
New Classes of Kochen-Specker Contextual Sets
Norman D. Megill∗ and Mladen Pavičić†

∗Boston Information Group, 19 Locke Lane, Lexington MA 02420, U. S. A.
†Department of Physics, Nanooptics, Math.-Nat. Fakultät, Humboldt-Universität zu Berlin, Germany and

Center of Excellence for Advanced Materials and Sensing Devices (CEMS), Photonics and Quantum Optics Unit,
Ruder Bošković Institute, Zagreb, Croatia

Email: ∗nm@alum.mit.edu, †mpavicic@irb.hr

Abstract—Finding Kochen-Specker contextual sets proves to
be essential for quantum information and quantum computation
in particular. It is therefore essential to find algorithms and
programs which can generate arbitrary Kochen-Specker sets
in a nearly-exhaustive manner. In this paper we present such
generations for two new classes of Kochen-Specker sets. All sets
from one of the classes are completely invisible to standard
algorithms and programs from the literature as well as the upper
part of sets from the second class. We also describe the methods
and programs we used to obtain the sets on supercomputing
clusters.

I. INTRODUCTION

Kochen-Specker (KS) sets are sets of n-tuples of mutually
orthogonal vectors from n-dim Hilbert space to which it is
impossible to assign 1s and 0s in such a way that
(i) No two orthogonal vectors are both assigned the value 1;
(ii) In any group of n mutually orthogonal vectors, not all of
the vectors are assigned the value 0.

KS sets not properly containing smaller KS subsets are
called critical KS sets. If any orthogonal basis of a critical KS
set is removed, it will no longer be a KS set. Only critical KS
sets are relevant for experimental implementations.

KS sets can be represented as hypergraphs in which each
vertex represents a vector and each edge an orthogonal basis.

In addition to presenting new results, this paper describes
the methods and programs that we used. The collection of
programs that helped us find these results are open source
and freely available. Many of them are useful for working
with hypergraphs generally, not just hypergraphs representing
KS sets. The programs are normally run in a Unix or Linux
command-line shell. Most of them perform a specific operation
or test on a hypergraph. Because they all read and write
a common language for hypergraphs, they can be chained
(piped) to each other, and standard Unix utilities such as grep
can be placed in the chain to filter desired results for the next
stage. For very large problems such as finding the KS results
described here, we can easily create scripts that can distribute
the work over many CPUs in a supercomputing cluster.

For our computer representation, we encode hypergraphs
using alphanumeric and other printable ASCII characters. We
call these character strings MMP hypergraphs. Each vertex
(vector) is represented by one of the following characters: 1 2
...9 A B ...Z a b ...z ! " # $ % & ’ () *
- / : ; < = > ? @ [\] ˆ _ ` { | } ˜ and then

again all these characters prefixed by ‘+’, then prefixed by
‘++’, etc. Skipping of characters in this sequence is allowed.

Hypergraph edges (orthogonal bases) are encoded as a
string of concatenated vertices, each edge containing as many
vertices as there are dimensions, and edges are separated with
commas. The complete hypergraph is terminated with a full
stop (period) and is contained on a single line of text regardless
of length. The order of the edges is irrelevant as is the order of
vertices within each edge. The numbers of vertices and edges
are unlimited. We often present MMP hypergraphs starting
with edges forming the largest loop to facilitate their possible
drawing.

A simple example of a hypergraph expressed with MMP
notation is 123,3ab,a#++a. which has 3 edges with 3
vertices per edge and 7 different vertices named 1, 2, 3, a,
b, #, and ++a. (This example is for illustration and does not
represent a KS set.)

II. RESULTS

Waegell and Aravind recently constructed a KS set from
the Witting polytope [1]. The set has 148 vertices and 265
edges—we denote it as 148-265—and it served us to generate
over 300 types of smaller KS critical sets, where a type means
a KS set with a particular number of vertices and edges. All
KS sets that can be generated from this set build a class of
KS sets which we shall call the 148-265 class. The 148-265
set itself we call the master set.

For the generation of KS critical sets from the 148-265,
our approach turns out to be indispensable, since a standard
approach in the literature, [2]–[8] using what are called parity
proofs, turns out to be inapplicable.

A KS set is said to have a parity proof if its hypergraph
has an odd number of edges and each vertex is common
to an even number of edges. Any hypergraph satisfying this
condition corresponds to a KS set, because it is impossible
to assign an even number of 1s to an odd number of edges
if we require exactly one 1 per edge. The converse fails,
though; there are KS sets whose hypergraphs don’t satisfy
this condition.

