
Research Article
Classical Logic and Quantum Logic with Multiple and
Common Lattice Models

Mladen PaviIiT1,2

1Department of Physics-Nanooptics, Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin, Berlin, Germany
2Center of Excellence for Advanced Materials and Sensing Devices (CEMS), Photonics and Quantum Optics Unit,
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We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an
orthomodular lattice (algebra) underlying Hilbert (quantum) space. We give an equivalent proof for the classical logic which turns
out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic
are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that
is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital
(standard, two-subset, 0-1-bit) computer and a nondigital (say, a six-subset) computer (with appropriate chips and circuits). With
quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger
lattice models or theorems of the logic.

1. Introduction: Is Logic Empirical?

In his seminal paper “Is Logic Empirical?” [1], Putnam argues
that logic we make use of to handle the statements and
propositions of the theories we employ to describe the world
around us is uniquely determined by it. “Logic is empirical. It
makes . . . sense to speak of ‘physical logic.’ We live in a world
with a nonclassical logic [of subspaces of the quantumHilbert
space H which form an orthomodular (non-distributive,
non-Boolean) lattice]. Certain statements—just the ones we
encounter in daily life—do obey classical logic, but this is so
because the corresponding subspaces of H form a Boolean
lattice” [1, Ch. V].

We see that Putnam, in effect, reduces the logic to lattices,
while they should only be their models. “[We] just read the
logic off from the Hilbert spaceH” [1, Ch. III].This technical
approach has often been adopted in both classical and
quantum logic. In classical logic, it has been known as two-
valued interpretation for more than a century. In quantum
logic, it has been introduced by Birkhoff and von Neumann
in 1936 [2] and it is still embraced by many authors [3].
Subsequently, varieties of relational logic formulations, which

closely follow lattice ordering relations, have been developed,
for example, by Dishkant [4], Goldblatt [5], Chiara [6],
Nishimura [7, 8], Mittelstaedt [9], Stachow [10], and Pták and
Pulmannová [11]. More recently, Engesser and Gabbay [12]
made related usage of nonmonotonic consequence relation,
Rawling and Selesnick [13] of binary sequent, Herbut [14]
of state-dependent implication of lattice of projectors in the
Hilbert space, Tylec and Kuś [15] of partially ordered set
(poset) map, and Bikchentaev et al. [16] of poset binary
relation.

Another version of Birkhoff-von-Neumann style of view-
ing propositions as projections in Hilbert space rather than
closed subspaces and their lattices as in the original Birkhoff-
von-Neumann paper has been introduced by Engesser et al.
[17]. Recently, other versions of quantum logic have been
developed, such as a dynamic quantum logic by Baltag and
Smets [18, 19], exogenous quantum propositional logic by
Mateus and Sernadas [20], a categorical quantum logic by
Abramsky and Duncan [21, 22], and a projection orthoalge-
braic approach to quantum logic by Harding [23].

However, we are interested in nonrelational kinds of
logic which combine propositions according to a set of true
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formulas/axioms and rules imposed on them. The proposi-
tions correspond to statements from a theory, say classical or
quantummechanics, and are not directly linked to particular
measurement values. Such kinds of logic employ models
which evaluate a particular combination of propositions and
tell us whether it is true or not. Evaluation means mapping
from a set of logic propositions to an algebra, for example, a
lattice, through which a correspondence with measurement
values emerges, but indirectly. Therefore we shall consider
a classical and a quantum logic defined as a set of axioms
whose Lindenbaum-Tarski algebras of equivalence classes
of expressions from appropriate lattices correspond to the
models of the logic. Let us call such a logic an axiomatic
logic. An axiomatic logic (L) is a language consisting of
propositions and a set of conditions and rules imposed on
them called axioms and rules of inference. We shall consider
classical and quantum axiomatic logic.

We show that an axiomatic logic is wider than its rela-
tional logic variety in the sense of havingmany possiblemod-
els andnot only distributive ortholattice (Boolean algebra) for
the classical logic and not only orthomodular lattice for the
quantum logic. We shall make use of the PM classical logi-
cal system—Whitehead and Russell’s Principia Mathematica
axiomatization in Hilbert and Ackermann’s presentation [24]
in the schemata form and of Kalmbach’s axiomatic quantum
logic [25, 26] (slightly modified by Pavičić and Megill [27,
28]—original Kalmbach axiomsA1, A11, andA15 are dropped
because they were proven redundant in [29]), as typical
examples of axiomatic logic.

It is well-known that there are many interpretations of
the classical logic, for example, two-valued, general Boolean
algebra (distributive ortholattice) and set-valued ones [30,
Ch. 8, 9]. These different interpretations are tantamount to
different models of the classical logic and in this paper and
several previous papers of ours we show that they are enabled
by different definitions of the relation of equivalence for
its different Lindenbaum-Tarski algebras. One model of the
classical logic is a distributive numerically valued, mostly
two-valued, lattice, while the others are nondistributive
nonorthomodular lattices, one of thembeing the so-calledO6
lattice, which can also be given set-valuations [30, Ch. 8, 9].

As for quantum logic, one of its models is an orthomodu-
lar lattice, while others are nonorthomodular lattices, one of
them being again O6—the common model of both kinds of
logic.

Within a logic we establish a unique deduction of all
logic theorems from valid algebraic equations in a model
and vice versa by proving the soundness and completeness
of logic with respect to a chosen model. That means that
we can infer the distributivity or orthomodularity in one
model and disprove them in another by means of the same
set of logical axioms and theorems. We can also consider
O6 in which both the distributivity and orthomodularity fail;
however, particular nondistributive and nonorthomodular
conditions pass O6 only to map into the distributivity and
orthomodularity through classical and quantum logic in
other models of these kinds of logic.

We see that logic is at least not uniquely empirical since it
can simultaneously describe distinct realities.

