ÿ

𝑖

𝐶𝑖
𝑖𝑗

˘

1𝑈ph𝐿𝑖𝑒qop ,

𝜖𝐿p1𝐻7𝑥̃𝑗q “ 𝑥̃op
𝑗𝜑 ´

ÿ

𝑖

𝐶𝑖
𝑖𝑗1𝑈ph𝐿𝑖𝑒qop ,

with (iii) antipode

𝜏 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝜏p𝑓7𝑥̃q “ 𝑥̃r0s ¨ 𝑆2
p𝑥̃r´1sq𝑆𝑓,

𝜏p𝑓7𝑥̃𝑗q “
ÿ

𝑖

𝑥̃𝑖 ¨ 𝒢𝑖
𝑗𝑆𝑓 “

ÿ

𝑖

𝒢𝑖
𝑗𝑆p𝑓p2qq7p𝑥̃𝑖 đ 𝑆p𝑓p1qqq ´

ÿ

𝑖

𝐶𝑖
𝑖𝑗𝑆𝑓71𝑈ph𝐿𝑖𝑒q,

𝜏p1𝐻7𝑥̃𝑗q “
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 ´

ÿ

𝑖

𝐶𝑖
𝑖𝑗71𝑈ph𝐿𝑖𝑒q,
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where in formulas 𝑥̃ P 𝑈ph𝐿𝑖𝑒q, 𝑥̃op P 𝑈ph𝐿𝑖𝑒qop, 𝑓 P 𝐻, and 𝑗 P t1, . . . , 𝑛u as index of generators 𝑥̃𝑗 of
𝑈ph𝐿𝑖𝑒q.

Alternatively, formulas for the left bialgebroid can be written in terms of the antiisomorphism
𝜃 : 𝑈ph𝐿𝑖𝑒q Ñ 𝑈ph𝐿𝑖𝑒qop. Denote by 𝑥̃op

1𝜃 , . . . , 𝑥̃
op
𝑛𝜃 the generators of 𝑈ph𝐿𝑖𝑒qop defined by 𝑥̃op

𝑗𝜃 :“ 𝜃p𝑥̃𝑗q,
𝑗 P t1, . . . , 𝑛u. Note that the generators 𝑥̃op

𝑗𝜑 are generally different from the generators 𝑥̃op
𝑗𝜃 . The formulas

for the structure maps of (ii’) the left bialgebroid over 𝑈ph𝐿𝑖𝑒qop written by using 𝜃 are:

𝛼𝐿 : 𝑈ph𝐿𝑖𝑒q
op

Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛼𝐿p𝑥̃op
q “ 𝜃´1

p𝑥̃op
qr0s ¨ 𝑆2

p𝜃´1
p𝑥̃op

qr´1sq,

𝛼𝐿p𝑥̃op
𝑗𝜃 q “

ÿ

𝑖

𝑥𝑖 ¨ 𝒢𝑖
𝑗 “

ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 ´

ÿ

𝑖,𝑘

𝐶𝑖
𝑖𝑘𝒢𝑘

𝑗 71𝑈ph𝐿𝑖𝑒q

“
ÿ

𝑖

𝒢𝑖
𝑗7𝑥̃𝑖 ´

ÿ

𝑖

𝐶𝑖
𝑖𝑗71𝑈ph𝐿𝑖𝑒q,

𝛽𝐿 : 𝑈ph𝐿𝑖𝑒q
op

Ñ 𝐻7𝑈ph𝐿𝑖𝑒q, 𝛽𝐿p𝑥̃op
q “ 1𝐻7𝜃´1

p𝑥̃op
q,

𝛽𝐿p𝑥̃op
𝑗𝜃 q “ 1𝐻7𝑥̃𝑗 ,

Δ𝐿 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝐻7𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒qop 𝐻7𝑈ph𝐿𝑖𝑒q, Δ𝐿p𝑓7𝑥̃q “ 𝑓p1q71𝑈ph𝐿𝑖𝑒q b𝑈ph𝐿𝑖𝑒qop 𝑓p2q7𝑥̃,

𝜖𝐿 : 𝐻7𝑈ph𝐿𝑖𝑒q Ñ 𝑈ph𝐿𝑖𝑒q
op, 𝜖𝐿p𝑓7𝑥̃q “ 𝜃p𝑥̃ đ 𝑆´1

p𝑓qq,

𝜖𝐿p1𝐻7𝑥̃𝑗q “ 𝑥̃op
𝑗𝜃 ,

𝜖𝐿p𝑓7𝑥̃𝑗q “ 𝜖p𝑓q𝑥̃op
𝑗𝜃 ´ x𝑥̃𝑗 , 𝑓y1𝑈ph𝐿𝑖𝑒qop .

