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Abstract—Finding even the simplest Kochen-Specker sets for
contextual experiments—a hot subject in the field of quantum
information theory, theoretically and experimentally—by brute
force would take all the clusters on Earth more than the Age
of Universe. Human ingenuity found about a dozen such sets
in the last 40 years. I will present how our group reduced this
finding of contextual needles in a haystack to a manageable task,
by first visualising them via hypergraphs, human-derived from
the space symmetries, and then running jobs that generate the
sets—billions of them—in parallel.

I. INTRODUCTION

A measurement of any observable of a classical system
should yield the same value independently of whether we
carry out the measurement of the observable simultaneously
with another measurement of another observable of the same
system or not. In other words, classical theories do not depend
on arrangements in which measurements are carried out, i.e.,
on their “context,” and we say that classical theories are
non-contextual and that all their observables can be ascribed
predetermined values.

In contrast, a measurement of an observable of a quantum
system can yield different values depending on other measure-
ments of another observables that we measure simultaneously
with the considered observable. So, a quantum theory does
depend on arrangements in which measurements are carried
out and we say that quantum theories are contextual and that
their observables cannot be ascribed predetermined values.

Not all experimental arrangements for a quantum system are
contextual, though. Actually, until a few years ago only about
a dozen such sets of quantum states to which no predetermined
values can be ascribed were known. The sets are called
Kochen-Specker (KS) sets and they are needed not only for
a better understanding of quantum theories and measurements
[1]–[3], but also for constructing of quantum gates in the field
of quantum information and quantum computation and for
handling quantum sets in general [4], [5]. So, it is of interest
to know how often we can encounter such sets, i.e., how many
KS sets we can generate.

II. FORMALISM

Let us first define KS sets more precisely.

Definition 1. Every KS set is a set of vectors in a Hilbert space
Hn, n ≥ 3 to which it is impossible to assign 1’s and 0’s in
such a way that:

1. No two orthogonal vectors are both assigned the value 1;

2. Not all of any mutually orthogonal vectors are assigned
the value 0.

In this presentation we shall limit ourselves to n = 4, i.e.,
a 4-dim Hilbert space. Systems can be either a pair of qubits
(qubit is a 2-dim quantum system) or a spin-3/2 particles. Sets
of mutually orthogonal vectors in a 4-dim space we call tetrads.
A KS set is a union of such tetrads.

Mutual orthogonality of 4 vectors in a 4-dim Hilbert space
is represented by the following 6 nonlinear equations:

aA · aB = aA1aB1 + aA2aB2 + aA3aB3 + aA4aB4 = 0,

aA · aC = aA1aC1 + aA2aC2 + aA3aC3 + aA4aC4 = 0,

aA · aD = aA1aD1 + aA2aD2 + aA3aD3 + aA4aD4 = 0,

aB · aC = aB1aC1 + aB2aC2 + aB3aC3 + aB4aC4 = 0,

aB · aD = aB1aD1 + aB2aD2 + aB3aD3 + aB4aD4 = 0,

aC · aD = aC1aD1 + aC2aD2 + aC3aD3 + aC4aD4 = 0.

Now, it might seem that the problem can be approached
by a brute computational force. We ascribe values 0 and 1 to
various sets of connected tetrads of vectors and as soon as we
find a set for which we cannot do that it is a KS set. However,
this is easier said than done because there are billions of such
sets even if we limit ourselves only to unit components along
each of four axes for all vectors. Besides, the equations are
nonlinear and it is a hard problem with only a few equations,
let alone billions.

Fortunately, in 2000 I realised that these equations can be
reduced to a generation and then filtering of hypergraphs, in
particular McKay-Megill-Pavičić (MMP) hypergraphs, which
Brendan D. McKay, Norman D. Megill, and I defined previ-
ously for another purpose.

Definition 2. We define MMP hypergraphs as follows [6]
(i) Every vertex belongs to at least one edge;

(ii) Every edge contains at least 3 vertices;
(iii) Edges that intersect each other in n− 2 vertices contain

at least n vertices.

This definition enables us to formulate algorithms for
exhaustive generation of MMP hypergraphs. In this work
we shall work with subsets of a 60-75 (60 vertices - 75
edges) master set obtained by P. K. Aravind who derived it
from another even bigger set using geometric symmetries [7].
From this master set we generate smaller hypergraphs that
correspond to subsets of the 60-75 set with a specified number
of edges deleted.

For any experimental application it is not viable to con-
sider all KS (sub)sets but only those that can be experimentally
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distinguished. Hence, we extract critical non-redundant non-
isomorphic KS sets. “Critical” means that they are minimal in
the sense that no orthogonal tetrads can be removed without
causing the KS contradiction to disappear.

