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It is shown that an orthomodular lattice can be axiomatized as an ortholattice 
with a unique operation of identity (bi-implication) instead of the operation of 
implication, and a corresponding algebraic unified quantum logic is formulated. 
A statistical YES-NO physical interpretation of the quantum logical propositions 
is then provided to establish a support for a novel YES-NO representation of 
quantum logic which prompts a conjecture about a possible completion of 
quantum logic by means of probabilistic forcing. 

1. I N T R O D U C T I O N  

In this paper  we shall anwser two basic questions of  quantum' logics, 
present a novel probabilistic representation of  the logic and of quantum 
measurements, and propose a probabilistic forcing as a possible tool for 
completing quantum logic. 

The questions are, first, whether there is a unique object language 
operation which can take over the role of  the unique classical operation of 
implication (conditional, set-theoretic inclusion), and, second, whether 
there is a relation which is more appropriate for set-theoretic representa- 
tion of quantum-theoretic measurements than the usual irreflexive and 
symmetric orthogonality relation. 

We answer the first question in the positive by substituting the bi- 
implication for the implication and the equality for the ordering relation, 
thus at the same time making the ordering within quantum sets irrelevant. 
This renders the usual techniques of  quantum logic as a deductive inferen- 
tial theory inappropriate and ascribes quantum deductive logic a particular 
equational meaning. The result is obtained in Section 2. 

~Department of Mathematics, University of Zagreb, Ka6ideva 26, Pogt. pret. 217, CRO-4100I 
Zagreb, Croatia. 

1965 

0020-7748/93/1000-1965507.00/0 �9 1993 Plenum Publishing Corporation 



1966 Pavi~K 

We answer the second question by representing quantum logic with 
the help of an intransitive and symmetric YES-NO relation instead of the 
projector-stemmed irreflexive and symmetric orthogonality relation.This 
makes the usual modal, Kripkean, and imbedding approaches inapplicable, 
since an intransitive relation does not correspond to any modal formula in 
the corresponding systems. The representation is presented in Section 4 at 
the end of  which a probabilistic forcing is defined. 

In Section 3 we provided a physical interpretation of quantum logic 
based on the statistics of measurements as a bridge between Sections 2 
and 4. 

2. NONORDERED QUANTUM LOGIC 

Quantum theory generates five different conditionals (in the ortho- 
modular lattice and quantum logic) which reduce to the classical condi- 
tional when the propositions arc commensurable. 

We have shown in Pavi6i6 (1987a) that the orthomodularity boils 
down to the equivalence of all five mentioned conditions with the lattice- 
theoretic conditions (the relation of implication) and we also formulated 
(Pavi~i6, 1989, 1992a) a unified quantum logicwhich gives a common and 
unique axiomatization for all possible conditionals. 

Orthomodularity is thus reduced to a connection between object 
language implications and the model language ordering relation. 

However, we can do more by reducing orthomodularity to a connec- 
tion between a unique object language bi-implication and the model lan- 
guage equality. 

Let us introduce the appropriate axiomatization of quantum logic. 
Its propositions are based on elementary propositions Po, Pl, P2,- � 9  

and the following connectives: -n (negation), +--, (bi-implication), and v 
(disjunction). 

The set of propositions Q0 is defined formally as follows: 

py is a proposition for j = 0, 1, 2 , . . . .  
A is a proposition iff A is a proposition. 

A ~ B is a proposition iff A and B are propositions. 
A v B is a proposition iff A and B are propositions. 

The conjunction is introduced by the following definition: 
def 

A /x B = 'q(-1A v -TB) 

Our metalanguage consists of axiom schemata from the object lan- 
guage as elementary metapropositions and of compound metapropositions 
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built up by means of  the following metaconnectives: ~ (not), & (and), v 
(or), => O f . . . ,  then), and <=> Off), with the usual classical meaning. 

