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Abstract. Consider any representation φ of a finite-dimensional Lie algebra g

by derivations of the completed symmetric algebra Ŝ(g∗) of its dual. Consider

the tensor product of Ŝ(g∗) and the exterior algebra Λ(g). We show that the

representation φ extends canonically to the representation φ̃ of that tensor

product algebra. We construct an exterior derivative on that algebra, giving
rise to a twisted version of the exterior differential calculus with the universal

enveloping algebra in the role of the coordinate algebra. In this twisted version,

the commutators between the noncommutative differentials and coordinates
are formal power series in partial derivatives. The square of the corresponding

exterior derivative is zero like in the classical case, but the graded Leibniz rule
is deformed.
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1. Preliminaries and basic notation

1.1. Viewing the universal enveloping algebras of Lie algebras as noncommutative
deformations of symmetric algebras in our earlier article with S. Meljanac [6] we
have also deformed the (completed) Weyl algebra of differential operators, found
deformed analogues of partial derivatives, and studied the deformations of Leibniz
rules, all parametrized by certain datum which comes in many disguises as “or-
derings”, “representations by (co)derivations”, “realizations by vector fields” and
“coalgebra isomorphisms between S(g) and U(g)”(cf. also [1, 9] and [4], Chap.
10). Some noncommutative deformations of this kind are interesting for physical
applications, for example the κ-deformed Minkowski space [1, 10]. Physical picture
should eventually include full-fledged differential geometry on such spaces, and field
theories on them; in particular the gauge theories based on connections on noncom-
mutative fiber bundles. Our main motivation is to perform some early steps on the
mathematical side of this complex programme.

Key words and phrases. universal enveloping algebra, exterior calculus, exterior derivative,
deformed Leibniz rule, star product, Weyl algebra.
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1.2. In the present article, I will extend this picture to consistently include the
exterior calculus in a canonical way, given the datum mentioned above. After the
appearance of the first arXiv version of this article, more general non-canonical
approaches to a noncommutative differential calculus were found for some special
Lie algebras in [5]. We find it remarkable that our canonical extension exists, and
that it stems from the unique extension of the smash product structure between
the universal enveloping algebra and the space of so-called deformed derivatives to
a bigger smash product algebra which includes also the exterior algebra Λ(g). This
new observation is the main reason for writing this paper, with a hope that this
exterior differential calculus will enable a variant of differential geometry where the
base space is represented by the (spectrum of) the enveloping algebra U(g).

1.3. (Universal enveloping algebras as Hopf algebras.) We work over a fixed field
k of characteristic 0. The unadorned tensor product ⊗ = ⊗k is over k. Taking a
universal enveloping algebra is a functor from Lie to associative k-algebras; hence
for any Lie algebra g, the Lie algebra map g→ g⊕g, given by x 7→ x⊕x, induces an
algebra map ∆ : U(g)→ U(g⊕ g) ∼= U(g)⊗U(g), the terminal map g 7→ 0 induces
the map ε : U(k)→ U(0) ∼= k, and the antihomomorphism g→ g, x 7→ −x induces
an homomorphism γ : U(g)→ U(g)op. U(g) is a Hopf algebra with comultiplication
∆, counit ε and antipode γ ([2, 8, 4]). We assume that the reader is familiar with
the Sweedler notation [8] ∆(h) =

∑
i h(1)i ⊗ h(2)i =

∑
h(1) ⊗ h(2), with or without

an explicit summation index i.

1.4. (Notation on generators, duals; Weyl algebras.) From now on, we fix an n-
dimensional Lie k-algebra g with k-basis x̂1, . . . , x̂n. The basis elements are iden-
tified with the generators of the universal enveloping algebra U(g). We introduce
the structure constants Csij defined via commutation relations [x̂i, x̂j ] = Csij x̂s.

To distinguish the canonical copy of g embedded in the symmetric algebra S(g)
from the copy in U(g), we denote the corresponding basis x1, . . . , xn; this emphasize
that xi-s commute in S(g), while tha generators with hat, x̂i-s in U(g), do not. The
dual basis of g∗ is denoted by ∂1, . . . , ∂n.

Due antiisomorphism between the geometric picture with vector fields around
unit element of a Lie group and the algebraic picture promoted here, it is natural,
following [7], to introduce Weyl algebra An,k in (unusual) contravariant notation as
the free associative k-algebra generated by symbols xi, ∂

j whre i, j−1, . . . , n modulo
the ideal generated by elements ∂i∂j−∂j∂i, xixj−xjxi and ∂ixj−xj∂i−δij where
δ is the Kronecker symbol. Given a multiindex I = (i1, . . . , in) ∈ Nn

0 , denote

xI := xi11 · · ·xikn , ∂I := (∂1)i1 · · · (∂n)in and |I| :=
∑n
k=1 ik. The elements of the

form xI∂
J where I, J run over all multiindices form a basis of An,k and there is

an increasing filtration on An,k ([3]) by the degree of differential operator which is,
for an element D =

∑
I,J aI,JxI∂

J ∈ An,k, the maximal k ∈ N0 such that there

is J with |J | = k and aI,J 6= 0. Completion with respect to this filtration is a

topological k-algebra denoted Ân,k.

1.5. If A is an associative k-algebra and H a Hopf algebra, then an action . : H ⊗
A → A, or the equivalent representation ρ : H → Endk(A), is a left Hopf action
(synonym: (A, .) is a left HopfH-module algebra [8]) if h.(a·b) =

∑
h(1).a)(h(2).b)

(equivalently, ρ(h)(a · b) =
∑
ρ(h(1))(a) · ρ(h(2))(b)) and h . 1 = ε(h)1 for all

h ∈ H, a, b ∈ A. Similarly, one defines right Hopf actions. Given a left Hopf
action ρ : H → Endk(A), the corresponding smash product algebra A]ρH is an
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associative algebra with underlying vector space A⊗H and multiplication given by
the unique linear extension of the formula

(a]g)(b]h) =
∑

aρ(g(1))(b)]g(2)h, a, b ∈ A, g, h ∈ G,

where a]h ∈ A]ρH denotes a ⊗ h within the smash product. Similarly, for a right
Hopf action σ : H → Endop

k (A), there is a smash product algebra H]σA with
multiplication

(g]a)(h]b) =
∑

gh(1)]σ(h(2))(a)b.