The paper is organised as follows. In Section 2 we define
classical and quantum logic. In Section 3 we introduce dis-
tributive (ortho)lattices and orthomodular lattices as well as
two nondistributive (one is O6) and four nonorthomodular
ones (one is again O6), all of which are our models for
classical and quantum logic, respectively. In Section 4, we
prove soundness and completeness of classical and quantum
logic with respect to the models introduced in Section 3. In
Section 5, we discuss the obtained results.

2. Kinds of Logic

In our axiomatic logic (L) the propositions are well-formed
formulae (wffs), defined as follows.

We denote elementary, or primitive, propositions by
𝑝

0
, 𝑝

1
, 𝑝

2
, . . .; we have the following primitive connectives: ¬

(negation) and ∨ (disjunction). 𝑝
𝑗
is a wff for 𝑗 = 0, 1, 2, . . .;

¬𝐴 is a wff if 𝐴 is a wff; 𝐴 ∨ 𝐵 is a wff if 𝐴 and 𝐵 are wffs.
Operations are defined as follows.

Definition 1 (conjunction). One has

𝐴 ∧ 𝐵

def
= ¬ (¬𝐴 ∨ ¬𝐵) .

(1)

Definition 2 (classical implication). One has

𝐴→

𝑐
𝐵

def
= ¬𝐴 ∨ 𝐵.

(2)

Definition 3 (Kalmbach’s implication). One has

𝐴→

3
𝐵

def
= (¬𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ ¬𝐵) ∨ (𝐴 ∧ (¬𝐴 ∨ 𝐵)) .

(3)

Definition 4 (quantum equivalence). One has

𝐴≡

𝑞
𝐵

def
= (𝐴 ∧ 𝐵) ∨ (¬𝐴 ∧ ¬𝐵) .

(4)

Definition 5 (classical Boolean equivalence). One has

𝐴≡

𝑐
𝐵

def
= (𝐴→

𝑐
𝐵) ∧ (𝐵→

𝑐
𝐴) .

(5)

Connectives bind from weakest to strongest in the order
→, ≡, ∨, ∧, ¬.

LetF∘ be the set of all propositions, that is, of all wffs. wffs
containing∨ and¬within logicL are used to build an algebra
F = ⟨F∘, ¬, ∨⟩. InL, a set of axioms and rules of inference
are imposed onF. From a set of axioms by means of rules of
inference, we get other expressions which we call theorems.
Axioms themselves are also theorems. A special symbol ⊢ is
used to denote the set of theorems. Hence 𝐴 ∈⊢ iff 𝐴 is a
theorem. The statement 𝐴 ∈⊢ is usually written as ⊢ 𝐴. We
read this as follows: “𝐴 is provable,” meaning that if 𝐴 is a
theorem, then there is a proof of it. We present the axiom
systems of our propositional logic in the schemata form (so
that we dispense with the rule of substitution).

Definition 6. For Γ ⊆ F∘ one says that 𝐴 is derivable from Γ

and writes Γ ⊢L 𝐴 or just Γ ⊢ 𝐴 if there is a finite sequence of
formulae, the last of which is 𝐴, and each of which is either
one of the axioms of L or is a member of Γ or is obtained
from its precursors with the help of a rule of inference of the
logic.
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2.1. Classical Logic. In the classical logic CL, the sign ⊢CL

will denote provability from the axioms and the rule ofCL,
but we shall omit the subscript when it is obvious from
context as, for example, in the following axioms and the rule
of inference that defineCL.

Axioms
A1 ⊢ 𝐴 ∨ 𝐴→

𝑐
𝐴

A2 ⊢ 𝐴→

𝑐
𝐴 ∨ 𝐵

A3 ⊢ 𝐴 ∨ 𝐵→

𝑐
𝐵 ∨ 𝐴

A4 ⊢ (𝐴→

𝑐
𝐵)→

𝑐
(𝐶 ∨ 𝐴→

𝑐
𝐶 ∨ 𝐵) .

(6)

Rule of Inference (Modus Ponens)
R1 ⊢ 𝐴&𝐴→

𝑐
𝐵 ⇒⊢ 𝐵. (7)

We assume that the only legitimate way of inferring
theorems inCL is by means of these axioms and the Modus
Ponens rule. We make no assumption about valuations of
the primitive propositions from which wffs are built but
instead are interested in wffs that are valid, that is, true in
all possible valuations of the underlying models. Soundness
and completeness will show that those theorems that can be
inferred from the axioms and the rule are exactly those that
are valid.

2.2. Quantum Logic. Quantum logic (QL) is defined as a
language consisting of propositions and connectives (oper-
ations) as introduced above and the following axioms and a
rule of inference. We will use ⊢QL to denote provability from
the axioms and the rule ofQL and omit the subscript when it
is obvious from the context, for example, in the list of axioms
and the rule of inference that follow.

Axioms

A2 ⊢ 𝐴≡

𝑞
𝐵→

𝑐
(𝐵 ≡

𝑞
𝐶→

𝑐
𝐴≡

𝑞
𝐶) (8)

A3 ⊢ 𝐴≡

𝑞
𝐵→

𝑐
¬𝐴≡

𝑞
¬𝐵 (9)

A4 ⊢ 𝐴≡

𝑞
𝐵→

𝑐
𝐴 ∧ 𝐶≡

𝑞
𝐵 ∧ 𝐶 (10)

A5 ⊢ 𝐴 ∧ 𝐵≡

𝑞
𝐵 ∧ 𝐴 (11)

A6 ⊢ 𝐴 ∧ (𝐵 ∧ 𝐶) ≡

𝑞
(𝐴 ∧ 𝐵) ∧ 𝐶 (12)

A7 ⊢ 𝐴 ∧ (𝐴 ∨ 𝐵) ≡𝑞
𝐴 (13)

A8 ⊢ ¬𝐴 ∧ 𝐴≡

𝑞 (
¬𝐴 ∧ 𝐴) ∧ 𝐵 (14)

A9 ⊢ 𝐴≡

𝑞
¬¬𝐴 (15)

A10 ⊢ ¬ (𝐴 ∨ 𝐵) ≡𝑞
¬𝐴 ∧ ¬𝐵 (16)

A12 ⊢ (𝐴≡

𝑞
𝐵) ≡

𝑞
(𝐵 ≡

𝑞
𝐴) (17)

A13 ⊢ 𝐴≡

𝑞
𝐵→

𝑐
(𝐴→

𝑐
𝐵) (18)

A14 ⊢ (𝐴→

𝑐
𝐵)→

3
(𝐴→

3
(𝐴→

3
𝐵)) . (19)

Rule of Inference (Modus Ponens)

R1 ⊢ 𝐴& ⊢ 𝐴→

3
𝐵 ⇒⊢ 𝐵. (20)

Soundness and completeness will show that those theo-
rems that can be inferred from the axioms and the rule of
inference are exactly those that are valid.