The bi-implication is defined as 
"clef 

A +-~B = (-~A A -riB) v ( A  AB)  

We define quantum logic as the axiom system A U Q L  (algebraic unified 
quantum logic) given below. The sign k may be interpreted as "it is asserted 
in AUQL."  Connective --7 binds stronger and ~ weaker than v and A, 
and we shall occasionally omit brackets under the usual convention. To 
avoid a clumsy statement of  the rule of  substitution, we use axiom 
schemata instead of axioms and from now on whenever we mention axioms 
we mean axiom schemata. 

Axiom schemata." 

ALl .  
AL2. 
AL3. 
AL4. 

~-A v B ~ - - - ~ B v A  
F-A ~-~ A A (A v B) 
~-A ~ A A (A v --qB) 
~-(A v B) v C +-+ --q (( -7 C A 7 B) A -7 A) 

Rule o f  inference." 

RL1. ~-(C v -nC) ~-~(A +-+ B) ~ ~-A ~-~ B 

It  can easily be shown that in quantum logic the afore-stated definition 
of bi-implication coincides with the usual one: 

def 
A ~-~B = A ~ y B & B ~ j A ,  j = l , . . . , 5  

where the operation of implication A ~ j B  is one of  the following: 

def 
A --* ~B = ~ A  v (A AB)  

def 
A ~ a B  = B v (-TA A -~B) 

def 
A-- ,3B = ( ~ A  A -nB) v (-1A A B) v ((-hA v B) A A) 

def 
A --+4 B = (A A B) v ( - q A  A B) v ((--1A v B) A -1B)  

def 
A --+sB = (A A B) v (-qA A B) v (-qA A -nB) 

(Mittelstaedt) 

(Dishkant) 

(Kalmbach)  

(non-tollens) 

(relevance) 

To prove that A U G L  is really a quantum logic, we have to prove that 
the Lindenbaum algebra for A U Q L  is an or thomodular  lattice. By the 
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or thomodu la r  lattice we mean an algebra L -- ( L  ~ • u ,  n )  such that  the 
following condit ions are satisfied for any a, b, c sL~ 

L1. a u b = b u a  
L2. ( a t 3 b ) u c = a u ( b u a )  
L3. a l •  = a 

L4. a u ( b u b i ) = b u b  • 
L5. a u ( a n b ) = a  
L6. a n b = ( a • 1 7 7  • 
L7. a ~ i b = c ~ c  • ~ a<_b ( i = 1 , . . . , 5 )  

clef 
where a <- b = a u b = b and a ~ i b (i = 1 . . . .  ,5)  is defined in a way which 
is completely analogous  to the one in the logic. F r o m  now on we 

def def 
shall use the following notat ion:  a w a • = 1 and a n a • = 0. Of  course, L 
is also or thocomplemented,  since lattices with unique or thocomplements  
and o r thomodu la r  lattices coincide (Rose,  1964; F~iy, 1967). 

An  algebra ( L  ~ • u ,  n )  in which the condit ions L 1 - L 6  are satisfied 
is an ortholattice. 

A n a l g e b r a  ( L  ~ • ~ ,  n )  in which L 1 - L 6  holds and L7 is satisfied by 
det 

d ~ b = a • u b is a distributive lattice with 1 and 0 (Boolean algebra). 
That  L is really an o r thomodu la r  lattice, i.e., that  L7 can be used 

instead o f  the usual o r thomodular i ty  law a u b = ((a u b ) n b  • u b, was 
proved in Pavi6i6 (1987a, 1989). 

To prove that  the lattice is the L indenbaum algebra for A U Q L ,  we 
introduce the following definitions. 

Definition 2.1. We call 5 ~ = (L ,  h )  a model  o f  the set Q0 (o f  proposi-  
tions f rom A U Q L )  if L is an o r thomodu la r  lattice and if h: A U Q L  ~-* L is 
a morph ism in L preserving the operat ions -~, v ,  and ~ while turning 
them into • u ,  and ---, and satisfying h(A) = 1 for any A eQ0 for which 
FA holds. 

