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Abstract

We define the / generalization of the Eilenberg-Moore category over a monad, where
the monad is replaced by a coherent action of a monoidal category. Then we study
the distributive laws from another monad to such a monoidal action, which are in
a sense dual to the distributive laws from a monoidal action to a monad, studied
in our earlier paper. The duality appears as a special case of study of distributive
laws for two different actions of monoidal categories on the same category. When
the actions are strong (coherences are invertible) and one action is left, then such
distributive laws make a categorical analogue of a bimodule. For such bimodules,
called bi-actegories, one can define a tensor product, using lax coequalizers. In the
sequel we will show that the bi-actegories make a tricategory. Some special cases
are of importance, for example for induction for module categories and associated
bundles to categorified principal bundles.

Key words: monoidal category, action, distributive law, strict lifting, bi-actegories

1 Introduction. Modules in actegory.

1.1. We use the notation from part I. In particular, a monoidal category will
be described as a 6-tuple C = (C,⊗,1, a, r, l) where 1 is the unit object, a is the
associativity coherence, and r, l are right and left unit coherences. A left action
(♦, Ψ, u) of monoidal category C on a category M is decribed by a bifunctor
♦ : C ×M→M, (C, M) 7→ C♦M with the action associativity coherence Ψ
and the unit coherence u satisfying the usual pentagon and triangle axioms.
The 4-tuple (M, ♦, Ψ, u) is also referred to as a C-actegory.
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In part I [9] we studied the distributive laws from a C-actegory (M, ♦, Ψ, u) to
a monad T = (T, µ, η) in M and proved that they are in bijective correspon-
dence with the strict lifts of the action to the Eilenberg-Moore category MT

of T-modules. Now we present the preliminaries to establish a dual version.

1.2. (Modules in actegories.) Given a left C-actegory (M, ♦, Ψ, u) a C-
module in M is a pair (M, ν) where M is an object inM and ν : IdM♦M ⇒
M is a natural transformation of functors C → M satisfying the following
action axiom for components: for any two objects C, Q in C, the diagram

Q♦(C♦M)
Q♦νC //

(ΨQ,C
M )−1

��

Q♦M

νQ

��
(Q⊗ C)♦M

νQ⊗C //M

commutes and ν1 = uM . The naturality of ν amounts to requiring that νC′ ◦
(f♦M) = νC for any morphism f : C → C ′ in the monoidal category C.

A morphism g : (M, ν) → (N, ρ) of C-modules in M is a morphism
g : M → N in M such that, for all objects Q in C, the following square

Q♦M
νQ //

Q♦g

��

M

g

��
Q♦N

ρQ //N

(1)

commutes. Property ρ1 ◦ (1♦g) = g ◦ ν1 is automatic, namely it follows by
naturality of u : 1♦Id ⇒ Id since uM = ν1 and uN = ρ1.

One can require seemingly more general requirement that for every q : Q → Q′

the diagram

Q♦M
νQ //

q♦g
��

M

g

��
Q′♦N

ρQ′ //N

commutes. But this follows from (1) using q♦g = (q♦N) ◦ (Q♦g) and the
naturality of ρ.

C-modules in M and their morphisms make a category M(C,♦,Ψ,u), often de-
noted simply by MC and called the Eilenberg-Moore category of the
C-actegory M. It is equipped with a forgetful functor U : MC → M,
(M, ν) → M , which is in general, unlike in the case of usual Eilenberg-Moore
categories not surjective on objects. In particular, there is no “free functor”
M→MC in general.

1.3. In the following C considered as a left C-actegory via ⊗ and M is another
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left C-actegory.

Proposition. Suppose (Q, µ) is an object of CC. Then, for every object M ,
the compositions

νµ,M
C : C♦(Q♦M)

(Ψ−1)C,Q
M−→ (C ⊗Q)♦M

µC♦M−→ Q♦M

are components of a natural transformation νµ,M making (Q♦M, νµ,M) an ob-
ject in MC. Moreover, the construction is functorial in M , yielding a functor
F (Q,µ) : M → MC with the property UF (Q,µ) = Q♦IdM. For every mor-
phism g : (Q,µ) → (Q′, µ′) in CC, and morphism n : N → N ′ in M,
the morphisms F (g, n) = F g(n) := g♦n : Q♦M → Q′♦M ′ are in fact
morphisms (Q♦M, νµ,M) → (Q′♦M, νµ′,M ′

) in MC. The rule for morphisms
(g, n) 7→ F (g, n) defines a bifunctor F : CC × M → MC; in particular
F (id(Q,µ), idM) = F (Q,µ)(M).

The proof is easy and we will only show the commutative diagram exhibiting
the proof of the action axiom.