3. Lattices

For the presentation of the main result it would be pointless
and definitely unnecessarily complicated to work with the
full-fledged models, that is, Hilbert space, and the new non-
Hilbert models that would be equally complex. It would be
equally too complicated to present complete quantum or
classical logic of the second order with all the quantifiers.
Instead, we shall deal with lattices and the propositional logic
we introduced in Section 2. We start with a general lattice
which contains all the other lattices we shall use later on.The
lattice is called an ortholattice andwe shall first briefly present
how one arrives at it starting with Hilbert space.

A Hilbert lattice is a kind of orthomodular lattice which
we define below. In any Hilbert lattice the operation meet,
𝑎∩𝑏, corresponds to set intersection,H

𝑎
⋂H
𝑏
, of subspaces

H
𝑎
,H
𝑏
of the Hilbert space H; the ordering relation 𝑎 ≤

𝑏 corresponds to H
𝑎

⊆ H
𝑏
; the operation join, 𝑎 ∪ 𝑏,

corresponds to the smallest closed subspace ofH containing
H
𝑎
⋃H
𝑏
; and the orthocomplement 𝑎 corresponds to H⊥

𝑎
,

the set of vectors orthogonal to all vectors inH
𝑎
. Within the

Hilbert space there is also an operation which has no parallel
in the Hilbert lattice: the sum of two subspaces H

𝑎
+ H
𝑏

which is defined as the set of sums of vectors from H
𝑎
and

H
𝑏
. We also have H

𝑎
+ H⊥
𝑎
= H. One can define all the

lattice operations on the Hilbert space itself following the
above definitions (H

𝑎
∩H
𝑏
= H
𝑎
⋂H
𝑏
, etc.). Thus we have

H
𝑎
∪ H
𝑏
= H
𝑎
+H
𝑏
= (H

𝑎
+ H
𝑏
)

⊥⊥
= (H⊥

𝑎
⋂H⊥
𝑏
)

⊥

[33, p. 175], where H
𝑐
is the closure of H

𝑐
, and therefore

H
𝑎
+H
𝑏
⊆ H
𝑎
∪H
𝑏
. WhenH is finite dimensional or when

the closed subspacesH
𝑎
andH

𝑏
are orthogonal to each other

then H
𝑎
+H
𝑏
= H
𝑎
∪H
𝑏
[34, pp. 21–29], [25, pp. 66, 67],

and [9, pp. 8–16].
The projection associated with H

𝑎
is given by 𝑃

𝑎
(𝑥) = 𝑦

for vector 𝑥 from H that has a unique decomposition 𝑥 =

𝑦 + 𝑧 for 𝑦 from H
𝑎
and 𝑧 from H⊥

𝑎
. The closed subspace

belonging to𝑃 isH
𝑃
= {𝑥 ∈ H | 𝑃(𝑥) = 𝑥}. Let𝑃

𝑎
∩𝑃

𝑏
denote

a projection onH
𝑎
∩H
𝑏
, 𝑃
𝑎
∪ 𝑃

𝑏
a projection onH

𝑎
∪H
𝑏
,

and 𝑃
𝑎
+ 𝑃

𝑏
a projection on H

𝑎
+ H
𝑏
if H
𝑎
⊥ H
𝑏
, and let

𝑃

𝑎
≤ 𝑃

𝑏
mean H

𝑎
⊆ H
𝑏
. Then 𝑎 ∩ 𝑏 corresponds to 𝑃

𝑎
∩

𝑃

𝑏
= lim

𝑛→∞
(𝑃

𝑎
𝑃

𝑏
)

𝑛 [9, p. 20], 𝑎 to 𝐼 − 𝑃

𝑎
, 𝑎 ∪ 𝑏 to 𝑃

𝑎
∪

𝑃

𝑏
= 𝐼 − lim

𝑛→∞
[(𝐼 − 𝑃

𝑎
)(𝐼 − 𝑃

𝑏
)]

𝑛 [9, p. 21], and 𝑎 ≤ 𝑏

to 𝑃
𝑎
≤ 𝑃

𝑏
. 𝑎 ≤ b also corresponds to either 𝑃

𝑎
= 𝑃

𝑎
𝑃

𝑏
or

𝑃

𝑎
= 𝑃

𝑏
𝑃

𝑎
or 𝑃
𝑎
− 𝑃

𝑏
= 𝑃

𝑎∩𝑏
 . Two projectors commute iff

their associated closed subspaces commute. This means that
𝑎 ∩ (𝑎


∪ 𝑏) ≤ 𝑏 corresponds to 𝑃

𝑎
𝑃

𝑏
= 𝑃

𝑏
𝑃

𝑎
. In the latter case

we have 𝑃
𝑎
∩ 𝑃

𝑏
= 𝑃

𝑎
𝑃

𝑏
and 𝑃

𝑎
∪ 𝑃

𝑏
= 𝑃

𝑎
+ 𝑃

𝑏
− 𝑃

𝑎
𝑃

𝑏
. 𝑎 ⊥ 𝑏;

that is,𝑃
𝑎
⊥ 𝑃

𝑏
is characterised by𝑃

𝑎
𝑃

𝑏
= 0 [33, pp. 173–176],

[25, pp. 66, 67], [9, pp. 18–21], and [35, pp. 47–50].
Closed subspaces H

𝑎
,H
𝑏
, . . . as well as the correspond-

ing projectors 𝑃
𝑎
, 𝑃

𝑏
, . . . form an algebra called the Hilbert
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lattice which is an ortholattice. The conditions of the follow-
ing definition can be easily read off from the properties of the
aforementioned Hilbert subspaces or projectors.