Definition 2.2. We call a proposi t ion  A ~Q0 true in the model  L,e if for 
any morphism h: A U Q L  ~ L, h(A) = 1 holds. 

Definition 2.3. We call the expression (a ~ i b) n (b ~ i a) (i = 1 , . . . ,  5) 
identity and denote it by a = b. The two elements a, b satisfying a = b = 1 
we call identical. 

Definition 2.4. We call the expression (a ~ b) n (b ~ a) classical iden- 
tity and denote it by a =0 b. The two elements a, b satisfying a --0 b -- 1 
we call classically identical. 

Lemma 2.5. In any o r thomodu la r  lattice: a ~-b = ( a n b )  u(a•177 
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Proof  We omit the easy proof. To our knowledge the lemma was first 
mentioned by Hardegree (1981). �9 

Lemma 2. 6. In any ortholattice: a ~- 0 b = (a • u b) n (a u b • 

Proof  Obvious by definition. �9 

The following theorem characterizes an orthomodular lattice by means 
of the operation of identity and the lattice-theoretic equation instead of the 
operation of implication and the lattice-theoretic ordering. 

Theorem 2. 7. An ortholattice in which any two identical elements are 
equal, i.e., in which: 

LT. a = - b =  l ~ a = b  

holds is an orthomodular lattice and vice versa. 

Proof  The vice versa part follows directly from L7 and Definition 3, 
since right to left metaequivalence holds in any ortholattice. So we have to 
prove the orthomodularity condition by means of  L 1 - L 6  and L7'. Let us 
take the following well-known form of the orthomodularity: 

a<_b & b l ~ a = l  ~ b < a  

The first premise can be written as a u b = b and as a n b = a. The former 
equation can, by using the lattice analog for R2, be written as 
b • = a •  • Introducing these b • and a into the second premise, the 
latter reads (a •  l )  w(a rib) = 1. Now L7' gives a = b, which is, in effect, 
the wanted conclusion. �9 

This extraordinary feature of orthomodular lattices and therefore of 
quantum logic characterizes them in a similar way in which the ordering 
relation versus the operation of implication characterizes distributive lat- 
tices. In other words, the identity which makes two elements both identical 
and equal in an ortholattice, thus making the lattice orthomodular,  is 
unique. We prove this so as to prove that the classical identity which makes 
any two elements of an ortholattice both classically identical and equal 
does not turn the lattice into a distributive one, but makes it a lattice which 
is between being genuinely orthomodular and distributive: That, by doing 
so, we really prove the wanted uniqueness of  the identity stems from the 
fact that there are only five implications in an orthomodular lattice which 
reduce to the classical one for commensurable elements. To o u r  knowledge 
Hardegree (1981) was first who observed that Kotas'  (1987) theorem on 
the existence of exactly five (plus classical itself) such implications in any 
modular lattice is valid for orthomodular lattices as well. 
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Theorem 2.8. An ortholattice in which any two classically identical 
elements are equal, i.e., in which 

L7". a - - - ob= l  <:~ a = b  

holds is a nongenuine orthomodular lattice which is not distributive. 

Proof. As given in Pavi6i6 (1993a). �9 

We can now prove the soundness of AUQL for valid formulas from L 
by means of the following theorem. 

Definition 2.9. We call a proposition A sQO true in the model ~ if for 
any morphism h: AUQL ~ L, h(A) = 1 holds. 

Soundness Theorem 2.10. kA only if A is true in any orthomodular 
model of AUQL. 

Proof. As given in Pavi6i~ (1993a). �9 

Lemma 2. II. The Lindenbaum-Tarski  algebra d/~--, is an orthomod- 
ular lattice with the natural isomorphism k: d ~ d / ~  which is induced 
by the congruence relation ~-~ and which satisfies k(--hA)= [k(A) a, 
k(A v B) = k(A) u k(B), and k(A ~ B) = k(A) ==_ k(B). 