We obtained over 300 types of KS, and none of them has
a parity proof. Thus all the KS sets we found from the 148-
265 class are completely invisible to a standard approach using
parity proofs. In Fig. 1 we show a graphical representation
of the statistics for the obtained KS from the 148-265 class
together with two chosen hypergraphs.

182

MIPRO 2017, May 22- 26, 2017, Opatija, Croatia

49−27

(b)

80

120

130

140

50

60

80

70

110

100

90

50

60

70

90

97

40

30

147

23 25

40

3
9

7
I

K

J

S

R

56

2 1

U

O

Y

8

T

L

C
D

H

G

F

b

X

Q

P

W

d

(a)

40−23

Penrose’s 40−40

ed
g

es

vertices

A

4

B

a

V

e

c

E

M

N

Z

Fig. 1. KS criticals from the 4-dim 148-265 class; 40-40 hollow circle
indicates the Penrose 40-40 non-critical KS set; inset (a) shows one of the
smallest KS criticals generated from Penrose’s 40-40 set; inset (b) shows one
of the smallest KS criticals not contained in the 40-40 set.

The other class we considered is also mostly invisible
in the standard approach using parity proofs. Waegell and
Aravind considered a dual of 600-cell convex regular polytope
and obtained a 300-675 master KS set [7]. From it, using
parity-proof-based algorithms and programs they obtained
96 types of KS criticals, from 38-19 to 82-41. Then they
commented that according to the parity proof method there are
no sets smaller than 38-19 and said that they had not found
any set larger than 82-41. In Fig. 2 we plotted the statistics of
over 260 types we found (top left in red and bottom right in
blue) together with their 96 types (top left in cyan).

142

226

211

127

188

283

26

38
26

19
13

41

82

44

CH

I

L

J

K 9

7

2

P

O

6

A
B

N

M

DG F E

8

Q

5

1 43

26−13

edges
131 inner

57−gon

vertices

ed
g
es

vertices

ed
g
es

?

? proofs

283−188

no parity

Fig. 2. KS criticals from the 4-dim 300-675 class; there are 250 types of KS
critical sets from the upper part of the class (211-127 till 283-188); 26-13 is
the smallest KS critical and 283-188 the largest we obtained.

In Fig. 2 we show that, first, there are 250 large KS
criticals, from 211-127 to 283-188. Since none of these has a
parity proof, Waegell and Aravind did not find them using the
parity proof method. We also found the following small types:
26-13, 30-15, 32-17, 33-17, and 34-17, which are all smaller
than 38-19. The reason they did not see them is that they are
generated directly from large subsets of the master set that
do not have parity proofs and are invisible in the parity proof
approach. So, our approach is indispensable for generating all
possible KS sets, large as well as small.

In particular, we not only revealed the aforementioned
huge KS criticals but also showed that the 300-675 class
partially overlaps the 60-75 class we generated in [9] (all 26-
13,. . . ,44-26 we obtained from the 300-675 master set can also
be deduced from the master set 60-75 which defines the 60-75
class). (Their 38-19 is not from the 60-75 class.)

In order to prove that a set has the KS property, we must
show that it does not admit an assignment of 0s and 1s such
that exactly one vertex on each edge has a 1 assigned to
it. Rather than rely on indirect parity proofs, our approach
tests this condition directly. Our program states01 (see
Sec. IV-A) does this with a backtracking algorithm that either
finds such a state (showing the set is not KS) or exhausts all
possibilities (showing the set is KS). In the latter case, it means
that at least one edge will be left over without it being possible
to assign a 1 to any of its vertices, regardless of how the other
edges have their 1 assigned. When a KS set is represented
graphically as, e.g., 26-13 in Fig. 2, the KS property instances
may be visualised (dashed magenta ellipse indicating such an
edge). The parity proofs used by the standard programs in
the literature are implicitly contained in our general proofs.
However, states01 can also reproduce the literature results
with an additional option that checks whether a KS set also
has a parity proof.

III. ALGORITHMS AND PROGRAMS

A. Overall philosophy

Our programs have a more or less uniform way of
specifying the options to control functionality, and learning
to use them is straightforward. Most options available for
a program perform a single task that is well documented,
and the programs can be easily chained via pipes to perform
complex functions. All programs written by us have a built-in
--help option, e.g. states01 --help, that provides full
documentation of the program’s options and features as well
as providing examples of the program’s use. We have been
careful to ensure the help documentation accurately describes
the program behaviour, so that in principle the programs can
be used by other workers without assistance from us.