Definition 7. An ortholattice, OL, is an algebra ⟨OL
0
,


, ∪, ∩⟩

such that the following conditions are satisfied for any 𝑎, 𝑏, 𝑐 ∈
OL
0
[36]:

𝑎 ∪ 𝑏 = 𝑏 ∪ 𝑎

(𝑎 ∪ 𝑏) ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐)

𝑎


= 𝑎

𝑎 ∪ (𝑏 ∪ 𝑏


) = 𝑏 ∪ 𝑏



𝑎 ∪ (𝑎 ∩ 𝑏) = 𝑎

𝑎 ∩ 𝑏 = (𝑎


∪ 𝑏


)



.

(21)

In addition, since 𝑎∪𝑎 = 𝑏∪𝑏

 for any 𝑎, 𝑏 ∈ OL
0
, we define

the greatest and the least element of the lattice:

1

def
= 𝑎 ∪ 𝑎


,

0

def
= 𝑎 ∩ 𝑎


,

(22)

and the ordering relation (≤) on the lattice:

𝑎 ≤ 𝑏

def
⇐⇒

𝑎 ∩ 𝑏 = 𝑎 ⇐⇒

𝑎 ∪ 𝑏 = 𝑏.

(23)

Definition 8 (Sasaki hook). One has

𝑎→

1
𝑏

def
= 𝑎


∪ (𝑎 ∩ 𝑏) .

(24)

Definition 9 (quantum equivalence). One has

𝑎 ≡

𝑞
𝑏

def
= (𝑎 ∩ 𝑏) ∪ (𝑎


∩ 𝑏


) .

(25)

Definition 10 (classical equivalence). One has

𝑎 ≡

𝑐
𝑏

def
= (𝑎


∪ 𝑏) ∩ (𝑏


∪ 𝑎) .

(26)

Connectives bind from weakest to strongest in the order
→, ≡, ∪, ∩, and .

Definition 11 (Pavičić, [37]). An orthomodular lattice (OML)
is an OL in which the following condition (orthomodularity)
holds:

𝑎 ≡

𝑞
𝑏 = 1 ⇒

𝑎 = 𝑏.

(27)

Every Hilbert space (finite and infinite) and every phase
space is orthomodular.

Definition 12 (Pavičić, [38]). (The proof of the opposite claim
in [37, Theorem 3.2] is wrong.) A distributive ortholattice
(DL) (also called a Boolean algebra) is an OL in which the
following condition (distributivity) holds:

𝑎 ≡

𝑐
𝑏 = 1 ⇒

𝑎 = 𝑏.

(28)

Every phase space is distributive and, of course, ortho-
modular since every distributive ortholattice is orthomodu-
lar.

The opposite directions of metaimplications in (27) and
(28) hold in any OL.

Definition 13 (Pavičić and Megill, [27]). An OL in which
either of the following conditions (weak orthomodularity)
holds

𝑎→

1
𝑏 = 1 ⇒

𝑏


→

1
𝑎


= 1

(29)

𝑎 ≡ 𝑏 = 1 ⇒

(𝑎 ∪ 𝑐) ≡ (𝑏 ∪ 𝑐) = 1

(30)

is called a weakly orthomodular ortholattice, WOML.

Definition 14 (Pavičić, this paper). A WOML in which the
following condition holds

[(𝑎 →

1
𝑏) ≡ (𝑏 →

1
𝑎)] = (𝑎 ≡ 𝑏) (31)

is called a WOML1.

Definition 15 (Pavičić, this paper). A WOML1 in which the
following condition holds

[(𝑎 ≡ 𝑏)


→

1
𝑎


] = (𝑎 →

1
𝑏) (32)

is called a WOML2.

Definition 16 (Pavičić, this paper). AWOML inwhich neither
(27), (32), nor (31) hold is called a WOML∗.

Definition 17 (Pavičić and Megill, [27, 39]). An OL in which
the following condition (commensurability) holds

(𝑎 ∩ 𝑏) ∪ (𝑎 ∩ 𝑏


) ∪ (𝑎


∩ 𝑏) ∪ (𝑎


∩ 𝑏


) = 1 (33)

is called a weakly distributive ortholattice, WDL.

Definition 18 (Pavičić and Megill, [27]). A WOML in which
the following condition (weak distributivity) holds

𝑎 ∪ (𝑏 ∩ 𝑐) ≡

𝑐
(𝑎 ∪ 𝑏) ∩ (𝑎 ∪ 𝑐) = 1 (34)

is called a weakly distributive ortholattice, WDL.

Definitions 17 and 18 are equivalent. We give both defini-
tions here in order to, on the one hand, stress that aWDL is a
lattice in which all variables are commensurable and, on the
other, to show that inWDL the distributivity holds only in its
weak form given by (34) which we will use later on.
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Figure 1: (a) O6; (b) O7 (Beran, Figure 7b [31]); (c) O8 (Rose–Wilkinson-1 [32]).

Definition 19 (Pavičić andMegill, [39]). AWDL inwhich (28)
does not hold is called a WDL∗.

Any finite lattice can be represented by a Hasse diagram
that consists of points (vertices) and lines (edges). Each point
represents an element in a lattice, and positioning element 𝑎
above element 𝑏 and connecting them by a line means 𝑎 ≤ 𝑏.
For example, in Figure 1(a) we have 0 ≤ 𝑥 ≤ 𝑦 ≤ 1. We also
see that in this lattice, for example, 𝑥 does not have a relation
with either 𝑥 or 𝑦.