Proof The proof is straightforward and we omit it. �9 

Completeness Theorem 2.12. If  A is true in any model of AUQL, then 
kA. 

Proof. The proof is straightforward and we omit it. �9 

3. STATISTICAL PHYSICAL INTERPRETATION 
OF QUANTUM LOGIC 

Hultgren and Shimony (1977) showed that in building a complete 
Hilbert space edifice we cannot rely only on standard outcomes of the 
experiments carried out on individual systems. For, we cannot measure all 
the states we can describe with the help of the Hilbert space formalism by 
means of standard individual YES-NO measurements. For example, if we 
decide to orient the measuring device in direction n in order to measure the 
spin components of the spin operator s whose eigenvectors are [1, 0, 0], 

[0, 1, 0], and [0,0, 1], then the state [l/x//6, 1/x/~, 1/x/~ ] can easily be 
shown not to be an eigenstate of the measured operator n" s. 

A possible remedy for such unrepresentable states seems to be the 
disputed Jauch infinite filter procedure for introducing conjunctions. For, 
apparently there are infinitely many atoms of the lattice of the subspaces of 
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the Hilbert space which do not belong to the finite lattice of  individual 
YES-NO measurements, but which can be recovered by Jauch's  procedure. 
This is not a problem for quantum logic if we look at it as at a structure 
which corresponds ot the Hilbert space, because the structure (complete 
uniquely orthocomplemented 2 atomistic lattice satisfying the covering law) 
demands by itself an infinite number  of  atoms. (Shimony, 1971; Ivert and 
Sj6din, 1978). But if we looked at quantum logic as at a logic of  YES-NO 
discrete measurements and tried to recover the Hilbert space axioms by 
empirically plausible assumptions, then we would obviously wish to avoid 
any infinitary procedure, which, like Jauch's, in principle simply cannot be 
substituted by any arbitrary long one. 

On the other hand, Swift and Wright (1980) have shown that one can 
extend the standard experimental setup for measuring spins so as to employ 
electric fields in place of  magnetic ones in order to make every Hermitian 
operator acting on the Hilbert space of spin-s particle measurable. Thus, we 
can deal on an equal footing with individual systems as with ensembles and 
represent states of  the disputed kind ([ 1/x/~, l/w/3, 1/xf2]) like d'lEspagnat s 
(1966, 1984) mixtures of  the second k ind)  These possibilities immediately 
address the question of approaching a prepara t ion-detect ion YES--NO 

procedure. Are we to take the individual or the ensemble approach? 
I f  we adopt  the individual approach,  then we bring the old Bohr 

"completeness solution" to the stage. That  is, only given the whole 
experimental arrangement can we make an individual system determined 
by a discrete observable repeatable. This also means that we have to deal 
with all Hermitian operators in what is, as illustrated by Swift and Wright 
(1980), hardly feasible. 

I f  we adopt  the ensemble approach, we can apply the statistical 
approach to the definition of our propositions within the logic we use. 

One can show that the statistical approach is not weaker than the 
individual approach but is rival with it (Pavi6i6, 1990a-c).  Since that is 
often misunderstood in the literature, we shall provide some details here. 

Let us take repeatability as "measure"  of  individual as opposed to 
statistical interpretation. 

In order to verify in which state an individual observed system is, we 
have to measure not only its beam, but also the beams of  its orthocomple- 
ment, i.e., both statistical "properties" in the long run. I f  the state were a 

2Lattices are orthomodular ~'they are uniquely orthocomplemented (Rose, 1964). 
3d'Espagnat introduced the mixture of the second kind (improper mixtures) in order to take 
into account mixturelike data as well as the correlations of the separated subsystems of 
Bell-like systems. In our case we deal with the spin detections and the correlations with the 
spins prepared along some other directions. Since the correlations boil down to the same 
diagonal elements of the rotation matrix (Pavi6i6, 1990c), formally both approaches coincide. 
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mixture, such a "property" could not be encoded into individual particles. 
Thus we cannot speak of the repeatability of such systems. On the other 
hand, continuous observables (Ozawa, 1984) and discrete observables 
which do not commute with conserved quantifies (Araki and Yanase, 1960) 
are both known not to satisfy the repeatability hypothesis. 