Sometimes, it is useful to present H]σA by generators and relations. There are
inclusions of algebras H ↪→ H]σA←↩ A given by H 3 h 7→ h]1A and A 3 a 7→ 1H]a;
their images generateH]σA. This means thatH]σA is a quotient of the free product
H∗A (the coproduct in the category of associative algebras). It is not difficult to see
that the only additional relations are the commutation relations between elements
in A and elements in H. These may be read from the multiplication rule. Thus we
quotient the free product H ∗A by the elements of the form

ah−
∑

h(1)σ(h(2))(a), a ∈ A, h ∈ H.

In the case of a left Hopf action ρ, the relations are ha−
∑
ρ(h(1))(a)h(2).

1.6. A choice of basis x1, . . . , xn in an n-dimensional k-vector space V (e.g. V = g)
induces a manifest isomorphism S(V ) ∼= k[x1, . . . , xn] and of its dual S(V )∗ ∼=
Ŝ(V ∗) to the completed power ring k[[∂1, . . . , ∂n]].

The symmetric algebra on the dual S(V ∗) has a completion (by the filtration by

the degree of polynomial) Ŝ(V ∗). Algebra Ŝ(V ) is isomorphic as a vector space to
the linear (algebraic) dual (S(V ))∗: the nondegenerate pairing inducing this iso-
morphism is given by 〈xI , ∂J〉 = |I|!δJI . In the interpretation of formal power series
in partial derivatives as representing a formal differential operator of infinite order,
the duality pairing between Ŝ(V ∗) and S(V ) is the evaluation of the differential
operator at 0.

The symmetric algebra S(V ) is a Hopf algebra (even if V is not finite dimen-
sional) in a unique way such that ∆(v) = 1⊗v+v⊗1 for all v ∈ V (equivalently, V
may be given the structure of an Abelian Lie algebra a and the canonical algebra
isomorphism S(V ) ∼= U(a) transports the same coalgebra structure).

1.7. LetA be an associative (unital) k-algebra. We denote by Der(A) ⊂ Homk(A,A)
the space of k-linear derivations A → A. It is a Lie k-algebra with respect to the
usual commutator. Denote the algebra of k-endomorphisms of a k-vector space V
by Endk(V ). It is straightfoward to check that any homomorphism of Lie algebra
φ : g → Der(A), has a unique extension to a left Hopf action U(g) → End(A).
Similarly, any antihomomorphism g → Der(A) has a unique extension to a right
Hopf action U(g)→ Endop(A).

1.8. If a is finite dimensional Abelian Lie algebra with basis x1, . . . , xn, there is a Lie
representation δ : a → Der(S(a∗)) (and the completed variant δ : a → Der Ŝ(a∗))
given on generators ∂1, . . . , ∂n of S(a) by δ(a)(∂i) = −〈a, ∂i〉 and in particular

δ(xi)(∂
j) = −δji . If V is the underlying vector space of a, this induces a right Hopf

action δ ◦ γ : S(V ) → Endop(S(V ∗)), a completed variant S(V ) → Endop(Ŝ(V ∗))

and smash product algebras S(V )]δ◦γS(V ∗) ↪→ S(V )]δ◦γ Ŝ(V ∗). The correspon-
dence xi 7→ xi, ∂

j 7→ ∂j extends to an isomorphism between the smash product
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algebra and the Weyl algebra An,k from 1.4 (the same holds for the completions).
An alternative viewpoint are the symplectic Weyl algebras, where instead of the
pairing, where the basic datum is a symplectic form on a module over a commuta-
tive ring (V ∗ ⊕ V is the module in our case), may be found in [4], Chap. 8.

1.9. ([2]) All derivations of formal (commutative) power series rings, and of Ŝ(g∗) in
particular, are continuous in formal topology. Consider a k-derivation P and a for-
mal power series D = D(∂1, . . . , ∂n). Then the chain rule P (D) =

∑n
r=1

∂D
∂(∂r)P (∂r)

holds. The partial derivatives of D are defined algebraically, in the sense of for-
mal power series. In particular, the elements P (∂r) for r = 1, . . . , n determine the
derivation P .

1.10. If φ : g→ Der(Ŝ(g∗)) is a Lie algebra homomorphism, then φ(x̂i)φ(x̂j)(∂
k)−

φ(x̂j)φ(x̂i)(∂
k) = φ([x̂i, x̂j ]) in particular, hence the matrix

φ = (φji ) := (φ(−x̂i)(∂j))

with entries in Ŝ(g∗) satisfies the system of formal differential equations

(1) φlj
∂

∂(∂l)
(φki )− φli

∂

∂(∂l)
(φkj ) = Csijφ

k
s , i, j, k ∈ {1, . . . , n}

Conversely, by linearity, this system is sufficient for φ to be a Lie homomorphism.
Therefore, homomorphisms φ : g → Der(Ŝ(g∗)), left Hopf actions φ : U(g) →
Der(Ŝ(g∗)) and matrices (φij) satisfying (1) are in 1-1 correspondence. Moreover,
φ ◦ γ is a right Hopf action. Recall that γ(x) = −x for x ∈ g, hence (φ ◦ γ)(x) =
φ(−x) and φij = (φ ◦ γ)(x̂i)(∂

j).