(C1♦C2)♦(Q♦M)

(Ψ
C1,C2
Q♦M )−1

��

C1♦(Ψ
C2,Q
M )−1

//C1♦((C2 ⊗Q)♦M)

(Ψ
C1,C2⊗Q
M )−1

��

C1♦(µC2
♦M) //C1♦(Q♦M)

(Ψ
C1,Q
M )−1

��
(C1 ⊗ (C2 ⊗Q))♦M

aC1,C2,Q♦M

��

(C1⊗µC2
)♦M // (C1 ⊗Q)♦M

µC1
♦M

��
(C1 ⊗ C2)♦(Q♦M)

(Ψ
C1⊗C2,Q
M )−1

// ((C1 ⊗ C2)⊗Q)♦M
µC1⊗C2

♦M //Q♦M

1.4. Let us now clarify in which sense the above Eilenberg-Moore category
is a generalization of the usual one (for monads). A monad T in M can be
considered an actegory in two (or three if you like) ways. The first one is as an
action of a trivial monoidal category 1 (with one object and one morphism) on
M; clearly Ψ−1 corresponds to the multiplication of the monad, and the unit
of the monad can be extracted from the unit coherence. The second approach
is to consider a strict action (Ψ and u trivial) of the monoidal subcategory T∗

generated by T ⊂ End(M), and morphisms µ, η. Or one can take an abstract
version of this: a PRO (a category whose objects are natural numbers and
tensor product of objects addition) for monoids with a strict representation in
(=strict monoidal functor to) End(M) (a minor difference: some powers of T
may coincide for the monad, so the representation may have a nonzero kernel,
hence T∗ is itself not necessarily a PRO).

Now it is an easy exercise that if a monad is understood as a monoidal category
in any of the 3 ways above, the Eilenberg-Moore category will coincide: for
the first recipe, the natural transformation ν boils down to a single action
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ν : TM = 1♦M → M and in the other two we also have induced actions νn :
T nM → M which are forced to be of the form νn = ν1 ◦T (ν1) ◦ . . . ◦T n−1(ν1).

1.5. A lax C-equivariant functor (K, γ) : (M, ♦M, ΨM, uM) → (N , ♦N , ΨN , uN )
of C-actegories is an ordinary functor K : M→N together with a binatu-
ral transformation of bifunctors Id♦NK ⇒ K ◦ (Id♦MId) satisfying the usual
pentagon and unit coherences:

(Q⊗ C)♦NKM

(ΨN )Q,C
KM
��

γQ⊗C
M //K((Q⊗ C)♦MM)

K((ΨM)Q,C
M )

��
Q♦N (C♦NKM)

Q♦γC
M

//Q♦NK(C♦MM)
γQ

C♦M

//K(Q♦M(C♦MM))

(2)

A natural transformation α : (K, ζK) ⇒ (L, ζL) of lax C-equivariant
functors is a natural transformation α : K ⇒ K ′ : M → N of underlying
functors such that for all objects C in C and M in M, the following square
commutes:

C♦NKM
ζK
C,M //

C♦αM

��

K(C♦MM)

αC♦M

��
C♦NLM

ζL
C,M //L(C♦MM)

1.6. Lax C-equivariant functors of C-actegories induce morphisms
between their Eilenberg-Moore categories. Given (K, γ) as above, the
pushforward (K, γ)∗ : MC → N C, or, abusing the notation, simply K∗, is
defined by (K, γ)∗ : (M, ν) 7→ (KM, Kν ◦ α). Here Kν ◦ α is the composi-
tion of natural transformation, written in components (Kν ◦ α)C = K(νC) ◦
αC : C♦NKM → KM . This natural transformation is indeed a C-action in
(N , ♦N , ΨN , uN ), namely this follows by the commutativity of the diagram

Q♦N (C♦NKM)

(ΨQ,C
KM )−1

��

Q♦γC
M

//Q♦NK(C♦MM)

γQ
C♦M
��

Q♦K(νC)
//Q♦NKM

γQ
M
��

K(Q♦M(C♦MM))

K((ΨM,Q,C
M )−1)

��

K(Q♦νC) //K(Q♦MM)

K(νQ)

��
(Q⊗ C)♦NKM

γQ
C

//K((Q⊗ C)♦MM)
K(νQ⊗C)

//KM

for all objects Q,C in C. The left pentagon is expressing the lax C-equivariance
of (K, γ), the right upper square is commutative by the naturality for γ, and
the right lower square follows by the action axiom for ν and functoriality of K.
Thus the external square is commutative what is the action axiom for Kν ◦γ.

4



Clearly the square of functors

MC (K,γ)∗ //

UM

��

N C

UN

��
M K //N

commutes. (here add weak converse!)

1.7. A distributive law from a monad T in M to the C-actegory
(M, ♦, Ψ, u) is binatural transformation d : IdC♦T ⇒ T ◦(IdC♦IdM) satisfying
the pentagon and triangle identities (...)