The “only” difficulty we face is the sheer size of these
generated subsets—we are dealing with a haystack of 275 or 38
sextillion subsets, in which we wish to find certain “needles,”
i.e., critical KS sets. In Sec. III we will present the algorithms
and programs which enable us to deal with the haystack.

The hypergraphs we obtain reflect only the orthogonal
structure of KS sets and do not in any way refer to the
vector components of the original 60-75 KS set. This is yet
another aspect in which the present method differs from the
parity-proof method we used in [8], which relies on the vector
components of the vectors in each KS set that were inherited
from the original 60-75 set. For each hypergraph we can,
however, find appropriate vector components with our program
vectorfind or by interval analysis we developed in [6].

We encode MMP hypergraphs by means of alphanumeric
and other printable ASCII characters. Each vertex is repre-
sented by one of the following characters: 1 2 3 4 5 6 7 8 9 A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i

j k l m n o p q r s t u v w x y z ! ” # $ % & ’ ( ) * - / : ; < = > ?

@ [ \ ] ˆ `{ | } ˜ , and then again all these characters prefixed
by ‘+’, then prefixed by ‘++’, etc.

Each edge is represented by a string of characters that
represent vertices within a single line. Edges are separated
by commas. The line must end with a full stop. Skipping
of characters is allowed. A line forms a representation of a
hypergraph. The order of the edges is irrelevant. The numbers
of vertices and edges are unlimited. We often present MMP
hypergraphs starting with edges forming the biggest loop to
facilitate their possible drawing.

In Fig. 1 we show a graphical representation of the
minimal (26-13) critical KS set we found and which we shall
now use to show a correspondence between the vector and the
MMP hypergraph representation of any KS set.

Each vertex represents a vector in a 4-dim space. For
instance, G= {1, 0, 0, 0}, F= {0, 1, 0, 0}, E= {0, 0, 1, 0}, D=
{0, 0, 0, 1}. They are mutually orthogonal and that means they
form an edge—GFED. Our program vectorfind can assign
all vectors, that correspond to edges from the 26-13 set, compo-
nent values from the set {0,±1,±(

√
5+ 1)/2,±(

√
5− 1)/2}

and that means that the system of equations that define all
orthogonalities for the 26-13 does have a solution. Now our
program states01 (which exhaustively verifies all possible
assignments) checks whether all the vertices can be ascribed
0 and 1 according to the KS rules 1 and 2 above and verifies
that it is not possible. The main point here is that we can
always go from MMP hypergraphs to vectors and back and that
states01 works with MMP hypergraphs. MMP hypergraphs
are linear while the system of equations describing mutual
orthogonality of vectors are nonlinear. Therefore the evaluation
of MMP hypergraphs by means of states01 is exponentially
faster than solving nonlinear equations and this is what makes
our generation of KS sets feasible. While the algorithm used in
states01 is comparatively fast, the verification of KS sets
for MMP hypergraphs with an odd number of edges can be
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Fig. 1. The smallest KS set 26-13 (with 26 vertices and 13 edges). Possible
assignments of 1s are indicated by circles (7,D,H,M,P,Q)—the remaining
vertices can only be assigned 0s. Hence, all vertices in edge 1234 can only be
assigned 0s and Def. 1 is satisfied. MMP encoding of the shown 26-13 reads:
1234,4567,789A,ABCD,DEFG,GHIJ,JKLM,MNO1,O5CH,2PLB,NP9E,6
FQK,3Q8I..

even faster using our “parity proofs” algorithm described in
[8].

We stress here that once we visualised, i.e., drew, MMP
hypergraphs, we can drop the ASCII signs and compare and
classify them graphically referring only to, e.g., the biggest
loops they allow, the highest and lowest numbers of edges
vertices allow, whether they allow parity proofs, the highest
number of 1s vertices can be assigned, etc., all of which
properties have their own role in experimental implementation
of critical KS sets. Of course, we can always go back to vector
representation so as to assign arbitrary ASCII signs to vertices
and then run vectorfind on them.

III. RESULTS

To generate critical KS sets we applied an algorithm and
a program (mmpstrip) which strip edges from the master
60-75 MMP, then subsequently from the so obtained MMPs,
and so on. The number of MMPs we can obtain in this way
grows exponentially and in less then 10 steps it would make
busy all CPUs and would overflow all storage capacities on
the Globe.

Fortunately the greatest portion of the generated MMPs
are isomorphic to each other and by using B. D. McKay’s
algorithm and program shortd which he derived from his
program nauty, we are able to greatly reduce the number of
MMPs we have to generate to eventually obtain the required
critical KS sets. However, even their number is far too big for
an exhaustive generation and even clusters with hundreds of
CPUs cannot make more than 13 steps in an acceptable time.

