Energy-Exchange-Free Quantum Gates

ITAMP, Harvard, March 30, 2010

Mladen Pavičić

pavicic@grad.hr ; Web: http://m3k.grad.hr/pavicic

University of Zagreb

Ancient Ideas: Renninger (1960), Dicke (1981),

Pavičić (1986): "Whenever we fail to detect

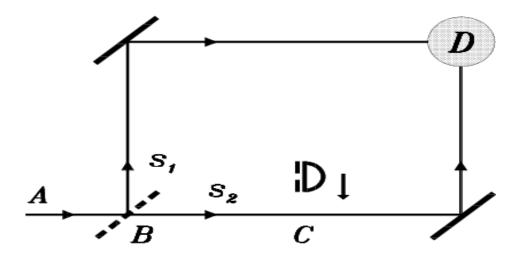
interference we know that something is there."

Ancient Ideas: Renninger (1960), Dicke (1981),

Pavičić (1986): "Whenever we fail to detect

interference we know that something is there."

E.g., Pavičić (1986):

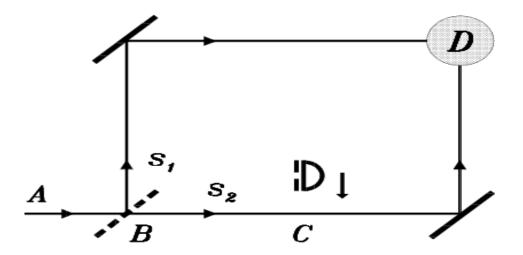


Ancient Ideas: Renninger (1960), Dicke (1981),

Pavičić (1986): "Whenever we fail to detect

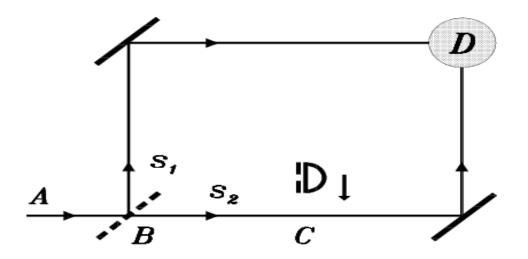
interference we know that something is there."

E.g., Pavičić (1986):



1993 enter Elitzur and Vaidman and say:

Ancient Ideas: Renninger (1960), Dicke (1981), Pavičić (1986): "Whenever we fail to detect interference we know that something is there." E.g., Pavičić (1986):



1993 enter Elitzur and Vaidman and say:

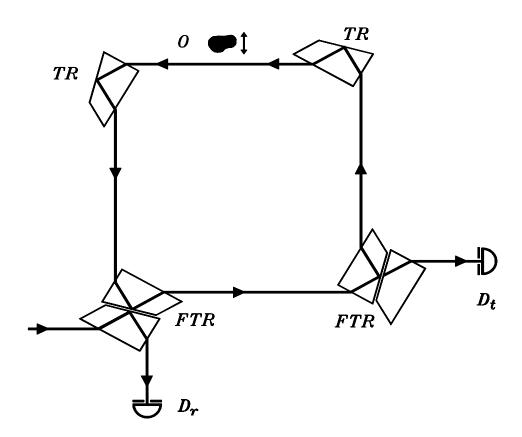
"Measurements might be useful"

Ring Resonator

H. Paul & Pavičić, JOSA B, **14**, 1275 (1997)

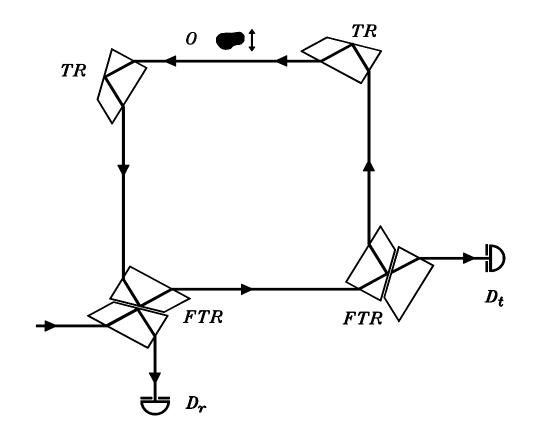
Ring Resonator

H. Paul & Pavičić, JOSA B, **14**, 1275 (1997)



Ring Resonator

H. Paul & Pavičić, JOSA B, **14**, 1275 (1997)



Let us calculate what we get at D_r :