1.11. From now on, we assume in addition that the matrix φ is invertible. Consider
the projection Ŝ(g∗) → Ŝ(g∗)/ ∪n>0 S

n(g∗) ∼= k, sometimes interpreted as the
’evaluation at 0 map’ (or the counit for the canonical structure of Hopf algebra on
the symmetric algebra). If the image of φij under this projection is the Kronecker

δij , we say that φ is close to the unit matrix and symbolically write φji = δji +O(∂).
In the remainder of the paper, we assume that φ is invertible and close to the unit
matrix. Given φ, these conditions on φ do not depend on the choice of basis of g
used in defining φ, hence they are conditions on φ only.

1.12. The left Hopf action φ : U(g)→ End(Ŝ(g∗)) and the right Hopf action φ ◦ γ
induce the isomorphic smash product algebras Ŝ(g∗)]φU(g) ∼= U(g)]φ◦γ Ŝ(g∗) which
we may call the “φ-twisted Weyl algebra”. Indeed, by the free product description
from 1.5, both are quotients of the free product Ŝ(g∗) ∗ U(g) = U(g) ∗ Ŝ(g∗) by
the commutation relations between the generators x̂i and arbitrary elements in
Ŝ(g∗). Using ∆(x̂i) = x̂i ⊗ 1 + 1 ⊗ x̂i, we obtain Dx̂i = x̂iφ(1)(D) + φ(x̂i)(D) =
x̂iD−φ(x̂i)(D) in one case and x̂iD = φ(−x̂i)(D)+Dx̂i in another smash product.
By linearity of φ, these are clearly the same relations (the underlying general reason
is that U(g) is cocommutative, see [7], the discussion following Definition 1). For

the generators, D = ∂j they relations read ∂j x̂i − x̂i∂j = φji .

1.13. (Realizations in Weyl algebras.) For a finite dimensional g and general φ,
the correspondence x̂i 7→

∑n
k=1 xkφ

k
i , ∂j 7→ ∂j does not depend on choice of basis,

and extends uniquely to a homomorphism of algebras U(g)]φ◦γ Ŝ(g∗) → Ân,k. If

the matrix φ = (φji ) is invertible, this homomorphism is invertible, with inverse
given by x̂i 7→

∑n
j=1 x̂k(φ−1)ki , ∂

j 7→ ∂j .
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1.14. It is shown in [6] that, under the assumptions in 1.11, the datum φ is
equivalent to specifying a coalgebra isomorphism ξ = ξφ : S(g) → U(g) (example:
the symmetrization map ξexp (3) induced by φexp from (4)) which equals the identity
when restricted to k ⊕ g ⊂ S(g). However, there is no explicit formula relating φ
and ξ in general. The isomorphism ξ enables us to transport the linear operators
from S(g) to U(g). Partial derivatives ∂i transport to the deformed derivatives

∂̂i = (∂iI) := ξ ◦ ∂i ◦ ξ−1 : U(g)→ U(g),

satisfying the deformed Leibniz rules studied in [6]. This action of generators ∂i on
U(g) together with action of elements in U(g) on U(g) by multiplication, extend

naturally to an action I of entire U(g)]φ◦γ Ŝ(g∗) on U(g). In this paper, we try to

avoid working with ξ directly, but we do need ∂̂. Fortunately, there is an alternative
description 1.16 of I in terms of the smash product, generators and matrix φ.

1.15. The U(g)∗ is a topological Hopf algebra by duality with U(g). The transpose

(2) ξT : U(g)∗ → S(g)∗

to any coalgebra isomorphism ξ : S(g) → U(g) is an algebra isomorphism. Hence,
one can transport the topological coalgebra structure along this morphism and
obtain a nontrivial topological Hopf algebra structure on Ŝ(g∗) ∼= S(g)∗, stud-

ied in the disguise of deformed Leibniz rules for Ŝ(g∗) in [6]. Instead, we may
transport the algebra structure from U(g) to S(g) obtaining the star product

f ? g = ξ−1(ξ(f) ·U(g) ξ(g)). The coproduct on Ŝ(g∗) is then the dual to the star
product. An infinite dimensional version of the Heisenberg double construction
applied to U(g) results in an algebra, which is shown in [11] to be isomorphic to

U(g)]φ◦γ Ŝ(g∗) whenever the associated matrix φ satisfies the conditions from 1.11.
Algebra U(g) is filtered by finite dimensional components and the dual is a cofil-
tered coalgebra. Thesis [12] has exhibited that the Heisenberg double U(g)∗]U(g)
is rigorously defined and has a structure of an internal Hopf algebroid in the sym-
metric monoidal category of filtered-cofiltered vector spaces. A variant of this Hopf
algebroid with some extra completions (giving an ad hoc working setup, less satis-
factory from the categorical point of view) has been exhibited a bit earlier in [7],

in a form of U(g)]φ◦γ Ŝ(g∗) and using explicit calculations with a concrete choice
of φ. In that choice, the coalgebra isomorphism ξ = ξexp : S(g) → U(g) is the
symmetrization (or coexponential) map [2, 4, 7, 9], where for any ẑ1, . . . , ẑk ∈ k
(not necessarily basis elements)

(3) ξexp(z1 . . . zk) =
1

k!

∑
σ∈Σ(k)

ẑσ(1) · · · ẑσ(k)

or, alternatively zl 7→ ẑl for any z ∈ g ⊂ S(g) and l ∈ N. The corresponding φij is

(4) (φexp)ij =

∞∑
N=0

(−1)NBN
N !

(CN )ij ,

where BN are the Bernoulli numbers and C is a matrix of elements in Ŝ(g∗) given
by Cij = Cijk∂

k. This formula has a long history (and direct relations to standard

notions in Lie theory, e.g. the linear part of Hausdorff series) is derived over an
arbitrary ring of characteristic 0 in [4]. In the case of k = R, the details of the
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relation to a geometric realization via formal differential operators around the unit
element on a Lie group is exhibited in [7], 1.2.