Therefore the only option left is a probabilistic generation
combined with 0-1 and isomorphic filtering. That excludes
parallel processing on a cluster because the programs for
stripping, isomorphic reduction, and 0-1 filtering are all prob-
abilistic so far as the sequential steps are concerned (although,
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of course, the end result is deterministic). Thus the times of
parallel running greatly differ and it is much more efficient to
put a large number of jobs in queue and rerun those that come
out first. The details are as follows.

As shown in the flowchart 1, we first have to generate—
by stripping edges—a sufficient number of MMPs, in several
steps, to compensate for an inherent homogeneous distribution
of critical MMPs in the generation “down-tree.” After each
step, i.e., with a sufficient number of MMPs within each
step, we reiterate the procedure until we reach about “ 1010

MMPs. Then we carry out a “random reduction” by means of
states01 which strips random edges from the input MMPs
until they are critical.

brute force
1025

nonlinear
equations
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⇓
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isomorphic
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1010 MMP
hypergraphs
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cluster
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filtering

104

MMPs

< 1 hour
cluster

(100 CPUs)

⇓
isomorphic
filtering

one MMP
(26− 13 KS set)

< 20 min
(1 CPU)

(1)

The majority of so obtained criticals are isomorphic and
mixed. Therefore we have to rerun the random reduction and
selective generation many times and each time we have to
merge new MMPs with the already obtained ones so as to
build a cumulative set of all possible KS. However, not even
then can we be sure that we obtained samples of all kinds of
MMPs. For example, after 3500 generated 60-41 critical MMPs
(critical KS sets) among more than 1.5 billion critical KS sets
we still have not obtained a single one with a parity proof
although there is at least one because we obtained it via a
parity algorithm from [8]. On the other hand a single 47-30

appeared only after 1 billion of generated KS criticals and
it cannot be generated via the parity algorithm since it has an
even number of edges. We present statistics of obtained critical

KS sets in Fig. 2. Detailed presentation of all obtained results
will appear in a subsequent publication.
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Fig. 2. Statistics calculated for subsets of 60-75 given on a logarithmic scale.
There are more than 10

9 critical KS sets. Given numbers of critical KS sets
with 13 to 27 edges (on the x-axis) are exhaustive. The number of criticals
with 32 edges is the biggest; we estimate that they do not exceed 10

10 . Given
numbers of noncritical KS sets with more than 61 edges are also exhaustive.

Details of the programs mmpstrip, states01,
vectorfind, and shortd and the algorithms behind them
are given in [6]–[9].

IV. CONCLUSION

We have obtained a massive number of contextual
sets, more specifically critical Kochen-Specker (KS) sets, by
first translating a condition imposed on quantum states—
orthogonality—into a condition imposed on correlated MMP
hypergraphs and then handling the latter hypergraphs to gen-
erate the sets. In the standard Hilbert space the generation lead
to huge sets of nonlinear equations and therefore to an expo-
nentially complex problem. Generation of MMP hypergraphs
is however a statistically polynomial problem and is therefore
feasible, although lengthy as shown in the previous section.
“Statistically polynomial” here means that although the algo-
rithms behind the programs mmpstrip and states01 might
in general take an exponentially increasing time with larger
sets, this on average does not happen because of the inner
structure of the KS sets.

Obtaining large KS sets is important for better under-
standing of how quantum system behave and a better insight
into their engineering within experiments. The most significant
result we obtained is that efficiency of contextual measure-
ments does not drop with large KS sets. Only the number of
required measurement rises but the efficiency of each of them
can be the same for some of the largest sets as for the smallest
one. This is in contrast with most other quantum gates where
the efficiency drops when the number of states increases, due to
coherence problems. On the other hand, some of our previous
conjectures based on a smaller number of sets [9] should be
amended. For instance, the peak for the KS criticals turn out
to be much lower, the distribution of them of a different shape,
and the KS criticals with more than 41 edges nonexistent.
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Also a very important contribution of a computational
approach to contextual sets and similar problems is contained
in our development of algorithms that enable solving huge
systems of nonlinear equations via handling MMP hypergraphs
on clusters. This is important not only because we already
arrived at new results with new KS sets in 3-, 4-, and 6-dim
Hilbert spaces, but also because it opens a new approach to
solving systems of equations in an analogous way in other
quantum and classical problems—whenever we can translate
a condition imposed on a system of equations into a condition
imposed on hypergraphs, we should be able to solve the system
via handling and filtering the hypergraphs.
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