Interference

Reflected portion of the incoming beam:

$$-B_0 = -A\sqrt{R}$$

Interference

Reflected portion of the incoming beam:

$$-B_0 = -A\sqrt{R}$$

After a full round—trip this joins it:

$$B_1 = A\sqrt{1 - R}\sqrt{R}\sqrt{1 - R} e^{i\psi}$$

Interference

Reflected portion of the incoming beam:

$$-B_0 = -A\sqrt{R}$$

After a full round—trip this joins it:

$$B_1 = A\sqrt{1 - R}\sqrt{R}\sqrt{1 - R} e^{i\psi}$$

"All" round trips: interference (a geometric progression) — the total amplitude (D_r) :

$$B = \sum_{i=0}^{\infty} B_i = -A\sqrt{R} \frac{1 - e^{i\psi}}{1 - R e^{i\psi}}$$

Resonator Int.-Free Experiments

```
\psi = \omega — incoming frequency; T — r-t time; \omega_{res} — resonance frequency (\lambda/2 = L/k, L r-t length)
```

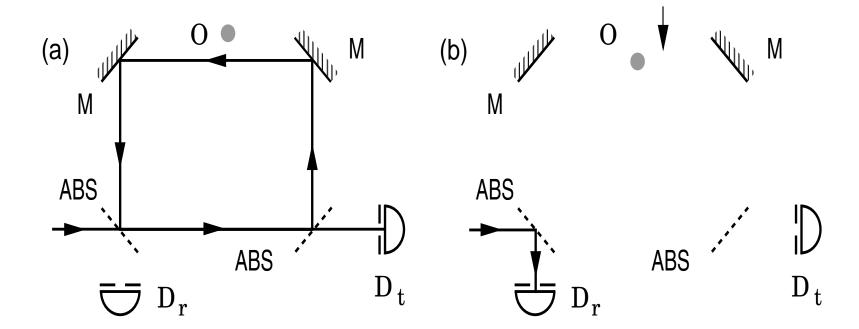
Resonator Int.-Free Experiments

 $\psi=\omega$ — incoming frequency; T — r-t time; ω_{res} — resonance frequency ($\lambda/2=L/k$, L r-t length) So, $\omega=\omega_{res}\Rightarrow B=0$

Resonator Int.-Free Experiments

 $\psi = \omega$ — incoming frequency; T — r-t time; ω_{res} — resonance frequency ($\lambda/2 = L/k$, L r-t length)

So,
$$\omega = \omega_{res} \Rightarrow B = 0$$



Wave-packet calculations

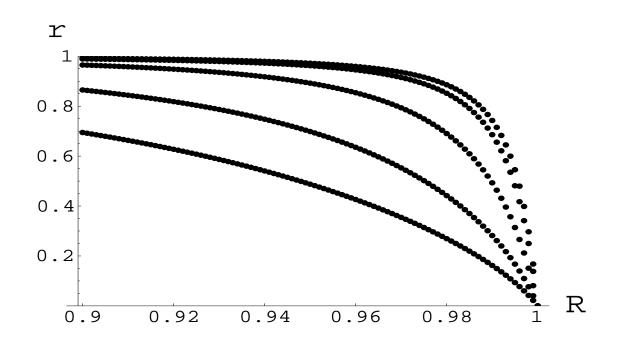
$$r = (1 - R)(1 - \rho^2 R) \Phi,$$
 $t = (1 - R)^2 \Phi$

where $\rho \leq 1$ is a measure of overall losses and

$$\Phi = \frac{\int_0^\infty \frac{\exp[-\mathcal{T}^2(\omega - \omega_{res})^2/2]d\omega}{1 - 2\rho R \cos[(\omega - \omega_{res})T] + \rho^2 R^2}}{\int_0^\infty \exp[-\mathcal{T}^2(\omega - \omega_{res})^2]d\omega}$$

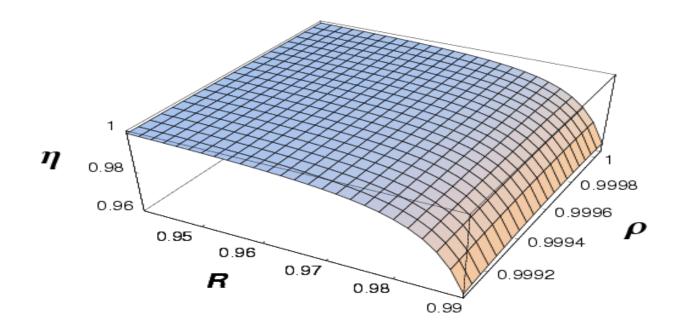
where \mathcal{T} is the coherence time and T is the round-trip time.