1.16. Under the assumptions 1.11, there is a deformed Fock action of U(g)]φ◦γ Ŝ(g∗)
on the universal enveloping algebra

I: (U(g)]φ◦γ Ŝ(g∗))⊗ U(g)→ U(g),

obtained in four steps ([7]). First we embed the second tensor factor U(g) a U(g)⊗
k ↪→ U(g)]φ◦γ Ŝ(g∗), then multiply, then use the isomorphism with U(g)]φŜ(g∗)
and then project the second factor to k via the counit of the symmetric algebra
(the ’evaluation at 0 map’ from 1.11); the result is in U(g) ⊗ k ∼= U(g). This
is the standard physics procedure of pushing the partial derivatives to the right
across coordinates (this time noncommutative coordinates, x̂i) using commutation
relations and when all partial derivatives are on the right and coordinates on the left,
retaining only the summand without partial derivatives. This way U(g) becomes

a left module of U(g)]φ◦γ Ŝ(g∗), the φ-deformed Fock module. Element |0〉 =
1U(g) is the deformed Fock vacuum |0〉g = |0〉 and we denote the result of the
action on the vacuum by x 7→ x|0〉. Map ξ is simply the inclusion of algebras

S(g) ↪→ U(g)]φ◦γ Ŝ(g∗) extending xi 7→
∑n
k=1 x̂k(φ−1)ki , followed by the action on

the deformed vacuum.
If, in the first tensor factor, we restrict I on Ŝ(g∗) this is essentially the harpoon

action of the topological dual algebra; this restriction is a topological left Hopf
action. If, in the first tensor factor, we restrict I on U(g), action I is simply the
multiplication in U(g).

Assuming the presentation of the Weyl algebra An,k as the smash product
S(V ∗)]δ◦γS(V ) (see 1.8), the standard Fock module of Ank is a special case of
deformed Fock module, namely S(V ) = U(a) and a is the Abelian Lie algebra with
underlying space V , and we use the deformed Fock space construction for this case,
without completions. The action, which we now denote by ., clearly agrees with
the standard description as the action of a differential operator ([3]) and the Fock

action is |0〉 = 1S(V ). For Ân,k we use completions of course. The linear map

ξ−1 : U(g)→ S(g) can be described as embedding U(g)→ Ân,k, x̂i 7→ x̂φi := x̂kφ
k
i

followed by the action on the standard Fock vacuum 1S(g). In particular, we obtain

the description of the operator ∂̂i = ξ ◦ ∂ ◦ ξ−1 = ∂i I on U(g) by pushing partial
derivatives to the right using commutation relation

(5) ∂i I (x̂j û) = x̂j(∂
i I û) + φij(∂) I û, , û ∈ U(g)

and, at the end of the inductive procedure, retaining the summand without partial
derivatives. Of course, φij is an infinite series, but commuting with x̂k can drop the
degree only by 1, hence we retain at each step only the summands in φ of degree
at most the degree of the noncommutative polynomial to the right of it. See an
example 3.2.

1.17. (This paragraph are remarks for deeper understanding and is not used in the
rest of the article.) Under the assumptions 1.11, the realization map from 1.13

supplies the isomorphism between the smash product U(g)]φ◦γ Ŝ(g∗) and the usual

completed Weyl algebra Ân,k, so one may ask why introducing this smash prod-
uct at all. The action I and the corresponding deformed space make a difference,
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along with constructions derived from it. This action is Hopf with respect to topo-
logical Hopf algebra structure on Ŝ(g∗) coming from the duality with U(g). The
map φ provides a relation between I and the ’harpoon’ action of the formal dual
U(g)∗ on U(g). The structure of the topological Hopf algebra on Ŝ(g∗) ∼= U(g)∗

together with U(g) considered as a Hopf module over it (actually more than that, a
braided commutative Yetter-Drinfeld module making sense in a monoidal category
of filtered-cofiltered vector spaces) together induce both a smash product in the
appropriate category and an additional structure of an internal Hopf algebroid on
that internal smash product. This is shown in [12]. Earlier, it was sketched in [11]
that this internal smash product is the same as an associative algebra with our
smash product above (where the Hopf algebra is U(g) and the Hopf module U(g)∗,
rather than the other way around). An ad hoc version of the Hopf algebroid (with
some extra completions and somewhat ad hoc axioms on completions) is also de-
rived in [7]. If we replace φ by another choice of homomorphism, say ψ, we observe
(ξT -s are from (2)) isomorphisms of internal Hopf algebroids

(6) U(g)]φ◦γ Ŝ(g∗)
idU(g)⊗(ξTφ )−1

// U(g)]U(g)∗
idU(g)⊗ξTψ // U(g)]ψ◦γ Ŝ(g∗),

where the Heisenberg double smash product Hopf algebroid in the middle is con-
structed using only the canonical topological Hopf pairing between Hopf algebra
U(g) and its canonical dual (toplogical) Hopf algebra U(g)∗ (and filtered cofiltered
structures in place [12]). Actions Iφ and Iψ get interchanged along the compo-
sition of isomorphisms (6) tensored by the identity on the additional U(g) factor.

However, the operator ∂̂i depends on φ as the image of ∂i under the composition
isomorphism (6) is not ∂i in general.

2. The twisted algebra of differential forms

2.1. Lemma. Let g be a Lie algebra, A an associative algebra and ρ : g→ Der(A)
a linear map.

(i) If g, h ∈ g and ρ(g)ρ(h)− ρ(h)ρ(g)− ρ([g, h]) vanishes when applied on each
of two elements a, b ∈ A then it vanishes on their product ab.

(ii) Suppose that there is a family of algebra generators {aλ}λ∈Λ of A and a
subset S ⊂ g which spans g, and such that for all g, h ∈ S,

ρ(g)ρ(h)(aλ)− ρ(h)ρ(g)(aλ) = ρ([h, g])(aλ),

Then ρ is a representation of g on A by derivations.
(iii) Suppose Â is a topological associative algebra containing A as a dense sub-

algebra. If for each h ∈ H derivation ρ(h) extends (automatically uniquely) to a

continuous k-linear map ρ′(h) of Â, then ρ′ is a representation of k by continuous
k-derivations iff ρ is a representation.