4.1.2 Lie algebra type noncommutative phase space

For convenience, we here write formulas for the structure maps of the Hopf algebroid 𝒪pAutpg𝑅qq7𝑈pg𝑅q over
𝑈ph𝐿q, 𝑈pg𝑅q that is inside an ad hoc completed version 𝑆pg˚q7𝑈pg𝑅q – 𝑈pg𝐿q7𝑆pg˚q of a Hopf algebroid
that is the Lie algebra type noncommutative phase space in [8].

In the setup of [8], h “ g𝑅, 𝐻 “ 𝒪pAutpg𝑅qq, 𝑅 “ 𝑈pg𝑅q, 𝑦1, . . . , 𝑦𝑛 are generators of g𝑅, 𝑥̂1, . . . , 𝑥̂𝑛 are
the corresponding generators of g𝐿, and 𝜃 : 𝑈pg𝑅q Ñ 𝑈pg𝐿q is the antiisomorphism 𝜃p𝑦𝑗q “ 𝑥̂𝑗 , 𝑗 P t1, . . . , 𝑛u.
We use the formulas above by writing 𝑦 instead of 𝑥̃, 𝑦𝑗 instead of 𝑥̃𝑗 , 𝑥̂ instead of 𝑥̃op, 𝑥̂𝑗 instead of 𝑥̃op

𝑗𝜃 ,
𝒪 instead of 𝒢 and 𝒪̄ instead of 𝒢, ´𝐶𝑖

𝑗𝑘 instead of 𝐶𝑖
𝑗𝑘, 𝑧𝑗 instead of 𝑥̃op

𝑗𝜑, and 𝒮 instead of 𝜏 .
Now 𝐻7𝑅 “ 𝒪pAutpg𝑅qq7𝑈pg𝑅q is a Hopf algebroid over 𝑈pg𝐿q, 𝑈pg𝑅q: it is (i) a right bialgebroid over

𝑈pg𝑅q with structure maps

𝛼𝑅 : 𝑈pg𝑅
q Ñ 𝐻7𝑈pg𝑅

q, 𝛼𝑅p𝑦q “ 1𝐻7𝑦,

𝛽𝑅 : 𝑈pg𝑅
q Ñ 𝐻7𝑈pg𝑅

q, 𝛽𝑅p𝑦q “ 𝜆p𝑦q “ 𝑦r´1s7𝑦r0s,

𝛽𝑅p𝑦𝑗q “
ÿ

𝑖

𝒪𝑖
𝑗7𝑦𝑖,

Δ𝑅 : 𝐻7𝑈pg𝑅
q Ñ 𝐻7𝑈pg𝑅

q b𝑈pg𝑅q 𝐻7𝑈pg𝑅
q, Δ𝑅p𝑓7𝑦q “ 𝑓p1q71𝑈pg𝑅q b𝑈pg𝑅q 𝑓p2q7𝑦,

𝜖𝑅 : 𝐻7𝑈pg𝑅
q Ñ 𝑈pg𝑅

q, 𝜖𝑅p𝑓7𝑦q “ 𝜖p𝑓q𝑦,

(ii) a left bialgebroid over 𝑈ph𝐿𝑖𝑒qop with structure maps

𝛼𝐿 : 𝑈pg𝐿
q Ñ 𝐻7𝑈pg𝑅

q, 𝛼𝐿p𝑥̂q “ 𝜃´1
p𝑥̂qr0s ¨ 𝑆2

p𝜃´1
p𝑥̂qr´1sq,

𝛼𝐿p𝑥̂𝑗q “
ÿ

𝑖

𝑦𝑖 ¨ 𝒪𝑖
𝑗 “

ÿ

𝑖

𝒪𝑖
𝑗7𝑦𝑖 `

ÿ

𝑖

𝐶𝑖
𝑖𝑗 ,

𝛼𝐿p𝑧𝑗q “ 𝜆p𝑦𝑗q “
ÿ

𝑖

𝒪𝑖
𝑗7𝑦𝑖,

𝛽𝐿 : 𝑈pg𝐿
q Ñ 𝐻7𝑈pg𝑅

q, 𝛽𝐿p𝑥̂q “ 1𝐻7𝜃´1
p𝑥̂q,

𝛽𝐿p𝑥̂𝑗q “ 𝑦𝑗 ,

𝛽𝐿p𝑧𝑗q “
ÿ

𝑖

𝑦𝑗 đ 𝒪̄𝑖
𝑗 “ 𝑦𝑗 ´

ÿ

𝑖

𝐶𝑖
𝑖𝑗 ,
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Δ𝐿 : 𝐻7𝑈pg𝑅
q Ñ 𝐻7𝑈pg𝑅