The statement “orthomodularity (27) does not hold in
WOML∗” reads ∼ [(∀𝑎, 𝑏 ∈ WOML∗)((𝑎 ≡ 𝑏 = 1) ⇒

(𝑎 = 𝑏))] which can be written as (∃𝑎, 𝑏 ∈ WOML∗)(𝑎 ≡

𝑏 = 1 & 𝑎 ̸= 𝑏), where “∼” is a metanegation and “&”
a metaconjunction. An example of a WOML∗ is O6 from
Figure 1(a) and we can easily check the statement on it. O6 is
also an example of a WDL∗ and we can verify the statement
“distributivity (28) does not hold in WDL∗” on it, as well.
Similarly, “condition (32) does not hold in WOML∗” can be
written as (∃𝑎, 𝑏 ∈ WOML∗)(((𝑎 ≡ 𝑏)


→

1
𝑎


) ̸= (𝑎→

1
𝑏)).

Definition 20 (Pavičić, this paper). A WOML1 in which
neither (27) nor (32) hold is called a WOML1∗.

An example of a WOML1∗ is O7 from Figure 1(b).

Definition 21 (Pavičić, this paper). A WOML2 in which (27)
does not hold is called a WOML2∗.

An example of a WOML2∗ is O8 from Figure 1(c).

Lemma 22. OML is properly included in (i.e., it is stronger
than) WOML2, WOML2 is properly included inWOML1, and
WOML1 is properly included in WOML.

Proof. Equation (29) passes O6, O7, and O8 from Figure 1.
Equation (31) passes O7 andO8 but fails in O6. Equation (32)
passes O8 but fails in both O6 and O7. Equation (27) fails in

O6, O7, and O8. To find the failures and passes we used our
program lattice [40].

Lemma 23. OML is included in neitherWOML2∗, WOML1∗,
nor WOML∗. WOML2∗ is included in neither WOML1∗ nor
WOML∗. WOML1∗ is not included in WOML∗.

Proof. The proof follows straightforwardly from the proof
of Lemma 22 and the definitions of WOML∗, WOML1∗,
WOML2∗, and OML.

According to Definitions 16, 20, 21, and 19, of WOML∗,
WOML1∗, WOML2∗, and WDL∗, respectively, these lattices
denote set-theoretical differences and that is going to play a
crucial role in our proof of completeness in Section 4.2 in
contrast to [27] where we considered only WOML without
excluding the orthomodular equation. In Section 4.2 we
shall come back to this decisive difference between the two
approaches. Note that the set-differences are not equational
varieties. For instance, WOML2∗ is a WOML2 in which the
orthomodularity condition does not hold, but we cannot
obtain WOML2∗ from WOML2 by adding new equational
conditions to those defining WOML. Instead, WOML2∗ can
be viewed as a set of lattices in all of which the orthomodu-
larity condition is violated.

Remarks on Implications. As we could see above, the implica-
tions do not play any decisive role in the definition of lattices,
especially not in the definitions of OML and DL where they
do not appear at all, and they also do not play a decisive
role in the definition of logic. A few decades ago that was
a major issue, though: “I would argue that a ‘logic’ without
an implication . . . is radically incomplete, and indeed, hardly
qualifies as a theory of deduction” (Jay Zeman) [41]. So, an
extensive search was undertaken in the seventies and eighties
to single proper implications from possible ones [42–44].
Apart from →

1
and →

3
it turns out [25] that one can also

define 𝑎→

0
𝑏

def
= 𝑎


∪ 𝑏 (classical), 𝑎→

2
𝑏

def
= 𝑏


→

1
𝑎
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(Dishkant), 𝑎→
4
𝑏

def
= 𝑏


→

3
𝑎

 (non-tollens), and 𝑎→
5
𝑏

def
=

(𝑎 ∩ 𝑏) ∪ (𝑎


∩ 𝑏) ∪ (𝑎


∩ 𝑏


) (relevance). In 1987 Pavičić

[45] proved that an OL in which 𝑎→

𝑖
𝑏 = 1 ⇒ 𝑎 ≤ 𝑏,

𝑖 = 1, . . . , 5, holds is an OML. In 1987 Pavičić [45] also proved
that an OL in which 𝑎→

0
𝑏 = 1 ⇒ 𝑎 ≤ 𝑏 holds is a DL.

Therefore 5 different but nevertheless equivalent relational
kinds of logic could be obtained by linking lattice inequality
to 5 implications. With our linking of a single equivalence
to lattice equality this ambiguity is avoided and we obtain a
uniquely defined axiomatic quantum logic. Note that we have
𝑎 ≡

𝑞
𝑏 = (𝑎→

𝑖
𝑏) ∩ (𝑏→

𝑖
𝑎), 𝑖 = 1, . . . , 5, in every OML but

not in every OL.

4. Soundness and Completeness

We shall connect our types of logic with our lattices so as to
show that the latter are the models of the former.

Definition 24. One calls M = ⟨𝐿, ℎ⟩ a model if 𝐿 is an
algebra and ℎ : F∘ → 𝐿, called a valuation, is a morphism
of formulae F∘ into 𝐿, preserving the operations ¬, ∨ while
turning them into , ∪.

Whenever the base set 𝐿 of a model belongs to O6,
WOML∗, WOML1∗, WOML2∗, OML, WDL∗, or DL we say
(informally) that the model belongs to WOML∗, . . ., DL. In
particular, if we say “for all models in O6, WOML∗, . . ., DL,”
we mean for all base sets in O6, WOML∗, . . ., DL and for
all valuations on each base set. The term “model” may refer
either to a specific pair ⟨𝐿, ℎ⟩ or to all such possible pairs with
the base set 𝐿, depending on the context.

Definition 25. One calls a formula𝐴 ∈ F∘ valid in the model
M and writes ⊨M 𝐴, if ℎ(𝐴) = 1 for all valuations ℎ on the
model, that is, for all ℎ associated with the base set 𝐿 of the
model. We call a formula 𝐴 ∈ F∘ a consequence of Γ ⊆ F∘

in the model M and write Γ ⊨M 𝐴 if ℎ(𝑋) = 1 for all 𝑋 in Γ
implies ℎ(𝐴) = 1, for all valuations ℎ.