1.8. Given a distributive law from T to M as above, define a lift TC =
(T C, µC, ηC) by T C(M, ν) := (TM, Tν ◦ dM). In components,

Q♦TM
dQ

M //

(Tν◦dM )Q

11T (Q♦M)
T (νQ) //TM

We have to show that Tν ◦dM is indeed an action. The action axiom amounts
to the commutativity of the external square in diagram

Q♦(Q′♦TM)

(ΨQ,Q′
TM )−1

��

Q♦dQ′
M //Q♦T (Q′♦M)

Q♦T (νQ′ ) //

dQ

Q′♦M
��

Q♦TM

dQ
M
��

T (Q♦(Q′♦M))

T ((ΨQ,Q′
M )−1)

��

T (Q♦νQ′ ) //T (Q♦M)

T (νQ)

��
(Q⊗Q′)♦M

dQ⊗Q′
M

//T ((Q⊗Q′)♦M)
T (νQ⊗Q′ )

//TM

The left pentagon is one of the pentagons for the distributive law d, the upper
right corner is commutative by the naturality of d, and the lower right corner
follows by the action axiom for ν and the functoriality of T .

1.9. The general case are the distributive laws from an action of one monoidal
category to an action of another monoidal category on the same category. If
the distributive law is invertible and one action is left and another is right we
have at hand an instance of the categorification of the notion of a bimodule:
bi-actegories.

As, in the case of usual bimodules, there is a well-behaved notion of the tensor
product of bi-actegories.

1.10. Given two monoidal categories (A,⊗,1, aA, lA, rA) and (B,⊗′,1′, aB, lB, rB),
a category M, a left coherent action . : A×M→M with action coherence

5



ΨA and unit coherence uA and a right coherent action / : M×B →M with
coherences ΨB, uB, we say that M is an A-B-bi-actegory if in addition it is
equipped with a natural isomorphism of (tri)functors

l : A . (M / B) ⇒ (A .M) / B

satisfying some compatibility relations (making it into a distributive law)
which will be written below.

1.10.1. A (co)laxA-B-biequivariant functor (K, γ, γ̄) of twoA-B-bi-actegories
is a triple where K : M→N is an ordinary functor, the pair (K, γ) is a (co)lax
A-equivariant functor of left A-actegories, (K, γ̄) is a (co)lax B-equivariant
functor or right B-actegories and an additional compatibility with the pair
of distributive laws lM, lN is required. More precisely, in the lax case, when
the lax biequivariant functor has coherences γA

M : A . KM ⇒ K(A . M) and
γ̄B

M : KM / B ⇒ K(M / B) in addition to the lax equivariance pentagons for
γ and γ̄, the hexagon

A . (KM / B)

lA,KM,B

��

a.γ̄B
M //A . K(M / B)

γA
M/B//K(A . (M / B))

K(lA,M,B)

��
(A . KM) / B

γA
M/B //K(A . M) / B

γ̄B
A.M//K((A . M) / B)

(3)

is required to commute for all objects (A, M, B) in A×M×B.

Remark: the columns are invertible, so even if we change the direction either of
γ or γ̄, but not both we have a good requirement (inverting l if needed). This
points to the fact that mixed colax-lax and lax-colax biequivariant functors
make sense.

1.10.2. A (natural) transformation of lax A-B-biequivariant functors α :
(K, γ, γ̄) ⇒ (L, δ, δ̄) from M to N such that α : (K, γ) ⇒ (L, δ) is a transfor-
mation of lax A-equivariant functors, and also α : (K, γ̄) ⇒ (L, δ̄) a transfor-
mation of B-equivariant functors.

1.11. Given three A-B-bi-actegories M,N ,P with compatibility transforma-
tions lM, lN , lP respectively, and lax A-B-biequivariant functors (K, γ, γ̄) :
M→ N , and (L, δ, δ̄) : N → P, their composition is defined by the formula
(L ◦ K, δ ? γ, γ̄ ? δ̄). Here of course (δ ? γ)a

m = (Lγ ◦ δK)a
m := L(γa

m) ◦ δa
Km.

It is a standard fact that ((L ◦ K, δ ? γ) and L ◦ K, γ̄ ? δ̄) are colax A- and
B-equivariant respectively. Thus we need to check that (L ◦ K, δ ? γ, γ̄ ? δ̄)
is compatible with the pair of distributive laws lM, lP . This follows from the
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commutativity of the diagram

a . (LKm / b)

a.δ̄b
Km
��

lPa,LKm,b// (a . LKm) / b
δA
KM/b

//
(δ?γ)a

m/b
..

L(a . Km) / b
Lγa

m/b
//

δ̄b
a.Km

��

LK(a . m) / b

δ̄b
K(a.m)

��
a . L(Km / b)

a.Lγ̄b
m

��

δa
Km/b//L(a . (Km / b))

L(a.γ̄b
m)

��

LlNa,Km,b

//L((a . Km) / b)
L(γa

m/b)
//L(K(a . m) / b)

Lγ̄b
a.m

��
a . LK(m / b)

δa
Km/b//

(δ?γ)a
m/b

00L(a . K(m / b))
Lγa

m/b //LK(a . (m / b))
LKlMa,m,b

//LK((a . m) / b)

for all objects a, m, b in A,M,B respectively. The vertical axes are a. (δ ?γ)b
m

and (δ̄ ? γ̄)b
a.m respectively, so external sides form the compatibility hexagon.