2.2. (Notation on exterior algebras.) In our constructions, it will be useful to
distinguish notationally the generators of two distinct copies of the classical exterior
algebra Λ(g): in the first the generators will be denoted by dx̂1, . . . , dx̂n and in the
second by dx1, . . . , dxn (the latter copy first appears in 2.6 and will be denoted
Λcl(g)). Both bases correspond to x̂1, . . . , x̂n under g ↪→ Λ(g). Recall the convention

from the introduction: φji := φ(−x̂i)(∂j).
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2.3. Main theorem. Any Lie homomorphism φ : g → Der(Ŝ(g∗)) satisfying

the assumptions from 1.11 uniquely extends to a Lie homomorphism φ̃ : g →
Der(Λ(g)⊗ Ŝ(g∗)) satisfying

(7) φ̃(x̂i)(dx̂l) = −
n∑

k,r,s=1

dx̂k(φ−1)ks

(
∂

∂(∂r)
φsl

)
φri .

This extension does not depend on the choice of basis of g.
Proof. By the Leibniz rule, any k-derivation of an algebra A is determined

by its values on the generators of A, hence uniqueness follows even without the
requirement that φ̃ be a Lie homomorphism. For the existence of φ̃ as a k-linear
map, since the values on Ŝ(g∗) and on g are predetermined, it remains to be shown

that the extension by the Leibniz rule to the entire Λ(g)⊗ Ŝ(g) is well defined. The
only new nontrivial relation is antisymmetry dx̂r ∧ dx̂s = −dx̂s ∧ dx̂r. The Leibniz
rule gives

φ̃(x̂i)(dx̂r∧dx̂s) = dx̂k∧dx̂s(φ−1)ka

(
∂

∂(∂b)
φar

)
φbi+dx̂r∧dx̂k(φ−1)ka

(
∂

∂(∂b)
φas

)
φbi ,

where the right-hand side is evidently antisymmetric under the exchange (r ↔ s).

It remains to show that φ̃ is automatically a representation (Lie homomorphism).

Every derivation of Ŝ(g∗) is continuous ([2]) and satisfies the chain rule, which also

makes problem of extension of derivations from S(g∗) to Ŝ(g∗) trivial. Similar

statements hold for Λ(g) ⊗ Ŝ(g∗). Thus we can apply Lemma 2.1 (ii) to A =

Λ(g)⊗S(g∗) and (iii) to Â = Λ(g)⊗ Ŝ(g∗) to assert that φ̃ is a Lie homomorphism
iff for all i, j, l ∈ {1, . . . , n},

(8) φ̃(x̂i)φ̃(x̂j)(dx̂l)− φ̃(x̂j)φ̃(x̂i)(dx̂l)− φ̃([x̂i, x̂j ])(dx̂l) = 0.

Using the Leibniz rule for φ̃(x̂i) we calculate, ommiting the summation sign when
summing over repeated indices,

φ̃(x̂i)φ̃(x̂j)(dx̂l) = −φ̃(x̂i)(dx̂k)(φ−1)ks
∂φs

l

∂(∂r)φ
r
j − dx̂kφ(x̂i)((φ

−1)ks)
∂φs

l

∂(∂r)φ
r
j

−dx̂k(φ−1)ks φ(x̂i)
(
∂φs

l

∂(∂r)

)
φrj − dx̂k(φ−1)ks

∂φs
l

∂(∂r)φ(x̂i)(φ
r
j)

We first show that the first two summands mutually cancel. By direct substitu-

tion of (8), the first summand becomes +dx̂k′(φ
−1)k

′

p
∂φp

k

∂(∂r′ )
φr
′

i (φ−1)ks
∂φs

l

∂(∂r)φ
r
j . By

the chain rule (see 1.9), φ(x̂j)(D) = −
∑n
t=1

∂D
∂(∂p)φ

p
j . This for D = (φ−1)ks ,

together with the formula for the derivative of the inverse matrix we find that

φ(x̂j)((φ
−1)ks) = (φ−1)ks′

∂φs′
r′

∂(∂p) (φ−1)r
′

s φ
p
j , hence the second summand above is

−dx̂k(φ−1)ks′
∂φs

′

r′

∂(∂p)
φpj (φ

−1)r
′

s

∂φsl
∂(∂r)

φrj .

The cancelation of the first two terms may be now observed after appropriately
renaming dummy indices. By the chain rule, the third summand is

+dx̂k(φ−1)ks
∂2φsl

∂(∂p)∂(∂r)
φpi φ

r
j
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and is clearly antisymmetric under exchange (i ↔ j). Therefore, in (8), it cancels

with the third summand in φ̃(x̂j)φ̃(x̂i)(dx̂l). It remains to consider the contribu-
tions from the 4th summand, giving

φ̃(x̂i)φ̃(x̂j)(dx̂l)− φ̃(x̂j)φ̃(x̂i)(dx̂l) =

= dx̂k(φ−1)ks
∂φs

l

∂(∂r)

(
∂φr

j

∂(∂p)φ
p
i −

∂φr
i

∂(∂p)φ
p
j

)
(1)
= −dx̂k(φ−1)ks

∂φs
l

∂(∂r)C
k′

ij φ
r
k′

= φ̃([x̂i, x̂j ])(dx̂l).

The tensorial notation is suggestive for the covariance properties with respect to the
choice of basis. Let the prime indices denote a new basis, B be a matrix of change of
basis of g in the sense that x̂i = x̂′k′B

k′

i and the for the dual basis ∂i = (B−1)ik′∂
k′ .

By linearity of φ and of φ(−x̂i′) then

φji = φ(−x̂i)(∂j) = (B−1)jj′B
i′

i φ(−x̂i′)(∂j
′
) = (B−1)jj′B

i′

i φ
j′

i′ .