4.1. Soundness. To prove soundness means to prove that all
axioms as well as the rules of inference (and therefore all
theorems) of QL hold in its models. The models of QL are
O6, WOML∗, WOML1∗, WOML2∗, and OML and of CL
are O6, WDL∗, and DL. With the exception of O6 which is a
special case of bothWOML∗ andWDL∗, they donot properly
include each other.

For brevity, wheneverwe do notmake it explicit, the nota-
tions ⊨M 𝐴 and Γ ⊨M 𝐴 will always be implicitly quantified
over all models of the appropriate type, in this section for
all proper lattice models M. Similarly, when we say “valid”
without qualification, we will mean valid in all models of that
type.

The following theorems show that if 𝐴 is a theorem of
QL, then𝐴 will be valid in O6 and anyWOML∗, WOML1∗,
WOML2∗, or OMLmodel, and if𝐴 is a theorem ofCL, then
𝐴will be valid in O6 and anyWDL∗ or DLmodel. In [27, 28]
we proved the soundness forWOML. Since that proof uses no
additional conditions that hold in O6,WOML∗, . . ., OML the
proof given there for WOML is a proof of soundness for O6,

WOML∗, WOML1∗, WOML2∗, and OML, as well. Also, in
[27, 28] we proved the soundness for WDL. Since that proof
uses no additional conditions that hold in O6, WDL∗, and
DL, the proof given there for WDL is a proof of soundness
for O6, WDL∗, and DL, as well. Hence, we can prove the
soundness of quantumand classical logic bymeans ofWOML
and WDL conditions without referring to condition (28),
(27), (32), or (31), that is, to any condition in addition to those
that hold in the WOML andWDL themselves.

Theorem 26 (soundness ofCL). One has

Γ ⊢CL 𝐴 ⇒

Γ⊨WDL 𝐴.
(35)

Proof. By Theorem 4.3 of [27] any WDL (in particular, O6,
WDL∗, or DL) is a model forCL.

Theorem 27 (soundness of QL). One has

Γ ⊢QL 𝐴 ⇒

Γ⊨WOML 𝐴.
(36)

Proof. ByTheorem 3.10 of [27] anyWOML (in particular,O6,
WOML∗, WOML1∗, WOML2∗, or OML) is a model forQL.

Theorems 26 and 27 express the fact that Γ ⊢CL 𝐴 and
Γ ⊢QL 𝐴 in axiomatic logic types CL and QL correspond
to 𝑎 = ℎ(𝐴) = 1 in their lattice models, from O6 and WOML
till WDL. That means that we do not arrive at equations of
the form 𝑎 = 𝑏 and that starting from Γ ⊢ 𝐴≡

𝑞
𝐵 we cannot

arrive at 𝑎 = ℎ(𝐴) = 𝑏 = ℎ(𝐵) but only at 𝑎 ≡
𝑞
𝑏 = 1. We can

obtain a better understanding of this through the following
properties of OML and DL.

The equational theory of OML consists of equality condi-
tions, (21) together with the orthomodular equality condition
[28]

𝑎 ∪ (𝑎


∩ (𝑎 ∪ 𝑏)) = 𝑎 ∪ 𝑏 (37)

which is equivalent to the condition given by (27). We now
map each of these OML equations, which are of the form 𝑡 =

𝑠, to the form 𝑡 ≡

𝑞
𝑠 = 1. This is possible in any WOML since

𝑎 ∪ (𝑎


∩ (𝑎 ∪ 𝑏)) ≡𝑞

𝑎 ∪ 𝑏 = 1 (38)

holds in every OL [28] and (21) mapped to the form 𝑡 ≡

𝑞
𝑠 = 1

also hold in any OL. Any equational proof in OML can then
be simulated in WOML by replacing each axiom reference
in the OML proof with its corresponding WOML mapping.
Such mapped proof will make use of just a proper subset of
the equations that hold in WOML.

It follows that equations of the form 𝑡 ≡

𝑞
𝑠 = 1, where 𝑡

and 𝑠 are such that 𝑡 = 𝑠 holds in OML, cannot determine
OML when added to an OL since all such forms pass O6 and
anOL is anOML if and only if it does not include a subalgebra
isomorphic to O6 [35].

As for CL, the equational theory of distributive ortho-
lattices can be simulated by a proper subset of the equational
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theory of WDLs since it consists of equality conditions
equations (21) together with the distributivity equation

𝑎 ∩ (𝑏 ∪ 𝑐) = (𝑎 ∩ 𝑏) ∪ (𝑎 ∩ 𝑐) (39)

which is equivalent to condition (28). As withWOML above,
we map these algebra conditions of the form 𝑡 = 𝑠 to the
conditions of the form 𝑡 ≡

𝑐
𝑠 = 1, which hold in any WDL

since the weak distributivity condition given by (34) holds
in any WDL. Any equational proof in a DL can then be
simulated inWDL by replacing each condition in a DL proof
with its corresponding WDL mapping. Such a mapped proof
will use only a proper subset of the equations that hold in
WDL.

Therefore, no set of equations of the form 𝑡 ≡

𝑐
𝑠 = 1,

where 𝑡 = 𝑠 holds in DL, can determine a DL when added
to an OL. Such equations hold inWDL and none of theWDL
equations (21) and (39) is violated by O6 which itself violates
the distributivity condition [28].

Similar reasoning applies to O6, WOML∗, WOML1,
WOML1∗, WOML2, and WOML2∗ which are all WOMLs
and to O6 and WDL∗ which are WDLs. Soundness applies
to them all through WOML and WDL and which particular
model we shall use for QL and CL is determined by a
particular Lindenbaum-Tarski algebra which we use for the
completeness proof in the next subsection.