q b𝑈pg𝐿q 𝐻7𝑈pg𝑅
q, Δ𝐿p𝑓7𝑦q “ 𝑓p1q71𝑈pg𝑅q b𝑈pg𝐿q 𝑓p2q7𝑦,

𝜖𝐿 : 𝐻7𝑈pg𝑅
q Ñ 𝑈pg𝐿

q, 𝜖𝐿p𝑓7𝑦q “ 𝜃p𝑦 đ 𝑆´1
p𝑓qq,

𝜖𝐿p1𝐻7𝑦𝑗q “ 𝑥̂𝑗 ,

𝜖𝐿p𝑓7𝑦𝑗q “ 𝜖p𝑓q𝑥̂𝑗 ´ x𝑦𝑗 , 𝑓y,

with (iii) antipode

𝒮 : 𝐻7𝑈pg𝑅
q Ñ 𝐻7𝑈pg𝑅

q, 𝒮p𝑓7𝑦q “ 𝑦r0s ¨ 𝑆2
p𝑦r´1sq𝑆𝑓,

𝒮p𝑓7𝑦𝑗q “
ÿ

𝑖

𝑦𝑖 ¨ 𝒪𝑖
𝑗𝑆𝑓 “

ÿ

𝑖

𝒪𝑖
𝑗𝑆p𝑓p2qq7p𝑦𝑖 đ 𝑆p𝑓p1qqq `

ÿ

𝑖

𝐶𝑖
𝑖𝑗𝑆𝑓71𝑈pg𝑅q,

𝒮p1𝐻7𝑦𝑗q “
ÿ

𝑖

𝑦𝑖 ¨ 𝒪𝑖
𝑗 “ 𝛼𝐿p𝑥̂𝑗q “

ÿ

𝑖

𝒪𝑖
𝑗7𝑦𝑖 `

ÿ

𝑖

𝐶𝑖
𝑖𝑗 “ 𝛼𝐿p𝑧𝑗q `

ÿ

𝑖

𝐶𝑖
𝑖𝑗 ,

𝒮p𝛼𝐿p𝑥̂𝑗qq “ 𝜏p
ÿ

𝑖

𝑦𝑖 ¨ 𝒪𝑖
𝑗q “

ÿ

𝑘,𝑖

𝒪̄𝑖
𝑗𝒪𝑘

𝑖 7𝑦𝑘 `
ÿ

𝑘,𝑖

𝒪̄𝑖
𝑗𝐶

𝑘
𝑘𝑖 “ 𝑦𝑗 `

ÿ

𝑖

𝐶𝑖
𝑖𝑗

𝒮p𝛼𝐿p𝑧𝑗qq “ 𝜏p
ÿ

𝑖

𝒪𝑖
𝑗7𝑦𝑖q “

ÿ

𝑖,𝑘

𝑦𝑘 ¨ 𝒪𝑘
𝑖 ¨ 𝒪̄𝑖

𝑗 “ 𝑦𝑗 ,

where in formulas 𝑦 P 𝑈pg𝑅q, 𝑥̂ P 𝑈pg𝐿q, 𝑓 P 𝐻, and 𝑗 P t1, . . . , 𝑛u.

Remark 4.1. The second formula in (52) and the first formula in (53) in [8] have a mistake in sign: the
minus sign should be replaced by a plus sign, and vice versa. The correct formulas are

𝒮2
p𝑦𝜇q “ 𝒮p𝑥̂𝜇q “ 𝑦𝜇 ´ 𝐶𝜆

𝜇𝜆, 𝒮´2
p𝑥̂𝜇q “ 𝒮´1

p𝑦𝜇q “ 𝑥̂𝜇 ` 𝐶𝜆
𝜇𝜆, (16)

𝒮2
p𝑥̂𝜇q “ 𝑥̂𝜇 ´ 𝐶𝜆

𝜇𝜆, 𝒮´2
p𝑦𝜇q “ 𝑦𝜇 ` 𝐶𝜆

𝜇𝜆, (17)

since the antipode 𝒮 maps 𝑧𝜇 “ 𝑥̂𝜇 ` 𝐶𝜆
𝜇𝜆 ÞÑ 𝑦𝜇 ÞÑ 𝑥𝜇. Within this remark, summation over repeated

indices is understood.
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