Apparently, all these unrepeatable systems behave differently than the 
ones characterized by discrete observables. 

But there is a way to treat all the observables in a common way. 
We can exclude the "repeatabifity of individual even t s " - - l eav ing  

only statistical repeatability, which turns into approximate repeatability for 
continuous observables. In other words, we can exclude individual re- 
peatability even for discrete observables which undergo measurements of 
the first kind. In doing so we start with links between propositions and 
data. 

The only way in which quantum theory connects, the "elements of the 
physical reality" with their "counterparts in the theory" is by means of the 
Born formula, which gives us the probability that the oufcome of an 
experiment will confirm an observable or a property of an ensemble of 
systems (yon Neumann, 1955, p. 439). Strictly speaking, what we measure 
is the mean value of an operator, not the operator, not the state, not the 
wave function. To say that a measurement of the operator A yields the 
eigenvalue a or the state ]~Oa) only means that the measurement gives 
(~a ]A t~a ) / (~a I~O. ), which is then equal to a. 

In other words, in the case of discrete observables we say that we are 
able to prepare a property whenever by an appropriate measurement we 
can later verify the property with certainty--i.e.,  with probability o n e - -  
that is, on ensemble. Whether the property will be verified on each so 
prepared individual system we can only guess. For, there is no "counter- 
part in the theory" of an individual detection even if it is carried out "with 
certainty": The Born probabilistic formula--which is the only link between 
the theory and measurements--refers only to ensembles. However, we can 
consistently postulate whether a measurement of the first order is verifying 
a prepared repeatable property on each system or not. 

To show this we combine the Malus angle (between the preparing and 
the detecting Stern-Gerlach devices) expressed by probability with that 
expressed by relative frequency. To connect probability 0 < p < 1 with the 
corresponding relative frequency we used the strong law of large numbers 
for the infinite number of Bernoulli trials which--being independent and 
exchangeable--perfectly represent quantum measurements on individual 
quantum systems. We use these properties of the individual quantum 
measurements to reduce their repeatability to successive measurements, 
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but that has no influence on the whole argumentation, which rests exclu- 
sively on the fact that finitely many experiments out of infinitely many of 
them may be assumed to fail and to nevertheless build up to probability 
one. 

When electrons pass perfectly aligned Stern-Gerlach devices with 
certainty this does imply that the relative frequency N + / N  of the number 
N+ of detections of the prepared property (e.g., spin up) on the systems 
among the total number N of the prepared systems approaches probabil- 
ity p = ( N + / N )  = 1 almost certainly: 

P (  l i m N +  ) =1 (1) 

but does not imply that N+ analytically equals N, i.e., it does not neces- 
sarily follow that the analytical equation 2(+ = N should be satisfied. 

Hence we must postulate: either N+ = N and (1) or N+ # N and 
(1). 

The possibility N+ # N does not seem very plausible by itself and 
we therefore proved a theorem on a difference between the probabil- 
ity and frequency and constructed a function which reflects the two 
possibilities. 

As for the theorem, we proved that 

lim P ( ~ = p ) = 0 ,  0 < p < l  (2) 

which expresses randomness of individual results as clustering only around 
p (Pavi6id, 1990a). 

