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N E onigr-ToNe N YBK Adr ad r N Ea

Well, we do not know yet. We know that we can
start with a very general algebra calledtholattice and
then add axioms until we obtain an algebra calébbert
lattice which Is I1somorphic to aninfinite dimensional ¢
Hilbert spacein which we can describe an?/ guantur 4~
system. If we add more axioms we shall g®ind-

ular lattice isomorphic to afinite dimensional Hilbert

Classical computers are basedlots that correspond to twc
states of classical logic %ates that are in effect just swesc
for the current passing through a computer:opdr) and O

(closed. Quantum computers are based on infinitely me
superpositiona|1i)+ 310) of two basic stateg Ig and|0)) of

quantum bits—qubits I.e, quantum systems |Iohotons, ele
trons, atoms,...). As opposed to digitalized classicalmom . . . L
tation and their exponentially growirﬁf? gate passages farbits, quantum spaceof spin systems In which we can descripabits
computation can make use of that infinitely many possiblestaf a single | @S they pasgjuantum gatesn any quantum circuif I.e., |
qubit to speed up calculations exponentially. BUt so fat Hes been suc-§ quantum computer Eventually, b?’ adding the distributivity we get th

cessfully devise OnIY for specially designed algorithms‘ome(froblems. Boolean algebrai.e., distributive lattice Now, every classical digital-

Can we find a general quantum algebra that would correspahe Boolean | 12€d calculation can be implemented into a quantum compegeause
algebra of classical computers? anK.BooIean algebra i1s modular. But with quantum calcuhati@e might
achi

eve much more, If we succeeded in approximating Hillad¢tites by
modular lattices, I.e., substituting finite dimensionalddrt space for In-
finite dimensional one. Hilbert space Iinfinite dimensiayasitems from
space continuum, e.d., positions of electrons, protond, raautrons In
molecules. Hence, such an approximation would enable usdotly sim-
ulate molecules. In our approach to this program we find néecdacon-
ditions and new infinite series of them that could eventusligstitute for

the standard definition of the Hilbert lattice. (Standarfiraigon cannot be
Implemented into a quantum computer because it containstifjaators:

for all andthere existavhich have no operational meaning.) If successf
we would consider cutting off series at particular pointd aarrying out
the afore mentioned approximation.

A single axiom definition obrtholatticesby means of th&heffer stroke) )
readd 1 ((bla)l(alo)Id)l(al((al (DIDDI) —a.

Standard operations can be defined as followlssjunction a« U b =
(a|a)|(b|b); negation o' = ala; conjunction aNb = (a' UDY); clas-
sical implication a« —¢ b = ¢’ U b; in any orthomodular lattice there ar
five (G. Kalmbach, 19 74guantum implicationse —; b,7 =1, ...,5, e.d.,
Sasaki implicationa —; b = o’ U (aNb))—all five reduce ta —( b when
we add the distributivity to an ortholattice, I1.e., In a Beah algebra. We

alsohaver < b= qub=0b 1="quUd: =971

Here are some “old” definitions. Aortholatticein which distributivity (D), modularity (M), orthomodularity(OM),
D: an®Uc)=(anb)U(anNc), M: b<a = an®Uc)=(anb)U(aNc), OM: b<a&c<d = anUc)=(anb)U(anc),
hold is aBoolean algebrdBA), modular lattice(ML), orthomodular lattic OML), respectively.

In 1987[2] we discovered that an ortholattice in whic@lf In 1990 Malinowski proved that or

thomodular lattices do not admi
the deduction theorem.
need operations of Implication a
all? Let us define equivalences

a=pb=(a—¢b)N(b—ga)
a=b=(@nNbU(adNt), i=1,.5

Yes! In 1993 3] and 19984] we proved the conjec-
ture: an ortholattice in which

aﬁob@aéb : aﬁib<:>a§b :

a=pb < a=0b|, a=,b< a=0,1=1,.05

holds i1s aBA, OML, respectively, and vice versa.

In 1985 L. Beran proved that there are 96 one ¢
two variable expressions in any orthomodular lattic

In 2001 [6] we devised algorithms which enabled us to express two
able expression by means of all other five expressions of #imeescate-
gory In an Iidentical way. We also constructed algebras winakie the
same axioms of an Iidentical form for all five operations. Fgample

&Ub:((((bﬁz&)%Z(aﬁzb))ﬁzb)%ZCL)%ZCZ ,i:1,...,5

holds is aBA, OML, respectively, and vice versa. |
any OMLa =, 0= (a —; b)N (b —;a), 1 =1,..,5

hold. (This agrees with 1930 J. Herbrand’s resultt
we can do without the deduction theorem in classi
logic/lattices too.) In 199%6] we also proved

CLEijb S a=0b , 1,7 =1,..,D

wherea =;; b= (a —; )N (b —; a), 7,7 =1,..,5

In 2002[7] we have discovered that all 80 one and two variable “quantexpiessions in any orthomodular lattice are fivefold definBadey all reduce to
classical counterparts (16 altogether) in BA. So even emnst(0,1) and variables (b) are fivefold defined. One of “quantuni’s is, e.g.,((a N b) U (a N

b)) U ((a' Nb)U (a’ NY')) because this expression reducesio BA. ((aUb)N(aUV)) N ((a'U(anbd))U(and')) isone of “quantum” variables becau
It reduces tax In BA. We also found algorithms which express both quantuth@assical operations by means of any other in an identiegl wor example
aUrb=(aU; (bN; (aU; (an; b)) ,72=0,...,5Note that now includes 0 as well, i.e., we can have identical expressipa.gf,a U; b by means ofi U b,

a Uy b,...,a Us b. We used this result to define algebras with such “merged”ajmars. We also obtained several other new algebras in )93

From 2000 till 200810,11,12,13we worked on generation of infinite series of equations irbétl lattices and obtained several Iimportant new results
Godowski’s and Mayet’'s equations and completely new irdisgries ofjeneralised orthoarguesian equatioagA). We definenOA equations as follows:

n 3 n n—1 n—1 n—1
(ap — ag) N (&1(E>CL2) < ay — a3 where CL1<E)CL2 (g = az)N(ay — a3))U((d, — as)N(ah — a3)) CL1<E)CL2 d (a1< = )ag)U((al( = )an)ﬂ(ag( = )an)) , n>4.

Previously known (Day’s, Greechie’s, Godowski’s) ortlopagsian equations (“laws”) are either our 3OA or 40A. Usingagorithms and programs that ru
on our clusters we provdd 3] thatnOA are strictly stronger thaim — 1)OA for n > 7. Some new recently obtained results will be published soon.
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