This gives also xi = xk′B
k′

j (B−1)jj′B
i′

i φ
j′

i φ
j′

i′ = xk′B
k′

i . For the differentials, the

embedding g ↪→ Λ(g) forces basis change dx̂i = dx̂′k′B
k′

i extended by the usual
tensoriality of higher exterior powers. For the left hand side of (7), by linearity,

φ(x̂i)(dx̂l) = Bi
′

i B
l′

l x̂i(x̂i′)(dx̂l′). Thus all ingredients in (7) behave tensorially
just as expected from the position of indices and the tensorial form is enough
for the conclusion. Explicitly, we substitute the above component changes to the
ingredients of the right hand side of (7) to obtain

dx̂k′B
k′

k (φ−1)k
′′

s′ B
s′

s (B−1)kk′′

(
∂

∂(∂r′)
φs
′′

l′

)
Bl
′

l (B−1)ss′′φ
r′

i′B
i′

i (B−1)rr′ ,

which gives the same change of basis coefficients as for the left hand side, after
contractions of numerical matrices B and B−1 are accounted for.

2.4. Corollary. Any representation φ : g→ Der(Ŝ(g∗) of a finite dimensional Lie
algebra g by derivations on completed symmetric algebra of its dual has a canonical
extension to a Hopf action of the form

φ̃ : U(g)→ Endk(Λ(g)⊗ Ŝ(g∗))

and satisfying (7). In particular, the smash products

U(g)]γ◦φ̃(Λ(g)⊗ Ŝ(g)) ∼= (Λ(g)⊗ Ŝ(g))]φ̃U(g),

are well-defined.

2.4.1. These two algebras are canonically isomorphic by the cocommutativity of
U(g). We call any of the two the extended algebra of φ-twisted differential
forms. ’Extended’ is for the additional presence of partial derivatives in the algebra.
A different, less canonical, recipe is needed if we want that the subspace of ’forms’
without partial derivatives be a subalgebra (cf. [5]). It is planned for a sequel work
(part II). Notice that the usage of the antipode γ in the choice of the smash product

action is in agreement with the minus sign in the formula φji = φ(−x̂i)(∂j).

2.5. Theorem. (i) The extended algebra of φ-twisted differential forms is canoni-
cally isomorphic to the free associative algebra generated by the 3n symbols dx̂i, x̂i
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and ∂i, for i = 1, . . . , n, quotiented by relations

(9)
[x̂i, x̂j ] = Ckij x̂k, [∂i, ∂j ] = 0, [∂j , x̂i] = φji ,[
∂j , dx̂i

]
= 0, [dx̂j , x̂i] = dx̂s(φ

−1)sr

(
∂

∂(∂l)
φrj

)
φli, {dx̂i, dx̂j} = 0

where the commutator [, ] and the anticommutator {, } are in the sense of associative
algebras.

(ii) Suppose, ω ∈ Λ(g)⊗ Ŝ(g∗), k ∈ N and ĝ1, . . . , ĝk ∈ g. Then

(10) (φ̃ ◦ γ)(ĝ1 · · · ĝk)(ω) = [[. . . [ω, ĝ1], . . .], ĝk].

(iii) Degree of a twisted differential form is a well defined nonnegative integer.

Proof. We use the description 1.5 of the smash product as free product U(g) ?

(Λ(g)⊗ Ŝ(g∗)) modulo all commutation relations of the form

(11) φ(u)(ω) =
∑

û(1)ωγ(û(2)),

where û ∈ U(g) and ω ∈ Λ(g) ⊗ Ŝ(g∗). It is however sufficient to include the
relations where û, ω are within chosen sets of generators.

(i) Regarding that ∆(x̂i) = 1 ⊗ x̂i + x̂i ⊗ 1, Sx̂i = −x̂i, the calculation is easy:

substitute x̂i for û, then dx̂j or ∂j for h, and use identities φ̃(x̂i)(∂
j) = −φji and (7).

For (ii), notice that φ ◦ γ is an antiisomorphism, φ(γ(ĝi))(ν) = φ(−ĝi))(ν) =

[ν, ĝi] for all ν ∈ Λ(g)⊗ Ŝ(g∗), and proceed by induction.

2.6. Theorem. If φ = (φij) is invertible and close to the identity ( 1.11), the
correspondence

(12) x̂i 7→ xφi :=
∑
j

xjφ
j
i , ∂i 7→ ∂i, dx̂i 7→ dx̂φi :=

∑
j

dxjφ
j
i

extends uniquely to an isomorphism

(13) U(g)]φ̃◦γ(Λ(g)⊗ Ŝ(g∗)) −→ Λcl(g)⊗ Ân,k.

2.6.1. We here used the notation conventions on exterior algebras 2.2. By abuse of
notation, we may however by dxi denote also the preimage of dxi ∈ Λcl(g)⊗Ân,k un-
der the isomorphism (12), namely dxi := dx̂k(φ−1)ki . Notice that [dxi, x̂j ] = 0 and

[dxi, ∂
j ] = 0. It follows that we have a monomorphism Λcl(g)⊗ (U(g)]φ◦γ Ŝ(g∗))→

U(g)]φ̃◦γ(Λ(g) ⊗ Ŝ(g∗)) which is in fact an isomorphism because the generators

of the form dxi, ∂
j , x̂l generate U(g)]φ̃◦γ(Λ(g) ⊗ Ŝ(g∗)). In this context, we call

Λcl(g)⊗ (U(g)]φ◦γ Ŝ(g∗)) the intermediate algebra.

2.6.2. Sometimes, it is good to consider realizations of Λcl(g) ⊗ (U(g)]φ◦γ Ŝ(g∗))

making it isomorphic to Λcl(g)⊗ Ân,k: here the generators of Λ(g) are also dxi and

U(g)]φ◦γ Ŝ(g∗) is realized by x̂φi =
∑
k xkφ

k
j and ∂i is just ∂i from Ân,k. Hence the

intermediate algebra and the isomorphic extended algebra of φ-twisted forms do
not depend on φ as algebras (more is true, along the lines in 1.17).