1.12. (Here write about restriction of actions along monoidal functors (pulling
back)...the inducton should be a pseudoadjoint to the restriction. But one
needs the correct 2-category to work in.)

Let (J, ζ, ξ) : (B,⊗,1, a, l, r) → (G,⊗′,1′, a′, l′, r′) be a monoidal functor,
where J : B → G is an ordinary functor, and ζ : J ⊗′ J ⇒ J ◦ (IdB ⊗ IdB),
ξ : J ⊗′ 1′ ⇒ J ◦ (IdB ⊗ 1) are the coherence natural isomorphisms. Let
♦G : G × G → G be the natural action of the monoidal category G on itself,
then the action .B = ♦ ◦ (J♦IdG) : B×G → G makes G a left B-actegory. The
component ΨB

b,b′,g of the coherence ΨB for this left action is the composition

b.B(b
′.Bg) = Jb⊗′(Jb′⊗′g)

aG
Jb,Jb′,g−→ (Jb⊗′Jb′)⊗′g

ζb,b′⊗g
−→ J(b⊗b′)⊗′g = (b⊗b′).Bg

When it is clear from context we will simply write . for .B.

1.12.1. More generally, let N be a left G-actegory. Then it becomes a left
B-actegory as follows. The action functor is of course B .B N := J .G N :
B ×N → N . The action coherence component ΨB

b,b′,n is the composition

b.B(b
′.Bn) = Jb.G(Jb′.Gn)

ΨG
Jb,Jb′,n−→ (Jb⊗′Jb′).Gn

ζb,b′⊗n
−→ J(b⊗b′).Gn = (b⊗b′).Bn

We say that N is equipped with a restricted action of B via (J, ζ, ξ) and
denote it (J, ζ, ξ)∗(N ) or simply J∗(N ) or even BN . It is easy to check that
any G-equivariant functor (K, γ) : N → P of G-actegories, restricts to the
B-equivariant functor J∗(K, γ) := (K, γJ) : BN → BP , where the restricted
coherence γJ : B.BK → K ◦(B.BN ) has components (γJ)b

n = γJb
n : b.BKn =

Jb .G Kn → K(Jb .G n) = K(b .B n).

1.13. (Definition of pseudocoequalizers) In an arbitrary 2-category A, given a
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parallel pair of 1-cells F, G : A → B their pseudocoequalizer is a triple (C, p, σ)
where p : B → C is a functor, σ : p◦F ⇒ p◦G is an invertible 2-cell such that

• (1-dimensional aspect) For any other 1-cell r : B → D and an invertible
2-cell τ : r ◦ F ⇒ r ◦ G there is a unique 1-cell v : C → D such that
r = v ◦ p and τ = vσ. We say that 1-cell v is induced by universality (of the
pseudocoequilizer).

• (2-dimensional aspect) Suppose we are given 1-cells r, r′ : B → D, a 2-cell
γ : r ⇒ r′ and an invertible 2-cells τ : rF ⇒ rG, τ ′ : r′F ⇒ r′G such that
the diagram

rF
γF //

τ

��

r′F

τ ′

��
rG

γG // r′G

(4)

commutes. Let v, v′ : C → D be the 1-cells induced by universality of the
pseudocoequalizer satisfying vp = r and v′p = r′. Then there is a unique
2-cell δ : v ⇒ v′ such that δ ◦ p.

1.13.1. (Alternative formulation of universality of pseudocoequalizers) Con-
sider for every object D in A the category PsF,G

D whose objects are triples
(D, r, τ) where r : F ⇒ G and σ : rF ⇒ rG is invertible and whose mor-
phisms δ : (D, r, τ) → (D′, r′, τ ′) are those 2-cells δ : r ⇒ r′ in A for which
δG ◦ τ = τ ′ ◦ δF . There is a natural “precomposition” functor

◦ (D, r, σ) = A(D,D′) ◦ (D, r, r
σ⇒ r′) : A(D,D′) → PsF,G

D′ ,

(D v−→ D′) 7→ v ◦ (D, r, σ) := (D′,B vr−→ D′, vr
vσ

=⇒ vr′),

(v
γ

=⇒ v′) 7→ (v
γ

=⇒ v′) ◦ (D, r, σ) := (vr
γr

=⇒ v′r).

By naturality of γ, one has γrG ◦ vτ = v′τ ◦ γrF hence δ := γr is indeed
a morphism in PsF,G

D′ . Now the pseudocoequilizer (C, p, σ) is characterized
by the statement that ◦ (C, p, σ) : A(C,D′) → PsF,G

D′ is an isomorphism of
categories for every object D′ in A. This replaces both the 1-dimensional and
the 2-dimensional aspect above.

1.14. (Pseudocoequalizers in Cat) When the 2-category is Cat, the pseudo-
coequalizers exist for all parallel pairs of functors. The following explicit con-
struction does the job.