A great deal of work has been put into making the
programs’ runtimes as small as practical, often with good
results. Not only does this let us obtain results faster, it reduces
the expense of the computation resources needed. A common
situation with the types of problems that some of our programs
work with is that their run times inherently grow exponentially
with MMP hypergraph size in the worst case, which as far
as we know is theoretically unavoidable. To overcome this

183

limitation in a practical sense, a number of heuristic techniques
were developed to suppress the exponential behaviour.

For example, the program states01 iterates through
the edges; at each edge, it either makes a trial 0/1 assignment
to the unassigned vertices on the edge or backtracks to try
another path when an assignment is not possible. A very
successful heuristic, which we call the “clustering algorithm,”
starts with edges that have the most connections (i.e. shares
the most vertices) with other edges. This greatly increases the
probability of an early assignment conflict, so that backtrack-
ing will exhaust all possible assignment paths more quickly
when proving that an MMP hypergraph is a KS set.

Since it seems impossible to avoid exponential behaviour
completely, all programs having such behaviour incorporate
user-settable timeouts. MMP hypergraphs which timed out
are flagged in the output and can be put aside to study later,
whether it is running them longer or using them to study and
improve the algorithms further.

There are occasional situations where the exponential
behaviour manifests itself and becomes problematic, i.e. the
program gets “stuck,” when the hypergraph traversal coinci-
dentally encounters an unlucky pattern. Typically these arise
as a long sequence of edges or vertices of length k that do
not have early conflicts, and the program will “count” through
2k possibilities for each later path it backtracks from when a
conflict is eventually found. We don’t have a good method
for identifying these situations in advance; instead, we put
them aside to deal with later when they time out. Empirically,
we have found that randomising the edge order with our
program mmpshuffle will often break the unlucky pattern.
This has been quite successful in allowing our programs to
run to completion for problematic hypergraphs, although it
may require some manual trial and error.

In some cases the number of possible MMP hypergraphs
that need to explored are astronomical and even with a
supercomputer cluster may be unfeasible to explore. For this
reason, some programs such as mmpstrip have the ability
to take random samples of the search space so that we can
statistically characterise the properties of the whole search
space. We have put care into the randomisation process in
two ways. First, for the seed we combine different sources
of entropy such as the time of day and the process ID so
that it will be unlikely that parallel runs on a supercomputer
cluster will use the same random number sequence. Second,
we want our results to be reproducible: all programs using
random numbers will print out the seed that resulted from the
entropy, and the user can specify that seed to replicate the
program exactly run if desired.

B. Standard input and output formats

In order to allow the programs to present their outputs in
a standard way and communicate to other programs (as well
as to humans interpreting the outputs), additional information
is sometimes prefixed and suffixed to the MMP hypergraph.
An optional MMP prefix is any sequence of printable char-
acters (that may include spaces) that ends with a space.
An optional MMP suffix is a vector assignment enclosed in

braces {. . .}; it is described below but in particular does not
contain any spaces. An MMP hypergraph with a prefix and/or
suffix is called an MMP line. An example of an MMP line
with both a prefix and suffix is ”#2(1/7=22%) fail::
1234,1567.{{1={0,0,0,1}}”, where ”1234,1567.”
is the MMP hypergraph proper. If an MMP line has a space,
that means it has a prefix which ends at the last space on
the line. If an MMP has characters after the full stop ending
the MMP hypergraph, those characters are assumed to be an
MMP suffix. In all cases, the MMP line ends with a new line
character in the computer file containing it (i.e. there must be
exactly one MMP hypergraph on each line).

The prefix information depends on what information the
program needs to present to the user, and also to allow the
program output to be filtered with programs such as grep or
sed, matching for example the string “fail:: ”, as part of
a Unix pipe. The format of each program’s MMP prefix, if it
has one, is documented by the program’s --help command.
Some programs preserve the MMP prefix or suffix while others
rewrite them with the program’s results or strip them off. The
unrestricted format of the prefix (other than its trailing space)
gives complete flexibility for a program to present its output
information in whatever form is convenient as well as to add
future information as a program’s capabilities are enhanced.