2.6.3. Notation for generators x̂φi =
∑
α xαφ

α
i , dx̂φi =

∑
α dxαφ

α
i extends to

polynomials. The composition U(g) ↪→ U(g)]Ŝ(g∗) ∼= Ân,k is an algebra monomor-
phism which agrees with ()φ : u 7→ uφ. We do not use notation ()φ for deriva-
tives, because our isomorphism sends ∂i to ∂i and this does not depend on φ.
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Thus dx̂φi =
∑
k dxαφ

α
i ∈ Λ(g) ⊗ Ân,k. If we commute elements within the im-

age Λ(g)⊗ Ân,k, we get the same commutators as in (9), but in a realization, e.g.

[dx̂φi , x̂
φ
j ] = dx̂φs (φ−1)sr

(
∂

∂(∂l)
φri

)
φlj . Thus the theorem 2.6 may be interpreted as

a realization of the extended algebra of φ-twisted differential forms in terms of
ordinary differential forms and partial derivatives (allowing infinite series).

3. Exterior derivative

3.1. Definition. φ-twisted exterior derivative is the k-linear map given by

d̂ = d̂φ :=
∑
k,j

dx̂k(φ−1)kj ∂̂
j : U(g)](Λ(g)⊗ Ŝ(g∗))→ U(g)](Λ(g)⊗ Ŝ(g∗)),

where (φ−1)kj acts by multiplication, while ∂̂j = ∂j I acts on U(g) tensor fac-
tor only, using φ-deformed Fock action I from 1.16. We may write the exterior
multiplication following dx̂k for emphasis; the multiplication is assumed.

3.1.1. Notice that ∂j and ∂̂j do not commute, hence (φ−1)kj and ∂̂j do not commute
in general. By the discussion in 1.17 not only the smash product, but the action I
is also independent of φ up to an isomorphism. However, the expression ∂̂j depends

on φ, see 1.17. Thus, d̂φ may depend on φ in general.

3.2. It is clear that this operator does not depend on the choice of basis. If we

realize x̂i as x̂φi ∈ Ân,k then in this realization, the abstract d̂ can also be written
as

d̂ =
∑
k,j

dx̂φk(φ−1)kj ∂̂
j =

∑
j

dxj ∂̂
j ,

once we interpret ∂̂j properly in Λcl ⊗ Ân,k, which comes naturally if we work in

terms of the intermediate algebra 2.6.1, Λcl ⊗ (U(g)]φŜ(g∗)). This is different
from the usual exterior derivative d =

∑
k dxk∂

k as ∂k acts on the factor S(g)

in Λcl⊗ (S(g)]δ◦γ Ŝ(g∗)), see 1.4. Of course, via the inverse of the realization map,
we could transport d to our setup as well, but there is nothing essentially new.

3.3. Example. Consider the series representation for φij ,

φij = δij +Aijr∂
r +

1

2
Aijrs∂

r∂s +O(∂3).

For the case φ = φexp (see 1.15), formula (4) gives Aijr = 1
2C

i
jr and Aijrs = 1

6C
i
psC

p
jr.

Using the procedure from the end of 1.16 and (5), we obtain ∂̂k(x̂i) = δki and

∂̂k(x̂ix̂j) = x̂iδ
k
j + x̂jδ

k
i +Asij

∂̂k(x̂ix̂j x̂l) = x̂ix̂jδ
k
l + x̂ix̂lδ

s
j + x̂j x̂jδ

s
i +Akjlx̂i +Akij x̂l +Akilx̂j +AkirA

r
jl + 1

2A
k
ijl

Thus, d̂(x̂i) = dxi, but

(14)

d̂(x̂ix̂j) = (dxj)x̂i + (dxi)x̂j +Akijdxk
d̂(x̂ix̂j x̂l) = (dxl)x̂ix̂j + (dxj)x̂ix̂l + (dxi)x̂j x̂l

+dxk(Akjlx̂i +Akij x̂l +Akilx̂j +AkirA
r
jl + 1

2A
k
ijl)

Therefore, Leibniz rule is deformed for d̂ in general.
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In a φ-realization, (14) differs from the application of the classical exterior de-
rivative d on the realization which simply reads

d(x̂φi x̂
φ
j ) = (dx̂φi )x̂φj + x̂φi (dx̂φj )

d(x̂φi x̂
φ
j x̂

φ
l ) = (dx̂φi )x̂φj x̂

φ
l + x̂φi (dx̂φj )x̂φl + x̂φi x̂

φ
j dx̂

φ
l .

3.4. Theorem. (i) d̂2 = 0.

(ii) d̂(dx̂s ∧ ω) = −dx̂s ∧ d̂ω and d̂(dxs ∧ ω) = −dxs ∧ d̂ω;

Proof. (i) Regarding that dxm commute with elements in S(g∗),

(15) d̂2 = (dxj ∂̂
j) ∧ (dxm∂̂

m) = dxj ∧ dxm∂̂j ∂̂m

is a contraction of the antisymmetric tensor dxj ∧ dxm and the symmetric ten-

sor ∂̂j ∂̂m, hence zero. Note that ∂̂-s do not commute with ∂-s nor (φ−1)kj , and

dx̂l does not commute with ∂̂k. Thus, d̂2 6= dx̂k ∧ dx̂l(φ−1)kj ∂̂
j(φ−1)lm∂̂

m and

(φ−1)kj ∂̂
j(φ−1)lm∂̂

m is not a symmetric tensor, unlike written in my earlier preprint.

(ii) The identities follow from the definition od d̂, definition dxi = dx̂k(φ−1)ki
and the antisymmetry of the product of generators in Λ(g).

3.5. Proposition. d̂ preserves the subalgebra ΛU (g) generated by all dxi and x̂i.
There is an embedding

Λcl(g)⊗ U(g) ↪→ Λcl(g)⊗ (U(g)]φ◦γ Ŝ(g∗)) ∼= U(g)]φ̃◦γ(Λ(g)⊗ Ŝ(g∗))

whose image is ΛU (g).