First form a graph C0 whose vertices (objects) are the objects of B and which
has the set of arrows MorB∐

S
∐

S−1 where

(i) morphisms from B form a copy of the set MorB

(ii) formal arrows F (a)
sa−→ G(a), for all a ∈ ObA form a set S
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(iii) formal arrows G(a)
s−1
a−→ F (a) for all a ∈ ObA form a set S−1

Then form a free category Cf on this graph with composition ◦f . The category
C is the quotient of Cf by the smallest equivalence relation ∼ on the set of
morphisms containing the relations from B (in other words h◦f h′ ∼ h◦Bh′ for
all pairs h, h′ of morphisms in B), the relations sa◦s−1

a ∼ idG(a), s
−1
a ◦sa ∼ idF (a)

for all a ∈ ObA and G(f) ◦ sa ∼ sa′ ◦ F (f) for all morphism f : a → a′ in A.

Let [f ] be the class in C of the morphism f ∈ MorB. The tautological map
p : f 7→ [f ] is in fact a functor (which is identity on objects). The maps sa are
in fact components of a natural isomorphism of functors s : pF ⇒ pG. The
triple (C, p, s) is in fact a pseudocoequalizer of the parallel pair F, G.

Given r : B → D and invertible τ : rF ⇒ rG as above, one defines first the
functor v0 : C0 → D by v0(b) = r(b) for all objects b in B, v0(f) = r(f) for
all f ∈ MorB, v0(sa) = τa and v0(s

−1
a ) = τ−1

a for all a ∈ ObA. This functor
trivially extends to a functor vf : Cf → D on the free category Cf . Finally one
checks that the extension vf factors down to a (unique) functor v : C → D.
Then r = vp and τ = vs.

For the 2-dimensional aspect in Cat we proceed as follows. The components of
δ are identical to the components of γ, i.e. for all b ∈ ObB, one has δb = γb.
The fact that these components form a natural transformation δ : v ⇒ v′,
includes both the naturality of γ and the identity (4): for each object a ∈ A,
and for each morphism g : b → b′ in B the following diagrams commute:

v(F (a))

v([sa])
��

δF (a) // v′(F (a))

v′([sa])
��

v(G(a))
δG(a) // v′(G(a))

v(b1)

v(g)
��

δb1 // v′(b1)

v′(g)
��

v(b2)
δb2 // v′(b2)

1.15. Lemma. In Cat pseudocoequalizers commute with finite products: given
pseudocoequalizers (Ci, pi, si) of parallel pairs Fi, Gi : Ai → Bi for all i =
1, . . . , n, the pseudocoequalizer of the pair

∏
i Fi,

∏
i Gi :

∏
iAi →

∏
i Bi may be

chosen in the form (
∏

i Ci,
∏

i pi,
∏

i si).

Proof. We may assume that all (Ci, pi, si) are realized as in the explicit con-
struction above and we also construct such an explicit pseudocoequalizer
(E , r, t) of

∏
i Fi,

∏
i Gi. It is sufficient to exhibit an isomorphism q : E → ∏

i Ci

of categories for which qr =
∏

i pi and qt =
∏

i si. By construction the classes
of objects both for E and

∏
i Ci coincide with Ob(

∏
i Bi) =

∏
i Ob(Bi) and

we choose q to agree with the identity map on objects. To define q on mor-
phisms we first define the appropriate functor qf : Ef →

∏
i Ci on the free

category Ef (from the construction of pseudocoequalizer above) and then we
check relation by relation that it descends to the quotient E . The generat-
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ing morphisms of Ef are either morphisms
∏

i bi from
∏

i Bi, for such the map
qf (

∏
i bi) =

∏
i[bi]i where [b]i = pi(bi) is the class in Ci of the morphism bi

in (Ci)f ; or the morphisms s∏
i
ai

where
∏

i ai is an object in Ai; in the latter

case we define qf (
∏

i ai) =
∏

i[(si)ai
]i =

∏
i pi((si)ai

). We leave to the reader to
check that qf descends to the map q : E → ∏

i Ci and that it is an isomorphism
of the categories, and to realize that qr = r =

∏
i pi and qt = t =

∏
i si.

1.16. In an arbitrary 2-category consider the following diagram

A1
G1

//
F1 //

qA
��

wwwww�α,β

B1
p1 //

qB
��

C1

v

��
A2

G2

//
F2 //B2

p2 // C2

(5)

We say that such a diagram is sequentially commutative if v ◦ p1 = p2 ◦ qB

and the two cells written as the two labels of the “double” 2-cell in the left-
hand square have the appropriate sources and targets, i.e. α : qB◦F1 ⇒ F2◦qA
and β : qB ◦ G1 ⇒ G2 ◦ qA. We use the convention not to write the second
label β for the ’double’ two cell on the left if it is the identity 2-cell.