The optional MMP suffix is a list of partial or complete
vector assignments to vertices. Each vector assignment con-
sists of a vertex name followed by = followed by a comma-
separated list of complex number expressions in braces, with
a complex number for each dimension. The assignments are
comma-separated, with the entire list surrounded by braces. An
example is {a={0,1,0,0},++B={0,0,1,i*sqrt(2)}}.
The syntax for the complex number expressions is documented
by the --help option of the vecfind program. Programs
that renumber MMP hypergraph vertices or extract subsets of
the MMP hypergraph will also modify any vector assignment
suffix to keep it consistent.

Overall, the ability to chain programs via pipes and filters,
sharing a standard hypergraph “language,” allows sophisticated
processing to be performed in a relatively simple and robust
way. The starting input set can consist of millions or billions
of MMP hypergraphs, providing an ideal problem for a super-
computer cluster.

C. Finding KS sets
In order for an MMP hypergraph to correspond to a

KS set, there must exist an assignment of vectors to the
vertices such that the orthogonality conditions specified by the
edges are satisfied. Second, there must not exist an assignment
(sometimes called a “colouring”) of 0/1 (non-dispersive or
classical) probability states to the vertices such that each edge
has exactly one vertex assigned to 1 and its others assigned
to 0.

For a given MMP hypergraph, we use two programs
as filters for these two conditions. The program vecfind
attempts to find an assignment of vectors to vertices. The pro-
gram states01 determines whether or not a 0/1 colouring
is possible that meets the above requirement. We will describe
their algorithms below.

184

One basic method in our approach—carried out by means
of the program mmpstrip—has been to generate successive
subsets from a master KS set with many redundancies i.e. that
is far from being critical. There are several of these that have
been identified in the literature. The goal is to find smaller
critical subsets that may be of use in future experiments.

IV. SUMMARY OF PROGRAMS

In this section we summarise the functionality of the
programs used in our KS work. In all cases, a program’s
--help option can be consulted for more detail. The input
to most programs is a list of MMP hypergraphs (in a file or
from the standard input), and the output is zero or more MMP
hypergraphs for each input MMP hypergraph. The programs
can be chained with Unix pipes to perform more complex
filtering and processing of MMP hypergraphs (which we will
also call just MMPs in this section for brevity).

Most of our programs are written in the C language
for efficiency and designed to operate primarily in Unix
environments at the command-line or shell-scripting level.
They are written in strict ANSI C so that they will work
with different operating systems and compilers. We have been
careful to keep the help documentation updated to accurately
describe the available options so that they can be used by
workers outside of our group. Typically the help includes
simple examples that can be reproduced while learning to use
the program.

A. Program states01

This program determines whether or not there exists an
assignment of 0/1 (non-dispersive or classical) probability
states to the vertices of an MMP hypergraph such that each
edge has exactly one vertex assigned to 1 and its others
assigned to 0. If not, then the MMP is a candidate for a KS
set.

By default, an exhaustive search, using a backtracking
algorithm, is done to determine whether an assignment is
possible. Optionally, a faster search can be done using the
parity proof method (-p option). While MMPs with parity
proofs are definitely KS sets, MMPs that don’t have parity
proofs may or may not be KS sets. One purpose of the -p
option is to be able to reproduce work done by others that is
based on parity proofs.

Since the backtracking algorithm is exponentially slow in
the worst case, the -t option allows a timeout to be specified.
We have found that for typical MMPs of interest, timeouts
occur relatively infrequently.

The -c option tests whether or not a KS candidate is a
critical KS. It does this by first checking that the MMP is a
KS set, then checking that it ceases to be a KS set when any
edge is removed.

For non-critical KSs, the -r option will randomly discard
edges until a critical KS is obtained. For highly redundant
starting KSs, different critical KSs will be produced each run
(unless a fixed random number seed is specified to reproduce
a previous run).

B. Program vecfind

In order to determine whether a given KS candidate (i.e.
one admitting no 0/1 states) is a true KS set, we must show that
a non-conflicting assignment of mutually orthogonal vectors
to each edge is possible. In general, this is a difficult problem.
In some cases, symmetry of a master starting MMP allows
assignment from a small collection of possible vectors; for
example, the 60-60 MMP of [5] can be assigned with vectors
with components from the set {0, 1, τ = (1 +

√
5)/2, 1/τ}

and their negatives.
The vecfind program will search for an assignment

from a set of vector components, or a set of vectors, provided
by the user. It will show an assignment if one is possible, or tell
the user that it is impossible. If a set of vector components is
provided, internally vecfind will compute all possible non-
proportional vectors constructed from them and use that set
for the search.