3.5.1. We say that ΛU (g) is the algebra of U-twisted differential forms. It is
a subalgebra of the extended algebra of φ-twisted differential forms, or equivalenty
of the “intermediate algebra” 2.6.1.

3.6. Proposition. The usual Fock space action of An,k (and Ân,k) on S(g)

extends to an action of Λcl(g)⊗ (U(g)]φ◦γ Ŝ(g∗)) ∼= Λcl(g)⊗ Ân,k on Λcl(g)⊗ S(g)
by multiplication in the first tensor factor. The φ-deformed Fock space action I
(see 1.16) of U(g)]φ◦γ Ŝ(g∗) on U(g) extends to an action of the intermediate

subalgebra Λcl(g) ⊗ (U(g)]φ◦γ Ŝ(g∗)) on its subalgebra Λcl(g) ⊗ U(g). This action
restricts to the multiplication on Λcl(g)⊗ U(g).

Keep in mind that elements from Λcl(g) commute with the elements in Ŝ(g∗)

and U(g), while the elements in U(g) do not commute with those in Ŝ(g∗). The
cyclic vectors for the two extended Fock spaces are still |0〉 = 1S(g) and 1U(g).

3.7. Theorem. Let ω ∈ ΛU (g). Consider the action on usual vacuum |0〉 = 1Ŝ(g).

(i) Symbolically (ΛU (g))φ|0〉 = Λcl(g) ⊗ S(g). More explicitly, the linear map
sending ω ∈ ΛU (g) to ωφ|0〉 sends ΛU (g) into Λcl(g) ⊗ S(g). This action on vac-
uum in φ-realization is an isomorphism of vector spaces (we asume φ close
to identity) with inverse given by the φ-deformed Fock action on |0〉U(g), that is
idΛcl(g) ⊗ ξφ : Λcl(g)⊗ S(g)→ Λcl(g)⊗ U(g) ∼= ΛU (g).

(ii) (d̂ω)|0〉 = d(ω|0〉), where d on the right hand side denotes the usual exterior
derivative.

(iii) (Poincaré lemma) If d̂(ω) = 0 then there is ν ∈ ΛU (g) such that d̂(ν) = ω.

Proof. (i) and (ii) follow by direct check. (iii) follows from the classical Poincaré

lemma for Λcl(g)⊗Ŝ(g), the isomorphism in (i), property (ii) and Theorem 3.4, (ii).
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3.8. (Star product on ΛU .) Using the isomorphism of vector spaces

ξ̃ = ξ̃φ = idΛ(g) ⊗ ξφ = Λcl(g)⊗ S(g)→ Λcl(g)⊗ U(g) ∼= ΛU (g),

we can easily extend the star product ? = ?φ on S(g) (see 1.15) to an associative

product ∧? = ∧?φ on Λcl(g)⊗ S(g) given by ω ∧? ν = ξ̃−1(ξ̃(ω) ∧Λcl(g)⊗U(g) ξ̃(ν)).

3.9. Proposition. If ω̂, ν̂ ∈ ΛU (g) then d̂(ω̂ ∧ ν̂) = ξ̃(d(ξ̃−1(ω̂) ∧? ξ̃−1(ν̂))).

Proof. For the deformed derivatives ∂̂i = (∂i I) = ξ ◦ ∂ ◦ ξ−1, hence it is

immediate ([6]) that ∂̂i(ξ(f) ·U(g) ξ(g)) = ξ(∂i(f ? g)) for all f, g ∈ S(g). By
(bi)linearity it is sufficient to prove the statement when ω̂ = dxi1 ∧ · · · ∧ dxirξ(f)

and ν̂ = dxj1 ∧· · ·∧dxjsξ(g). Then by the definitions of d̂ and of ξ̃ and ?̃, we obtain

d̂(ω̂ ∧ ν̂) = dxk ∧ dxi1 ∧ · · · ∧ dxir ∧ dxj1 ∧ · · · ∧ dxjs(ξ ◦ ∂i ◦ ξ−1)(ξ(f) ·U(g) ξ(g))

= ξ̃(dxk ∧ dxi1 ∧ · · · ∧ dxir ∧ dxj1 ∧ · · · ∧ dxjs∂k(f ? g))

= ξ̃(dxk ∧ ∂k(ξ̃−1(ω̃) ∧? ξ̃−1(ν̃)))

= ξ̃(d(ξ̃−1(ω̃) ∧? ξ̃−1(ν̃))).

3.10. (Conclusion.) Given a Lie algebra homomorphism φ : g → Der(Ŝ(g∗))
satisying assumptions 1.11 we exhibited in 2.3 its canonical extension to a Hopf

action of U(g) on Λ(g)⊗U(g) and a differential d̂φ (defined in 3.1) on the induced
smash product algebra 2.4, making it into a complex (by 3.4, (i)), but not a
differential graded algebra (the graded Leibniz rule is not satisfied). As an algebra,
it does not depend on the choice of φ. This complex has a subcomplex ΛU (g)
which, as an algebra, is isomorphic to Λcl(g)⊗U(g) and thus deforms the differential
graded algebra of polynomial differential forms Λ(V )⊗ S(V ) as an algebra and as
a complex, but without Leibniz compatibility. The differential on ΛU (g) is related
in 3.7 to the usual differential on polynomial differential forms via a φ-deformed
Fock construction whose action I appears also in the study of Hopf algebroid
structure of a Heisenberg double of U(g). The star product on polynomials induced
by the coalgebra isomorphism ξφ : S(g)→ U(g) extends to the classical complex of
polynomial differential forms: the product on ΛU (g) is transferred via Fock action
(3.8, 3.9).

In a sequel paper, we address noncanonical modifications to our construction
and their relation to alternative deformations, e.g. from [5], and to an approach
using Drinfeld-Xu 2-cocycle twists of Heisenberg double Hopf algebroids.
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