Suppose that the upper fork (that is the part of the diagram consisting of
arrows (F1, G1, p1) is the pseudocoequalizer sequence. In other words, this
line is equipped with a given invertible 2-cell σ1 : p1F2 ⇒ p1G1 such that
(C1, p1, σ1) is the pseudocoequalizer of the pair (F1, G1). Further suppose that
the lower fork (F2, G2, p2) is also equipped with some invertible 2-cell σ2 :
p2F2 ⇒ G2 which does not need however be universal, i.e. we do not require
the pseudocoequalizer downstairs. However we assume now that α and β are
invertible, and do not assume that v in the diagram exists, but we construct
it by the universality of the pseudocoequalizer.

To this aim, we contruct an invertible 2-cell τ : p2qBF1 ⇒ p2qBG1 as the
composition p2(β

−1 ◦ (σ2qA) ◦ α). Then v : C1 → C2 is uniquely characterized
by v◦(C1, p1, σ1) = (C2, p2qB, p2(β

−1 ◦(σ2qA)◦α)). In particular, for any object
a in A1, the morphism v((σ1)a) is the composition

qB(F1(a)) αa //F2(qA(a))
(σ2)qA(a) //G2(qA(a))

β−1
a // qB(G1(a)).

1.17. We want to describe the compatibility of biactegory construction and
induction for actions of monoidal categories. In a project with U. Schreiber,
we are studying the categorified associated bundles which in the simplest case
boil down to an induction of the following type.
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In the setting of 1.12, the pseudocoequalizer

M×B × G
M×.

//
/×G //M×G //M⊗B G

is equipped with the natural right G-action, namely the unique bifunctor
(M⊗B G) × G → M ⊗B G extending the action bifunctor M× (G ⊗′ G) :
M× G × G → M× G ↪→ M⊗B G and such that for the additional s-type
morphisms ([sm,b,g], g

′) 7→ [sm,b,g⊗′g′ ] and for any morphism γ : g1 → g2 in G

([sm,b,g], γ) 7→ [sm,b,g⊗′g2 ] ◦ ((m / b)× (g⊗′ γ)) = (m× (b . (g ◦ γ))) ◦ [sm,b,g⊗′g1 ].

The components of the associativity coherence for this action are the maps

(m, g)/(g1⊗′g2) = (m, g⊗′(g1⊗′g2))
m×a−1

g,g1,g2−→ (m, (g⊗′g1)⊗′g2) = ((m, g)/g1)/g2.

This way we obtained the induced G-actegory from B-actegory (M, /, Ψ, u)
via the monoidal functor (J, ζ, ξ). Though the notation surpresses some data
it is usually denoted by IndGBM = M⊗B G.

1.17.1. We now want to extend IndGB to a 2-functor what is not completely
trivial; moreover we can define IndGB only on pseudo-B-coequivariant mor-
phisms and not for lax or colax ones. The reason is the universal property of
pseudocoequalizers which allows us only this.

Let (F, γ) : M→N be a pseudo-B-equivariant functor. Thus for each object
M in M and B in B, the component γM,B : FM /B → F (M /B) is invertible.
We want to define a functor (F, γ) ⊗B G = IndGB(F, γ) : IndGBM→ IndGBN . It
is defined by the 1-dimensional aspect of the universality of pseudocoequalizer
via the following sequentially commutative diagram

M×B × G
M×.

//
/×G //

F×B×G
��

M×G p1 //

F×G
��

M⊗B G
(F,γ)⊗BG
��

N × B × G
N×.

//
/×G //N × G

����
>Fγ×G

p2 //N ⊗B G

It is clear that IndGB(F, γ) is a strict G-equivariant functor. In our standard
representation of pseudocoequalizers in Cat, it agrees with F ×G on the mor-
phisms in the image of p1 and it sends [sMm,b,g] 7→ [sNF (m),b,g] ◦ (γ−1

m,b × idg).

Given a natural transformation of pseudo-B-equivariant functors α : (F, γ) ⇒
(F ′, γ′) and using the 2-dimensional aspect of the universal property of pseu-
docoequalizers we clearly have a 2-cell IndGBα = α ⊗B G : IndGB(F, γ) →
IndGB(F

′, γ′).
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1.18. If M is in addition equipped with a A-B-biactegory structure then
M⊗B G inherits a left A-action. The left A-action on M⊗B G is the vertical
dotted arrow vA in the sequentially commutative diagram

A×M×B × G
A×M×.

//
A×/×G //

.×B×G
��





�	 l×G,id

A×M×G p1 //

.×G
��

A×M⊗B G
vA
��

M×B × G
M×.

//
/×G //M×G p2 //M⊗B G

where both the lower and the upper forks are the pseudocoequalizer forks. We
have

l × G : (.× G) ◦ (A× /× G) ⇒ (/× G) ◦ (/× B × G),

(.× G) ◦ (A×M× .) = (M× .) ◦ (/× B × G),

vAp1 = p2(.× G).

Notice that I do not distinguish between A× (M⊗B G) and (A×M) ⊗B G
and hence I drop the bracket. Here A×M is acted upon by the right B-action
A × /M and the reader may check that A × (M⊗B G) and (A ×M) ⊗B G
are canonically isomorphic, e.g. using lemma 1.15. Moreover, this canonical
isomorphism is compatible with the further actions and other maps in the
calculations below.