The algorithm assigns vectors from the given or computed
list of vectors to the vertices. If a further assignment from
the list is not possible (meaning it can’t achieve a mutually
orthogonal assignment of vectors from the list to an edge
containing the vertex), it will backtrack and continue with the
next vector in the list at the backtrack point.

Unlike the states01 backtracking algorithm, there may
be thousands of vectors to try at each vertex rather than
just the two states 0 and 1. Both programs have exponential
behaviour worst case, but clearly it is much more severe with
vecfind since the number of assignments to reject grows
as vn where v is the number of vectors to try and n is
the number of vertices. Because of this, we have invested a
large effort into heuristics that experimentally have speeded
up the search significantly, sometimes orders of magnitude,
for typical MMPs and vector sets. For example, we use a
“dynamic” version of the clustering algorithm of states01,
in which the next vertex to try is the one with the largest
number of potential conflicts based on the vector assignments
so far, the idea being to encourage earlier backtracking. These
efforts have proved moderately successful in that we can find
vector assignments already known to the literature (such as
the 60-60 mentioned above) almost instantly. However, some
large MMPs still cause the program to be excessively slow,
particularly when no assignment is possible, and therefore
vecfind also has a -t timeout option.

The output of vecfind is the input MMP with a prefix
indicating whether the assignment was successful and other
information, along with a suffix containing a vector assignment
to the vertices. If the assignment was successful, all vertices
will be in this list, otherwise the best partial assignment it
could find is used for the list. An MMP with a partial vector
assignment suffix can be used as the input of a second run
of vecfind with a different set of vectors to try on the
unassigned vertices, and the assignments made by the suffix
will remain the same.

The vector components are complex numbers that may
be specified directly as in “4+5*i” or they may be specified
with expressions involving arithmetic operations and com-
mon functions and constants such as sqrt, e, and pi, as in

185

“eˆ(2*pi*i/3)”. The syntax and available functions are
documented in the --help output. A built-in calculator,
invoked with the option -calc, allows the user to check that
a given expression evaluates to the expected complex number.

C. Program mmpstrip

Much of our work has involved starting with a very large
starting or master KS set, such as the 60-60 (non-critical)
KS set mentioned above, and exploring and characterising
the smaller critical KS sets that are embedded. This has
been a very fruitful effort, allowing us to find millions of
non-isomorphic critical KS subsets in this case. This was an
unexpected find and means that there is no key critical KS that
characterises the 60-60, but instead it provides a rich source
of critical KSs that can be used for physical experiments.

To assist studying such master KS sets, the program
mmpstrip provides a flexible means of selecting subsets
from the master. After subsets are selected with mmpstrip,
they are filtered for ones that are KS sets (have no colouring)
using states01, then filtered again to eliminate isomorphic
ones using the program shortd.

From an input MMP hypergraph with n edges,
mmpstrip will strip k edges so as to produce all

(
n
k

)
subsets

with a simple combinatorial algorithm. Partial output sets
can be generated by means of start and end parameters. An
increment parameter specified by option -i can be applied
to skip all but every ith output line for partial sampling of
the output subsets if the full output is too large. With the
option -c1, the program will calculate in advance how many
output hypergraphs will result, in order to help the user choose
optimal parameter settings.

Alternatively, the option -r will choose random samples
from the master set in order to lessen the chance of a biased
selection in case there is a subtle pattern that repeats every
ith hypergraph. As with our other programs offering random
sampling, the random number seed is displayed and may be
used to reproduce the run exactly if desired.

The option -u will discard unconnected MMP hyper-
graphs (i.e. those consisting of two or more disconnected
parts). By default, the vertices in output MMPs are relabelled
so as to avoid gaps in the vertex naming, although this
behaviour may be suppressed with the -n option.

The above options are the ones most commonly used
and are described in more detail the mmpstrip --help
output. There are several other options also described in the
help documentation.

D. Program shortd

Two MMP hypergraphs are isomorphic if one can be
transformed into the other via reordering edges, reordering
vertices within an edge, and renaming the vertices.

The program shortd, written by Brendan McKay,
renumbers an input MMP hypergraph into a canonical form,
so that two isomorphic MMPs will have the same canonical
form and can be easily identified. The program is extremely
fast and is based on McKay’s extensive theoretical work on
graphs and hypergraphs.