Efficiency



r as a function of \mathcal{T}/T for $\rho=0.99$ and $0.9 \leq R \leq 1$: $\mathcal{T}/T=500$ (top), 150, 50, 20, and 10 (bottom). The differences in the shapes stem from the amount of losses.

Efficiency



The efficiency of the suppression of the reflection into D_r when there is no object in the resonator; ρ is the measure of losses

Pavicic, M., Nondestructive Interaction-Free Atom-Photon Controlled-NOT Gate, Physical Review A, 75, 032342-1-8 (2007)

Pavicic, M., Quantum Computation and Quantum Communication: Theory and Experiments, Springer, New York (2005)

⁸⁷Rb has closed shells up to 4p and an electron in ground state 5s ($\mathbf{J} = \mathbf{L} + \mathbf{S}$); We consider only one excited state: $5p_{1/2}$.

⁸⁷Rb has closed shells up to 4p and an electron in ground state 5s ($\mathbf{J} = \mathbf{L} + \mathbf{S}$); We consider only one excited state: $5p_{1/2}$.

Total nuclear ang. mom. ${\bf K}$ and ${\bf J}$ give the total ang. mom. of the atom: ${\bf F}={\bf J}+{\bf K}.$

⁸⁷Rb has closed shells up to 4p and an electron in ground state 5s ($\mathbf{J} = \mathbf{L} + \mathbf{S}$); We consider only one excited state: $5p_{1/2}$.

Total nuclear ang. mom. ${\bf K}$ and ${\bf J}$ give the total ang. mom. of the atom: ${\bf F}={\bf J}+{\bf K}$.

⁸⁷Rb has K=3/2, and its j=1/2 ground states are split by hyperfine interaction into doublets with $F=K\pm j=3/2\pm 1/2=2,1$.

⁸⁷Rb has closed shells up to 4p and an electron in ground state 5s ($\mathbf{J} = \mathbf{L} + \mathbf{S}$); We consider only one excited state: $5p_{1/2}$.

Total nuclear ang. mom. ${\bf K}$ and ${\bf J}$ give the total ang. mom. of the atom: ${\bf F}={\bf J}+{\bf K}.$

⁸⁷Rb has K=3/2, and its j=1/2 ground states are split by hyperfine interaction into doublets with $F=K\pm j=3/2\pm 1/2=2,1$.

External magnetic field B splits the levels into magnetic Zeeman sublevels:

$$m=-F,-F+1,\ldots,F$$
. (See Fig. below.)

Atom vs. photon

To excite and deexcite electrons between $m=\pm 1$ and m=0 we must use circularly polarized photons with $j_p=1$ and $m_{j_p}=\pm 1$

Atom vs. photon

To excite and deexcite electrons between $m=\pm 1$ and m=0 we must use circularly polarized photons with $j_p=1$ and $m_{j_p}=\pm 1$

When an atom receives angular momentum of a photon, the following selection rules must be met:

$$\Delta l = \pm 1, \qquad \Delta m = m_{j_p} = \pm 1.$$

Atom vs. photon

To excite and deexcite electrons between $m=\pm 1$ and m=0 we must use circularly polarized photons with $j_p=1$ and $m_{j_p}=\pm 1$

When an atom receives angular momentum of a photon, the following selection rules must be met:

$$\Delta l = \pm 1, \qquad \Delta m = m_{j_p} = \pm 1.$$

When a photon is emitted, the same selection rules must be observed.

Atom vs. photon (ctnd.)

By solving Schrödinger equation for our three-level system

$$\hat{H}|\Psi\rangle = i\hbar \frac{\partial |\Psi\rangle}{\partial t},$$

Atom vs. photon (ctnd.)