As for the function, we will just briefly sketch it here. 4 The function 
refers to the quantum Malus law and reads 

G(p) = L - -1  ~ __ ~(p) N1/2 

where ~ is the angle at which the detection device (a Stern-Gerlach device 
for spin-s particles, an analyzer for photons) is deflected with regard to the 
preparation device (another Stern-Gerlach device, polarizer) and where L 
is a bounded random (stochastic) variable: O < L  < ~ .  The function 
represents a property in the sense of von Neumann. For electrons and for 

4The reader can find all the relevant theorems and proofs in Pavi6id (1990a), a generaIization 
to the spin-s case in Pavi6id (1990c), and a discussion with possible implications on the 
algebraic structure underlying quantum theory in Pavi6i6 (1990b, 1992a, 1993c). 
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projection 0 of spin 1, it is equal to (Pavi~i6, 1990a) 

aef sin 
G(p) = H(p) = H[p(c0] = 

sin 

We see (Pavi6i6, 1990a) that H is not defined for the probability equal 
to one: H ( I ) = 0 / 0 .  However, its limit exists and equals 1. Thus, a 
continuous extension/~ of H to [0, 1] exists and is given by /4 (p )  = 1 for 
pc(0 ,  1) and H(1) = 1. 

We are left with three possibilities [which hold for an arbitrary spin s, 
too (Pavi6i6, 1990c)], of which we shall here consider only the following 
two (that are "physical"): 

1. G(p) is continuous at 1. A necessary and sufficient condition for 
this is G ( 1 ) = l i m p ~ l G ( p  ). In this case we cannot strictly have 
N+ = N, since then G(1) = 0 # limp ~ 1G(p) obtains a contradiction. 

2. G(1) = 0. In this case we must have N+ = N. And vice versa: if the 
latter equation holds, we get G(1) = 0. 

Hence, under the given assumptions a measurement of a discrete 
observable can be considered repeatable with respect to individual mea- 
sured systems if and only if G(p) exhibits a jump discontinuity for p = 1 in 
the sense of point 2 above. 

The interpretative differences between the points are as follows. 

1. Admits only the statistical interpretation of the quantum formalism 
and banishes repeatable measurements on individual systems from 
quantum mechanics altogether. Of course, repeatability in the 
statistical sense remains untouched. The assumed continuity of G 
makes it approach its classical value for large spins. (Paviei6, 
1990c). Notably, for a classical probability we have limp_+1 
(G~I(p) = 0 and for "large spins" we get lim~o~ limp_~l(G(p) = 0. 

2. Admits the individual interpretation of the quantum formalism and 
assumes that repeatability in the statistical sense implies repeatabil- 
ity in the individual sense. By adopting this interpretation we 
cannot but assume that nature differentiates open intervals from 
closed ones, i.e., distinguishes between two infinitely close points. 

By keeping to the former possibility we introduce all the logicoalge- 
braic propositions of the structure (logic, l a t t i c e , . . . )  underlying the 
Hilbertian theory of quantum measurements directly such as d'Espagnat's 
mixtures of the second kind and thus we avoid the aforementioned 
infinitary procedure, which actually boils down to postulating what we lack 
to reach the Hilbertian structure. 
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We have to stress here that by avoiding Jauch's infinitary procedure 
we did not get rid of any postulation. We only substituted the statistical 
interpretation for the individual interpretation postulate and the Jauch 
infinitary postulate. We did so because we feel that the former postulation 
is physically more plausible since it fits better into the quantum logic 
approach and resolves the paradoxes of Hultgren and Shimony by generat- 
ing all the propositions according to a feasible experimental recipe. 

The most important consequence of the obtained results and the 
appropriate statistical physical interpretation of quantum logic is that we 
can base the logic and its propositions on the statics of YES-NO quantum 
measurements, which is what we are going to do in the next section. 

4. Y E S - N O  VERSUS PROBABILISTIC REPRESENTATION 
OF QUANTUM LOGIC 

Comparing the representations by means of the operations of implica- 
tion and bi-implication presented in Section 2, we can easily come to a 
conjecture that other ordering-like quantum logic concepts can be redefined 
along a similar line eventually bringing us to a new modeling and proper 
semantics of quantum logic. 