1.19. In more complicated diagrams we will omit the cartesian product sign.
In order to find the coherences for our candidate for the monoidal action
vA : A×M⊗B G →M⊗B G. we first consider the following pasting diagram:

AAMB

⊗MB

��

A.B

&&MMMMMMMMMM
AA/ //





�	 Al

AAM
A.

yysssssssss

⊗M

��

AMB
.B
��

A/ //





�	 l

AM
.

��
3333U]

Ψ

MB





BJAΨ

/ //M

AMB A/
//

.B

88qqqqqqqqqq





AIl

AM
.

eeKKKKKKKKK

(6)

whose external square commutes, i.e. it is filled with an identity 2-cell. This
amounts to the following equation among the natural transformations of func-
tors . ◦ (⊗/) ⇒ /(.B)(A . B) holds:

(/ ◦ AΨ)(l ◦ ⊗MB) = l(. ◦ Al)(Ψ ◦ AA/).

Componentwise, this means that for any a1, a2 ∈ ObA, m ∈ ObM, b ∈ ObB,

12



the diagram

(a1 ⊗ a2) . (m / b)

l
a1⊗a2
m,b

��

Ψa1,a2,m/b// a1 . (a2 . (m / b))
a1.l

a2
m,b// a1 . ((a2 . m) / b)

l
a1
a2.m,b

��
((a1 ⊗ a2) . m) / b

(Ψa1,a2,m)/b // (a1 . (a2 . m)) / b

commutes. This is one of the two symmetric pentagons in the definition of the
distributive law between two monoidal actions.

1.20. Consider the following diagram whose rows are pseudocoequalizer se-
quences

AAMBG
AA/G //
AAM.

//

A.BG

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

⊗MB
��

||||z� AlG

AAMG p3 //

A.G

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

⊗MG
��

AAM⊗B G
vb

��
vu

!!

AMBG
A/G //
AM.

//

.BG

��>
>>

>>
>>

>>
>>

>>
>>

>>
>





�
 lG

AMG p4 //

.G

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

AM⊗B G

vd

!!

AMBG
A/G //
AM.

//

.BG
��

����
CKAΨ





�
 lG

AMG p1 //

.G
��

����
DL

Ψ

AM⊗B G
vf

��

����
DL

Ψ̃

MBG
/G //
M.

//MG p2 //M⊗B G

(7)

with pseudocoequalizer 2-cells σ1, σ2, σ3, σ4. In particular σ2 : p2 ◦ (/ × G) ⇒
p2 ◦ (M× .) : M×B × G →M⊗B G. We want to show the existence of an
invertible 2-cell Ψ̃ : vdvb ⇒ vfvu filling the most right/dotted square using the
2-dimensional aspect of pseudocoequalizer AAM⊗B G. For this we need to
show that that the diagram (4) commutes where 1

F := A×A× /× G : A×A×M×B × G → A×A×M×G

G := A×A×M× . : A×A×M×B × G → A×A×M×G

r := p2(.× G)(⊗×M× G) : A×A×M×G →M⊗B G

r′ := p2(.× G)(⊗×M× G) : A×A×M×G →M⊗B G

τ := (σ2(.× B × G)) ◦ l × G)(⊗×M×B)

τ ′ := (σ2(.× B × G ◦ A × .× B × G))(p2(l × G)(A× /× B × G))(p2(.× G)(A× l × G))

1 Here we used our usual convention that when we concatenate a sequence of func-
tors and one natural transformation we do the whiskering, and if we concatenate
two natural transformations we do the vertical composition. When we write × (do
not concatenate) then the concatenation of functors is the composition. Finally, ×
is stronger binding than the compositions.

13



Decriptively, τ is obtained by pasting l × G, σ2 and the identity 2-cell (⊗ ×
M× G) ◦ (A × A × / × G) ⇒ (A × / × G) ◦ (⊗ ×M× B). Similarly, τ ′ is
obtained by pasting A× l × G, l × G and σ2. Thus the diagram (4) becomes

r ◦ (AA / G)
p2(ΨG)(AA/G) //

τ

��

r′ ◦ (AA / G)

τ ′

��
r ◦ (AAM.)

p2(ΨG)(AAM.) // r′ ◦ (AAM.)

(8)

and the role of γ : r ⇒ r′ from (4) is played by p2(Ψ × G) : r ⇒ r′.
From diagram (7) we infer that the lower horizontal arrow in (8), equals
p2(M.)(AΨG)(⊗MB). Thus the left and bottom arrow compose to the past-
ing of AΨG, lG and σ2, while the top and right arrows compose to the pasting
of AlG, lG, ΨG and σ2. Therefore the square (8) commutes, because all except
σ2 exactly correpond to the pasting diagram (6) times G, and pasting with σ2

is added to both sides. By universality, r induces exactly the composition vdvb,
r′ induces vfvu and finally Ψ̃ is induced by p2(Ψ × G). In the standard rep-
resentation of the pseudocoequalizers in Cat, the component Ψ̃(a,a′,m,g) agrees
with Ψa,a′,m × idg for any object (a, a′, m, g) in A×A×M× G. Taking into
account the natural isomorphisms AA(M⊗B G) ∼= AAM⊗B G and alike it is
clear that that Ψ̃ serves as the coherence for the left action of A on M⊗B G.
The coherence pentagon may be checked componentwise, and indeed it boils
down to the coherence pentagon for Ψ, in fact the whole pentagon times G.