By solving Schrödinger equation for our three-level system

$$\hat{H}|\Psi\rangle = i\hbar \frac{\partial |\Psi\rangle}{\partial t},$$

we arrive at the Hamiltonian

$$\hat{H} = \frac{\hbar}{2} \begin{bmatrix} 0 & \Omega_1(t) & 0 \\ \Omega_1(t) & 2\Delta & \Omega_2(t) \\ 0 & \Omega_2(t) & 0 \end{bmatrix}$$

 Ω_1 and Ω_2 are Rabi frequencies

Excited state drops out

One of the eigenstates of the Hamiltonian is

$$|\Psi^0\rangle = \frac{1}{\sqrt{\Omega_1^2(t) + \Omega_2^2(t)}} (\Omega_2(t)|g_1\rangle - \Omega_1(t)|g_2\rangle)$$

Excited state dropsout

One of the eigenstates of the Hamiltonian is

$$|\Psi^0\rangle = \frac{1}{\sqrt{\Omega_1^2(t) + \Omega_2^2(t)}} (\Omega_2(t)|g_1\rangle - \Omega_1(t)|g_2\rangle)$$

It depends only on "dark states" $|g_1\rangle$ and $|g_2\rangle$

Excited state dropsout

One of the eigenstates of the Hamiltonian is

$$|\Psi^0\rangle = \frac{1}{\sqrt{\Omega_1^2(t) + \Omega_2^2(t)}} (\Omega_2(t)|g_1\rangle - \Omega_1(t)|g_2\rangle)$$

It depends only on "dark states" $|g_1\rangle$ and $|g_2\rangle$

We can use this to obtain a direct transfer of electrons from $|g_1\rangle$ to $|g_2\rangle$ without either emitting or absorbing photons on the part of atom in the following way—*Stimulated Raman adiabatic passage* (STIRAP).

STIRAP

Experimentally, let photons be laser beams.

STIRAP

Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser before switching on and off the first one.

STIRAP

Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser before switching on and off the first one.

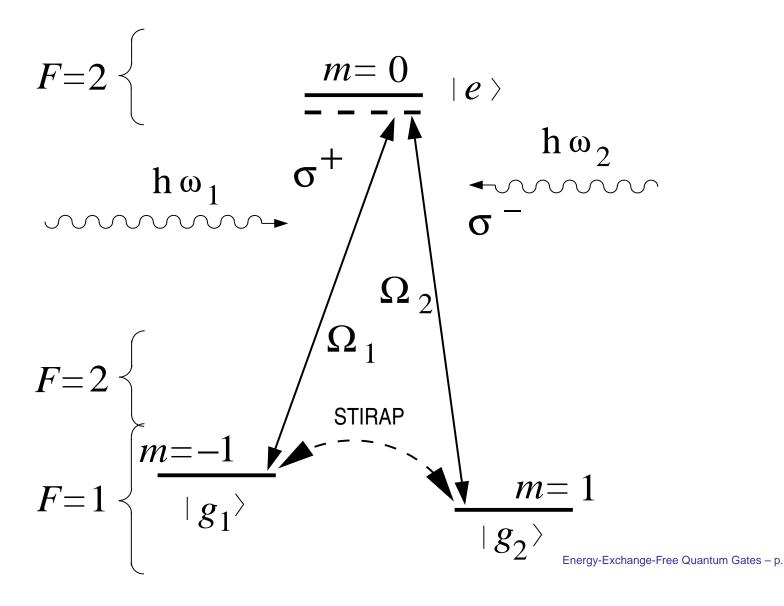
This can be described by

$$\left| \langle g_1 | \Psi^0 \rangle \right|^2 = 1 \quad \text{for} \quad t \to -\infty$$

$$\left| \langle g_2 | \Psi^0 \rangle \right|^2 = 1 \quad \text{for} \quad t \to +\infty$$

Adiabatic complete population transfer $|g_1\rangle \rightarrow |g_2\rangle$ is STIRAP:

STIRAP $|g_1\rangle \leftrightarrow |g_2\rangle$



Interaction-free "excitation"

A left-hand circularly polarized photon *could* excite an atom from its ground state $|g_1\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon *could* excite the atom from $|g_2\rangle$ to $|e\rangle$.