Thus, although quantum logic cannot be represented by means of the 
conditions of the first order imposed on the above orthogonality (which 
appears as the relation of accessibility in the Kripkean, i.e., modal ap- 
proach) as proved by Goldblatt (1984) we can approach the whole problem 
from the "equational side," picking up another relation which is not 
orthogonal but, let us say, orthogonal-like, which closely follows the 
statistical interpretation of YES-NO quantum measurements outlined in the 
previous section. The new relation does not follow the algebra of projectors 
but the algebra of YES-NO linear subspaces and their orthocomplements. It 
is given in a set-theoretic way and it is weaker than (i.e., it follows from) 
MacLaren's (1965) orthogonality. We shall call it the YES-NO relation 
since it perfectly corresponds to YES-NO quantum experiments. 

We establish our representation (semantics) by introducing the YES- 
NO quantum frame and the YES-NO relation for the algebraic unified 
quantum logic. 

Definition 4.1. ~ = (X, 0 )  is a YES-NO quantum frame iff X is a 
nonempty set, the carrier set of Y,  and G is a YES-NO relation, i.e., 
@ ~ X x X is symmetric and intransitive. 

Definition 4.2. Y is said to be a YES-NO subset iff 

Y ~ Z c X  ~ ( V x ~ Z ) ( x ~ Y v _ x - @ Y )  
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where 
clef 

x G Y = (Vye Y)(x OY) 

Thus, any element of a proper subset of the carrier set X either belongs 
to a subset of that subset or to its relative complement. To pick up a proper 
subset is important because a direct reference to X would bring us to the 
Boolean algebra instead of orthomodular lattice. We rely on the well- 
known representation of  orthomodular structures, by which they can be 
obtained by gluing together the Boolean algebras, the representation 
"initiated" by Greechie. 

Lemma 4.3. A YES-NO subset Y ~ _ Z  c X is YES-NO closed (in 
Z c X). If we denote y e  = {x: x Qy ,  y~Y},  then y e ~  = y. 

Proof. As given-in Pavi~i6 (1993a). �9 

To prove the soundness of our representation, we introduce a YES-NO 
model by the following definition. 

Definition 4.4. Jg = (X, G,  V) is a YES-NO quantum model on the 
YES-NO quantum frame (X, O )  iff V is a function assigning to each 
propositional variable Pi a YES-NO subset V(pi) ~ X. The truth of  a wff A 
at x in J / / i s  defined recursively as follows: 

(1) Np, l[ = V(p,) 
(2) IIA /x BII= NAllnIIBll 
(3) [I-nAH={x:x@IIAII} 

where we denote the set {x~X: x ~ S} by HA II (or II/II x ~ A reads 
A holds at x in Jg). 

Lemma 4.5. If Jg is a YES-NO model, then for any A set I[A II ~ is 
Y E S - N O  closed. 

Proof. As given in Pavi6i6 (1993a). �9 

Soundness Theorem of Quantum Logic for YES-NO Representation 4.6: 

~- F ~ A =~ cg : F ~ A 

where <g is the class of all Y E S - - N O  quantum frames. 

Proof. As given in Pavi6i6 (1993a). �9 

We are also able to prove the opposite, i.e., that the structure of which 
the YES-NO representation is a model is exactly quantum logic (AUQL), 
but for the proof  we refer to Pavi6i6 (1993b). 
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Completeness Theorem of Quantum Logic for Y E S - - N O  Representation 
4.7: 

C~:F~A ~ ~ - F ~ A  

where ~ is the class of all YES-NO quantum frames. 

The completeness might- -under  particular restrictions--be accompa- 
nied with the finite model property and decidability of quantum logic 
(Pavi6i6, 1993b). 