Finally, the fact that M×G has commuting left A-action and right G-action,
means that this is true for A×M⊗BG (assuming the standard representation
of the pseudocoequalizer), hence the distributive law is the identity.

1.21. More generally, this analysis may be done with almost no changes, for
a general B-G-biactegory N instead of G, and where B and G are not related,
instead of the case N = G as a B-G-biactegory.

Theorem. Given three monoidal categories, A,B and G, the above procedure
defines a bi-2-functor

⊗B : (A− actp − B)× (B − actp − C) → (A− actp − C)

1.22. Given any object M in G − act−B there is a biequivariant equivalence
G⊗BM∼= M induced by the action / : M×B → B. Notice that G⊗BM in our
standard representation has the identity as the (structural) distributive law.
As a corollary, every biactegory is equivalent to a biactegory with commuting
actions.
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The equivalence is in fact the map v induced by the universality in

G × G ×N
G×.

//
⊗×N //G ×N

.
&&MMMMMMMMMMM

p //G ⊗G N
v

��
N

with the 2-cell Ψ : .(⊗×N ) → .(G×.). The quasiinverse of v is p◦ (1G×N ).

Indeed, v◦p◦(1G×N ) = 1G .N
u−1

∼= N . We need to show also p◦(1G×N )◦v ∼=
G ⊗G N for what we may use the universality of pseudocoequalizer provided
that p◦(1G×N )◦v◦p ∼= p. Indeed, we do have p◦(1G×N )◦v◦p = p◦(1G×.)
and we may observe the isomorphisms

p(g, n)
p(ug×idn)−→ p((1G ⊗ g), n)

σ1g,g,n−→ p(1G, (g . n)).

natural in objects g in G and n in N . Here σ is the two cell of the pseu-
docoequalizer row. Notice that N is just equivalent and not isomorphic to
G ⊗G N , and in particular (N , p, Ψ) is not itself a pseudocoequalizer of

G × G ×N
G×.

//
⊗×N //G ×N ,

but rather a representative of its bicoequalizer.

1.23. Theorem. Given any monoidal functor (J, ζ, ξ) : B → G, the restriction
2-functor (J, ζ, ξ)∗ : B − actp → G − actp is a right pseudoadjoint to the
induction 2-functor IndGB = ⊗B G : G − actp → B − actp.

The proof is rather involved, and adjunction is really in pseudo sense. We just
sketch the definition of the pseudoadjunctions and leave the coherences for
the 2-cells involved as an exercise to the reader. In this proof we work with
the left actegories.

The components of the counit of the pseudoadjunction are the 2-functors
εN : G⊗B (J, ζ, ξ)∗N → N for all left G-actegories N are defined as follows (in
terms of the standard representation of pseudocoequalizers). On the image of
the natural projection p : G × N → G ⊗B N , the functor εN agrees with the
application of the left G action on N , i.e. εN ( , ) = . . Then set [sg,b,m] 7→
ΨG

g,J(b),m. This amounts to extend εN to the whole G⊗BN by considering what
happens to σ(g,b,m) by the universality in the diagram

G × B ×N
G×J.

//
/×G //

G×J×N
��

G ×N p1 //

Id
��

G ⊗B (J, ζ, ξ)∗N
εN

��
G × G ×N

G×.
//

⊗×N //G ×N . //N
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whose row forks are equipped with invertible 2-cells σ and ΨG respectively.

This counit is just a pseudonatural transformation. Namely, given a (pseudo)
G-equivariant transformation j : N → P with coherence υ, the square

G ⊗B (J, ζ, ξ)∗N εN //

G⊗Bj

��

N
j

��
G ⊗B (J, ζ, ξ)∗P εP //

uuuu
6>υ

P

commutes up to an invertible two cell υ : . j( ) → j( . ). To see this notice
that at the level of objects, . j = εP ◦ ( ⊗B j) and that υ is still natural with
respect to [s]-morphisms.

1.24. (Induction in stages) Given monoidal functors (J, ζ, ξ) : B → C and
(J ′, ζ ′, ξ′) : C → G two-stage induction is equivalent to the induction for the
composed monoidal functor (J ′ ◦ J, ζ ′ ? ζ, ξ′ ? ξ). In other words, there is a
natural equivalence of 2-functors

IndGC ◦ IndCB
∼= IndGB

where the monoidal functors are surpressed from the notation, as usual.

1.25. ⊗B as above gives a monoidal product helping to define a tricategory of
monoidal categories, biactegories between them, (pseudo-)biequivariant func-
tors of biactegories, and natural transformations of biequivariant functors.
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