Interaction-free "excitation"

A left-hand circularly polarized photon *could* excite an atom from its ground state $|g_1\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon *could* excite the atom from $|g_2\rangle$ to $|e\rangle$.

So an L-photon will "see" the atom in $|g_1\rangle$ but will not "see" it when it is in $|g_2\rangle$. With an R-photon, the opposite is true.

Interaction-free "excitation"

A left-hand circularly polarized photon *could* excite an atom from its ground state $|g_1\rangle$ to its excited state $|e\rangle$ and a right-hand circularly polarized photon *could* excite the atom from $|g_2\rangle$ to $|e\rangle$.

So an L-photon will "see" the atom in $|g_1\rangle$ but will not "see" it when it is in $|g_2\rangle$. With an R-photon, the opposite is true.

We can induce a change of the atom from $|g_1\rangle$ to $|g_2\rangle$ and back by a STIRAP process, with two additional external laser beams

State notation

We feed our resonator with $+45^{\circ}$ and -45° linearly polarized photons.

In front of an atom we place a quarter-wave plate (QWP) to turn a 45° -photon into an R-photon and a -45° -photon into an L-photon.

Behind the atom we place a half-wave plate and then another QWP to transform the polarization back into the original linear polarization.

State notation (ctnd.)

We denote the atom states as follows:

$$|0\rangle = |g_1\rangle, \qquad |1\rangle = |g_2\rangle$$

They are control states; atom is control qubit.

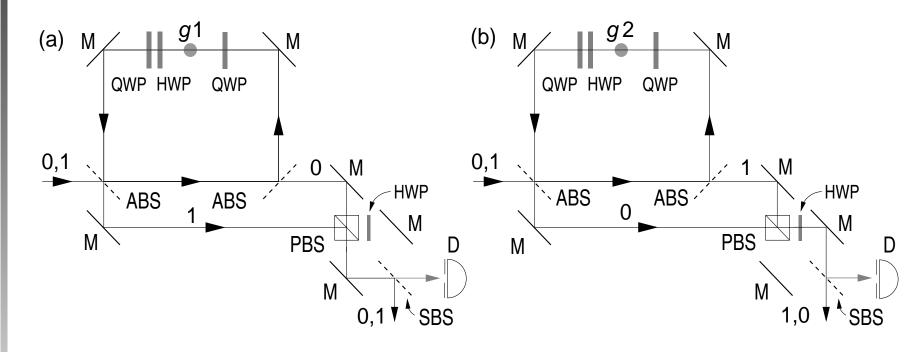
We denote the photon states as follows:

$$|0\rangle = |45^{\circ}\rangle, \qquad |1\rangle = |-45^{\circ}\rangle$$

They are target states; photons are target qubits.

For example, $|01\rangle$ means that the atom is in state $|g_1\rangle$ and the photon is polarized along -45° .

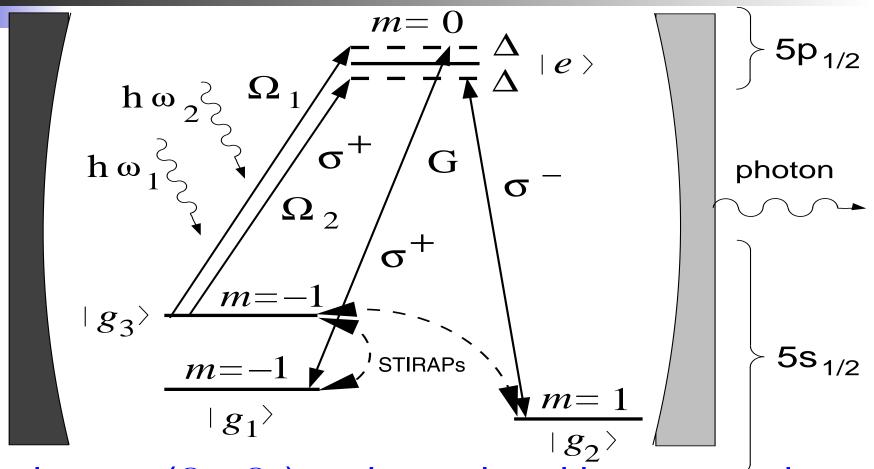
Interaction-free CNOT gate



- (a) The atom is in state $|g_1\rangle$ and can absorb $|1\rangle$;
- (b) The atom is in state $|g_2\rangle$ and can absorb $|0\rangle$;

$$|00\rangle \rightarrow |00\rangle, |01\rangle \rightarrow |01\rangle, |10\rangle \rightarrow |11\rangle, |11\rangle \rightarrow |10\rangle$$