4.2. Completeness. Our main task in proving the soundness
of CL and QL in the previous section was to show that
all axioms as well as the rules of inference (and therefore all
theorems) from CL and QL hold in any WOML. The task
of proving the completeness of CL and QL is the opposite
one: we have to impose the structures of O6, WDL∗, and DL
and O6, WOML∗, WOML1∗, WOML2∗, and OML on the
sets F∘ of formulae of CL and QL, respectively. But here,
as opposed to the soundness proof, we shall have as many
completeness proofs as there are models. The completeness
proofs for O6, WOML∗, WOML1∗, and WOML2∗ can be
inferred neither from the proof for OML nor from the proofs
for the other two. The same holds for O6, WDL∗, and DL.

We start with a relation of congruence, that is, a relation
of equivalence compatible with the operations in QL and
CL. We make use of an equivalence relation to establish a
correspondence between formulae of QL and CL and for-
mulae of O6, WOML∗, WOML1∗, WOML2∗, and OML and
O6, WDL∗, and DL, respectively. The resulting equivalence
classes stand for elements of these lattices and enable the
completeness proof of QL andCL for them.

Our definition of congruence involves a special set of
valuations on lattices O6, O7, and O8 (shown in Figure 1)
called O6, O7, and O8 and defined as follows.

Definition 28. Letting O𝑖, 𝑖 = 6, 7, 8, represent the lattices
from Figure 1, one defines O𝑖 as the set of all mappings 𝑜

𝑖
:

F∘ → O𝑖 such that for 𝐴, 𝐵 ∈ F∘, 𝑜
𝑖
(¬𝐴) = 𝑜

𝑖
(𝐴)

, and
𝑜

𝑖
(𝐴 ∨ 𝐵) = 𝑜

𝑖
(𝐴) ∪ 𝑜

𝑖
(𝐵).

The purpose of O𝑖, 𝑖 = 6, 7, 8, is to let us refine the
equivalence class used for the completeness proof, so that

the Lindenbaum-Tarski algebras areO6,WOML∗,WOML1∗,
and WOML2∗.

This is accomplished by conjoining the term (∀𝑜

𝑖
∈

O𝑖)[(∀𝑋 ∈ Γ)(𝑜

𝑖
(𝑋) = 1) ⇒ 𝑜

𝑖
(𝐴) = 𝑜

𝑖
(𝐵)], 𝑖 = 6, 7, 8, to the

equivalence relation definition, meaning that for equivalence
we require also that (whenever the valuations 𝑜

𝑖
of the wffs

in Γ are all 1) the valuations of wffs 𝐴 and 𝐵 map to the
same point in the lattice O𝑖. Thus, for example, in O6 wffs
𝐴 ∨ 𝐵 and 𝐴 ∨ (¬𝐴 ∧ (𝐴 ∨ 𝐵)) become members of two
separate equivalence classes, which by Theorem 39 amounts
to nonorthomodularity of WOML. Without the conjoined
term, these two wffs would belong to the same equivalence
class. The point of doing this is to provide a completeness
proof that is not in any way dependent on the orthomodular
law and to show that completeness does not require that
any of the underlying models be an OML. The equivalence
classes so defined work for WOML1∗ and WOML2∗ as well
since O7 will let (31) through but will not let through either
the orthomodularity or (32), and O8 will let neither the
orthomodularity, (32), nor (31) through.

O6 will also let us refine the equivalence class used for the
completeness proof of CL, so that the Lindenbaum-Tarski
algebras are O6 and WDL∗.

To obtain OML and DL Lindenbaum algebras we will
make use of the standard equivalence classes without the
conjoined terms.

All these equivalence classes are relations of congruence.

Theorem 29. The relations of equivalence ≈
Γ,QL,𝑖, 𝑖 = 6, 7, 8,

or simply ≈
𝑖
, 𝑖 = 6, 7, 8, defined as

𝐴≈

𝑖
𝐵

𝑑𝑒𝑓

= Γ ⊢ 𝐴≡

𝑞
𝐵& (∀𝑜

𝑖
∈ O𝑖)

[(∀𝑋 ∈ Γ) (𝑜𝑖 (
𝑋) = 1) ⇒ 𝑜

𝑖 (
𝐴) = 𝑜

𝑖 (
𝐵)]

𝑖 = 6, 7, 8

(40)

are relations of congruence, where Γ ⊆ F∘.

Proof. Let us first prove that ≈ is an equivalence relation.𝐴 ≈

𝐴 follows from A1 [(8)] of system QL and the identity law of
equality. If Γ ⊢ 𝐴 ≡ 𝐵, we can detach the left-hand side of A12
to conclude Γ ⊢ 𝐵 ≡ 𝐴, through the use of A13 and repeated
uses of A14 and R1. From this and commutativity of equality,
we conclude 𝐴 ≈ 𝐵 ⇒ 𝐵 ≈ 𝐴. (For brevity we will mostly
not mention further uses of A12, A13, A14, and R1 in what
follows.) The proof of transitivity runs as follows (𝑖 = 6, 7, 8).

𝐴 ≈ 𝐵

&𝐵 ≈ 𝐶 ⇒

Γ ⊢ 𝐴 ≡ 𝐵& Γ ⊢ 𝐵 ≡ 𝐶

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) = 𝑜 (𝐵)]

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐵) = 𝑜 (𝐶)] ⇒

Γ ⊢ 𝐴 ≡ 𝐶

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) = 𝑜 (𝐵)

& 𝑜 (𝐵) = 𝑜 (𝐶)] ⇒
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Γ ⊢ 𝐴 ≡ 𝐶

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) = 𝑜 (𝐶)] ⇒

𝐴 ≈ 𝐶.

(41)

Γ ⊢ 𝐴 ≡ 𝐶 above follows from A2 and the metaconjunction
in the second but last line reduces to 𝑜(𝐴) = 𝑜(𝐶) by
transitivity of equality.

In order to be a relation of congruence, the relation of
equivalence must be compatible with the operations ¬ and
∨. These proofs run as follows (𝑖 = 6, 7, 8).