We routinely use shortd to eliminate isomorphic MMPs
from a list, for example after producing a collection of MMP
subsets with mmpstrip.

E. Program subgraph

This program, described in Ref. [10], will check whether
an MMP is isomorphic to a subset of a larger MMP. It uses
an algorithm suggested by Brendan McKay. If the two MMPs
are the same size, it will tell us whether the two MMPs are
isomorphic. While shortd will do the same thing much
faster, subgraph will show the actual isomorphism in case
there is one, rather than providing just a yes/no answer.

F. Program loop

Two edges are connected if they share a vertex. A loop is
a set of connected edges in which each shared vertex is shared
with exactly two edges in the set, in other words a chain of
connected edges where the last edge connects to the first.

The program loop by default will list all possible loops
in an MMP hypergraph. The list of loops can assist drawing
the MMP; in particular, a large loop can be selected as the
main circle for the drawing, with other edges drawn with lines
to complete the MMP.

loop has a number of options that can be seen in its
--help listing. In particular, the program can list only the b
largest loops that were found (-b option), it can stop searching
after m loops are found (-m option), and a timeout can be set
to give up and continue from the next edge.

G. Program mmpshuffle

This program is primarily used to randomly scramble
order of the edges of an MMP hypergraph and the order of
the vertices in each edge, producing an isomorphic MMP with
components in a different order. This can be useful to help
break exponential behaviour of certain programs caused by
unlucky patterns in the MMP. For example, if states01
times out with ./states01 -t100000 < in.mmp >
out.mmp, we can try ./mmpshuffle -r < in.mmp |
states01 -t100000 > out.mmp to see if a different
edge order is more successful. There are also options in
mmpshuffle to rename the vertices, eliminating gaps in
naming, and to reverse the order of edges and vertices.

When the MMP has a vector assignment suffix,
mmpshuffle will also rename the vertices specified in the
assignment accordingly.

H. Program mmptag

This is a small utility program with several functions. It
can strip off MMP prefixes and suffixes, it can add prefixes
specifying the number of edges and vertices, and it can
produce a statistical breakdown of the number of edges and
vertices in a large collection of MMP hypergraphs.

I. Program mmpxlate

This program can translate from and to several other
hypergraph formats found in the literature. We are open to
adding more formats to meet the needs of other groups.

186

V. RUNNING PROGRAMS ON CLUSTERS

We have empirically found that for most tasks it is
much more efficient to distribute sequential tasks through,
for instance, HTCondor grid scheduling, to nodes in the grid,
than to parallelize jobs. An example of our procedures is the
following one. HTCondor software allows for two input-output
parameters, say i and j. In the first step, we might strip edges
from a master set, say 148-265, and filter them with sed,
states01, again sed, and shortd, so as to generate non-
isomorphic KS sets in, say 148-j, j = 165, . . . , 264, i.e.,
100 output files, each cut to a chosen number of lines, say
1 million; each line contains a KS set i-j where i depends
on j in a rather involved manner depending of how many
vertices, if any, were stripped together with stripped edges.
We then grep KS sets into i-j files each of which contains
only i-j KS sets. In the next step, we use these files as
input files to generate non-isomorphic critical KS sets i-j-c-
k, k = 1, . . . , 20, via states01 and shortd. Each line in
these output files contains an l-m final critical KS set, where
l and m are not related to i and j except for the inequalities
l ≤ i and m ≤ j. Some KS sets are so intricate that they ask
for parallelizing tasks, and that takes us to the next section.

VI. FUTURE WORK

Most of our work up to now has been with MMP hy-
pergraphs that are small enough so that thousands or millions
can be characterised on each CPU in a supercomputer cluster
in a few days (so in the end we could end up with billions
of non-isomorphic KS sets). However, some recent very large
hypergraphs, such as the 300-675 mentioned above, stress the
limits of some of our programs in that they may take days
or weeks to test just one MMP hypergraph. We are planning
to give these programs the ability to partition the run for a
single MMP hypergraph into different sections that can be
run in parallel on different CPUs in a supercomputer cluster.
In particular, we are currently working on states01 and
vecfind to add this feature.