Superposition STIRAP



Two pump beams $(\Omega_1,\,\Omega_2)$ and a cavity with atom–cavity coupling (G) instead of the Stokes laser beams produce superposition $\alpha|g_1\rangle+\beta|g_2\rangle$. Energy-Exchange-Free Quantum Gat

Superposition (ctnd.)

The corresponding Hamiltonian is

$$\hat{H} = rac{\hbar}{2} \begin{bmatrix} 0 & \Omega_1(t) & 0 \\ \Omega_1(t) & 2\Delta & 2G \\ 0 & 2G & 0 \end{bmatrix}$$

 $G = \sqrt{\hbar\omega/(2\varepsilon_0 V_{\rm cavity})}$ is the atom-cavity coupling constant ($V_{\rm cavity}$ is the cavity mode volume).

Superposition (ctnd.)

The corresponding Hamiltonian is

$$\hat{H} = rac{\hbar}{2} \begin{bmatrix} 0 & \Omega_1(t) & 0 \\ \Omega_1(t) & 2\Delta & 2G \\ 0 & 2G & 0 \end{bmatrix}$$

 $G = \sqrt{\hbar\omega/(2\varepsilon_0 V_{\rm cavity})}$ is the atom-cavity coupling constant ($V_{\rm cavity}$ is the cavity mode volume).

The photon which supports the cavity modes and the population of g_1 and g_2 levels eventually leaks from the cavity.

$$|\Psi(t)\rangle = \frac{\alpha}{\sqrt{4G^2 + \Omega_1(t)}} (2G|g_3, \emptyset\rangle - \Omega_1(t)|g_1, R\rangle) + \frac{\beta}{\sqrt{4G^2 + \Omega_2(t)}} (2G|g_3, \emptyset\rangle - \Omega_2(t)|g_2, L\rangle).$$

$$|\Psi(t)\rangle = \frac{\alpha}{\sqrt{4G^2 + \Omega_1(t)}} (2G|g_3, \emptyset\rangle - \Omega_1(t)|g_1, R\rangle) + \frac{\beta}{\sqrt{4G^2 + \Omega_2(t)}} (2G|g_3, \emptyset\rangle - \Omega_2(t)|g_2, L\rangle).$$

$$\longrightarrow$$
 STIRAP \longrightarrow $|\Psi(t)\rangle = \alpha |q_1, R\rangle + \beta |q_2, L\rangle$

$$|\Psi(t)\rangle = \frac{\alpha}{\sqrt{4G^2 + \Omega_1(t)}} (2G|g_3, \emptyset\rangle - \Omega_1(t)|g_1, R\rangle) + \frac{\beta}{\sqrt{4G^2 + \Omega_2(t)}} (2G|g_3, \emptyset\rangle - \Omega_2(t)|g_2, L\rangle).$$

$$\longrightarrow$$
 STIRAP \longrightarrow $|\Psi(t)\rangle = \alpha |g_1, R\rangle + \beta |g_2, L\rangle$

Photon $|R\rangle + |L\rangle$ leaves the cavity

$$|\Psi(t)\rangle = \frac{\alpha}{\sqrt{4G^2 + \Omega_1(t)}} (2G|g_3, \emptyset\rangle - \Omega_1(t)|g_1, R\rangle) + \frac{\beta}{\sqrt{4G^2 + \Omega_2(t)}} (2G|g_3, \emptyset\rangle - \Omega_2(t)|g_2, L\rangle).$$

$$\longrightarrow$$
 STIRAP \longrightarrow

$$|\Psi(t)\rangle = \alpha |g_1, R\rangle + \beta |g_2, L\rangle$$

Photon $|R\rangle + |L\rangle$ leaves the cavity

$$|\Psi\rangle = \alpha |g_1\rangle + \beta |g_2\rangle$$

Superposition manipulations