Decidability boils down to the fact that there is an effective procedure 
to decide on every nonthesis that it really is a nonthesis and this is very 
important for any axiomatization because it decides on whether the axiom- 
atization is effective in the sense that it is recursive. The reason why the 
obtained decidability and the finite model property of quantum logic are 
not so important for physical applications and the Hilbert space in the 
present elaboration is the following. Our completeness p roof - -as  opposed 
to other completeness proofs (given for other representations and by means 
of the orthogonality) by MacLaren, Goldblatt, Dishkant, Morgan, 
Nishimura [see the references in Pavi~i6 (1992b)]--might provide proof of 
the finite model property and decidability, but only for the finite case, i.e., 
for the case when there are finitely many elementary propositions in the 
logic. However, a finite propositional lattice does not have the Hilbert 
space as a model, so we have to expand it so as to add an infinite set of 
constant elementary propositions. 

We conjecture that the expansion can be done along the following 
lines. 

The above YES--NO quantum frame rests on the function V which 
maps quantum logical propositions into its set. It would be ideal, though, 
if the frame were a probabilistic one and the function simply a measure 
which maps propositions into the interval [0, 1]. For quantum logic proper, 
Greechie's counterexamples show that such measures cannot be states, but 
Morgan's (1983) function shows that such a measure exists. Thus, quantum 
logic as a propositional calculus is not the propositional calculus underly- 
ing its Hilbert space model and in particular its Hilbertian states do not 
provide its probabilistic semantics, although its proper probabilistic seman- 
tics does exist. What we can do is to try to use the properties of the 
propositional calculus which we obtain from the properties of the second 
order by reading off the Hilbert space structure so as to avoid unphysical 
"Hilbertian" properties of the second order, e.g., the ortho-Arguesian 
property as well as the infinite number of elementary propositions we 
obtain from the atomicity together with the covering property of the 
Jauch-Piron Hilbertian structure. We conjecture that one can proceed the 
other way round: the ortho-Arguesian property together with the infinite 
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number of elementary propositions might give the Hilbertian structure. 
That would be much more plausible and could eventually answer, "Why 
the Hilbert space?" 

In order to carry out such a program one can take a set of quantum 
states (measures) satisfying a kind of ortho-Arguesian property as a 
probabilistic model (semantics) of quantum logic and expand quantum 
logic to the infinite Hilbertian logic so as to complete it by forcing, 
proceeding roughly as follows. 

Given Q0 (of AUQL) and a set P we define Q(P) as the expanded 
language whose propositions are those of QO plus the elementary proposi- 
tions in P. By an expansion of Q0 we mean Q(P), where P is an infinite 
set of elementary propositions. We define a measure Pr on Q(P) relative 
to AUQL as function Pr: AUQL~+ [0, 1] for propositions from Q(P) 
with a finite set of values. Measure Pr meets a number of conditions 
which determine it as a probabilistic model (semantics) of AUQL. The 
conditions are of the kind presented in Pavi6i6 (1987b) or Morgan (1983) 
plus a kind of ortho-Arguesian property. We define Pr forces A from Q(P) 
relative to AUQL, in symbols Pr(DIC ) IF A, for the function Pr and 
propositions A of Q(P) by induction on the complexity of sentences as 
follows, for each C: 

(1) Pr(D[C) IF p, .~ Pr(DIC ) <-er(p~lC) 
(2) Pr(D]C) IF A /x B ~ Pr(DIC ) IFA & Pr(D I C) IF B 
(3) Pr(DIC) IF ~ A  r (VE)[Pr(EIC) IF A ~ Pr(DIC) 

+ Pr(EIC) = II 

If  we now define the forcing companion AUQL f as the set of all 
sentences forced by function Pr (whose set of values is finite), we can 
obtain the result that if AUQL is countable and possesses a model 
completion AUQL*, then AUQL* is logically equivalent to AUQL f. That 
would establish a link between the experimental quantum logic and the 
Hilbertian quantum logic. 
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