We are encouraged towards this goal by our success in
earlier work with Hilbert lattice equations, where we were able
to verify that a huge equation failed in a very large lattice
counterexample (the 7oa equation and the Peres lattice of
Ref. [11]) with a run that would have taken years if done on a
single CPU. By carefully modifying our program latticeg
described there, we able to partition the run into small pieces
that were distributed among many CPUs in a supercomputer
cluster, leading to the answer in a few days. This established
the independence of this new Hilbert lattice equation from
earlier members 3oa through 6oa in the OA (orthoarguesian)
family. Incidentally, that work used an MMP hypergraph in the
completely different role of representing a Greechie diagram
(a kind of orthomodular lattice), showing the flexibility of
applications for the MMP notation.

VII. DISCUSSION

An important point to take away from this article is
the power of a standard, compact, and precisely specified
format for representing hypergraphs, which in our case is the

MMP hypergraph notation. It provides the common language
that allows all of our hypergraph processing programs to
communicate with each other. The code needed to parse MMP
hypergraphs into internal arrays, and conversely to generate
them from internal arrays, is relatively simple and very fast; it
can easily be incorporated into other programs whether written
by us or someone else.

The ability to pass MMP hypergraphs from one program
to another via Unix pipes, along with Unix filters (grep, sed,
etc.) in between, has allowed us to automate processing of
massive hypergraph collections and divide the work among
supercomputer CPUs in an efficient way.

As mentioned in Section VI, MMP hypergraphs can
be used for other applications involving hypergraphs. The
mmpxlate program can translate from and to several other
hypergraph notations, and we are always looking to add more.
As the mmpxlate collection grows, we anticipate it will
become a generally useful translation tool between hypergraph
notations via MMP hypergraphs.

We note that all of the MMP hypergraph processing pro-
grams described above, other than states01 and vecfind,
can be used for general hypergraph work and are not spe-
cialised for the study of KS sets. Most of the programs
have been used for many years with a wide variety of MMP
hypergraphs, and all are free from known bugs. With the aid
of their built-in --help option, they are usually no harder to
learn to use than a new Unix command.

ACKNOWLEDGEMENT

M.P. acknowledges a support by the Croatian Science
Foundation through project IP-2014-09-7515, and the Ministry
of Science, Education, and Sport of Croatia through the CEMS
funding. Computational support was provided by the cluster
Isabella of the Zagreb University Computing Centre and by
the Croatian National Grid Infrastructure.

REFERENCES

[1] M. Waegell and P. K. Aravind, “The Penrose dodecahedron and the
Witting polytope are identical in CP3,” ArXiv:1701.06512, January
2017.

[2] P. Lisoněk, P. Badzia̧g, J. R. Portillo, and A. Cabello, “Kochen-Specker
set with seven contexts,” Phys. Rev. A, vol. 89, pp. 042 101–1–7, 2014.

[3] M. Planat, “On small proofs of the Bell-Kochen-Specker theorem for
two, three and four qubits,” Eur. Phys. J. Plus, vol. 127, pp. 86–1–11,
2012.

[4] M. Planat and M. Saniga, “Five-qubit contextuality, noise-like distribu-
tion of distances between maximal bases and finite geometry,” Phys.
Lett. A, vol. 376, pp. 3485–3490, 2012.

[5] M. Waegell and P. K. Aravind, “Parity proofs of the KochenSpecker
theorem based on 60 complex rays in four dimensions,” J. Phys. A,
vol. 44, pp. 505 303–1–15, 2011.

[6] ——, “Proofs of Kochen-Specker theorem based on a system of three
qubits,” J. Phys. A, vol. 45, pp. 405 301–1–13, 2012.

[7] ——, “Parity proofs of the KochenSpecker theorem based on 120-cell,”
Found. Phys., vol. 44, pp. 1085–1095, 2014.

[8] ——, “Parity proofs of the KochenSpecker theorem based on the Lie
algebra E8,” J. Phys. A, vol. 48, pp. 225 301–1–17, 2015.

[9] N. D. Megill, K. Fresl, M. Waegell, P. K. Aravind, and M. Pavičić,
“Probabilistic generation of quantum contextual sets,” Phys. Lett. A,
vol. 375, pp. 3419–3424, 2011.

[10] M. Pavičić, N. D. Megill, and J.-P. Merlet, “New Kochen-Specker sets
in four dimensions,” Phys. Lett. A, vol. 374, pp. 2122–2128, 2010.

[11] M. Pavičić, B. D. McKay, N. D. Megill, and K. Fresl, “Graph approach
to quantum systems,” J. Math. Phys., vol. 51, pp. 102 103–1–31, 2010.

187