𝐴 ≈ 𝐵 ⇒

Γ ⊢ 𝐴 ≡ 𝐵

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) = 𝑜 (𝐵)] ⇒

Γ ⊢ ¬𝐴 ≡ ¬𝐵

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴)



= 𝑜 (𝐵)


] ⇒

Γ ⊢ ¬𝐴 ≡ ¬𝐵

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (¬𝐴)

= 𝑜 (¬𝐵)] ⇒

¬𝐴 ≈ ¬𝐵

(42)

𝐴 ≈ 𝐵 ⇒

Γ ⊢ 𝐴 ≡ 𝐵

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) = 𝑜 (𝐵)] ⇒

Γ ⊢ (𝐴 ∨ 𝐶) ≡ (𝐵 ∨ 𝐶)

& (∀𝑜 ∈ O𝑖) [(∀𝑋 ∈ Γ) (𝑜 (𝑋) = 1) ⇒ 𝑜 (𝐴) ∪ 𝑜 (𝐶)

= 𝑜 (𝐵) ∪ 𝑜 (𝐶)] ⇒

(𝐴 ∨ 𝐶) ≈ (𝐵 ∨ 𝐶) .

(43)

In the second step of (42), we used A3. In the second step of
(43), we used A4 and A10. For the quantified part of these
expressions, we applied the definition of O𝑖, 𝑖 = 6, 7, 8.

Theorem30. The relation of equivalence≈
Γ,QL,1, or simply≈

1
,

defined as

𝐴≈

1
𝐵

𝑑𝑒𝑓

= Γ ⊢ 𝐴≡

𝑞
𝐵

(44)

is a relation of congruence, where Γ ⊆ F∘.

Proof. The proof for the relation of equivalence given by (44)
is the well-known standard one.

Theorem 31. The relation of equivalence ≈
Γ,CL,6, or simply ≈

6
,

defined as

𝐴≈

6
𝐵

𝑑𝑒𝑓

= Γ ⊢ 𝐴≡

𝑐
𝐵& (∀𝑜

6
∈ O𝑖)

[(∀𝑋 ∈ Γ) (𝑜

6
(𝑋) = 1) ⇒ 𝑜

6
(𝐴) = 𝑜

6
(𝐵)]

(45)

is a relation of congruence, where Γ ⊆ F∘.

Proof. It is as given in [28].

Theorem32. The relation of equivalence≈
Γ,CL,2, or simply≈

2
,

defined as

𝐴≈

2
𝐵

𝑑𝑒𝑓

= Γ ⊢ 𝐴≡

𝑐
𝐵

(46)

is a relation of congruence, where Γ ⊆ F∘.

Proof. The proof for the relation of equivalence given by (46)
is the well-known standard one.

Definition 33. The equivalence class for wff A under the
relation of equivalence ≈ given by (40), (44), (45), and (46)
is defined as |𝐴| = {𝐵 ∈ F∘ : 𝐴 ≈ 𝐵}, and one denotes
F∘/ ≈= {|𝐴| : 𝐴 ∈ F∘}. The equivalence classes define the
naturalmorphism𝑓 : F∘ → F∘/ ≈, which gives𝑓(𝐴) def

= |𝐴|.
One writes 𝑎 = 𝑓(𝐴), 𝑏 = 𝑓(𝐵), and so forth.

Lemma 34. The relation 𝑎 = 𝑏 onF∘/ ≈ is given by

|𝐴| = |𝐵| ⇐⇒

𝐴 ≈ 𝐵.

(47)

Lemma 35. The Lindenbaum-Tarski algebras A
𝑗

=

⟨F∘/≈
𝑗
, ¬/≈

𝑗
, ∨/≈

𝑗
⟩, 𝑗 = 6, 7, 8, 1, 6, 2, are WOML∗ (or

O6), or WOML1∗, or WOML2∗, or OML, or WDL∗ (O6), or
DL; that is, (21) and (30), or (31), or (32), or (27), or (33), or
(28) hold for ¬/≈

𝑗
and ∨/≈

𝑗
, 𝑗 = 6, 7, 8, 1, 6, 2, as  and ∪,

respectively, where—for simplicity—one uses the same symbols
(  and ∪) as for Oi, since there are no ambiguous expressions
in which the origin of the operations would not be clear from
the context.

Proof. For the Γ ⊢ 𝐴 ≡ 𝐵 part of the 𝐴 ≈ 𝐵 definition, the
proofs of the ortholattice conditions, (21), follow from A5,
A6, A9, the dual of A8, the dual of A7, and DeMorgan’s laws,
respectively. (Theduals follow fromDeMorgan’s laws, derived
from A10, A9, and A3.) For (31) and (32) we use Lemma 3.5
from [27] according to which any 𝑡 = 1 condition that holds
inOML also holds in anyWOML. Program beran [32] shows
that the expressions ((𝑎→

1
𝑏) ≡ (𝑏→

1
𝑎)) ≡ (𝑎 ≡ 𝑏) and

((𝑎 ≡ 𝑏)


→

1
𝑎


) ≡ (𝑎→

1
𝑏) reduce to 1 in an OML. By

Lemma 3.5 this means that ((𝑎→
1
𝑏) ≡ (𝑏→

1
𝑎)) ≡ (𝑎 ≡

𝑏) = 1 and ((𝑎 ≡ 𝑏)


→

1
𝑎


) ≡ (𝑎→

1
𝑏) = 1 in any WOML.

Now the Γ ⊢ 𝐴 ≡ 𝐵 part from (40) forces these WOML
conditions into (31) and (32). For the quantified part of the
𝐴 ≈ 𝐵 definition, lattice O6 is a (proper) WOML. For the
OML, we carry out the proof with the relation of equivalence
without the quantified part in (40). Then the Γ ⊢ 𝐴 ≡ 𝐵 part
from (40) forces the condition (𝑎∪(𝑎∩(𝑎∪𝑏))) ≡ (𝑎∪𝑏) = 1

which holds in any ortholattice into the OM law given by
(27).

We stress here that the Lindenbaum-Tarski algebras A
𝑗
,

𝑗 = 6, 7, 8, 6, from Lemma 35 will be uniquely assigned to
QL and CL via Theorems 42 and 43 in the sense that we
have to use the relations of congruence given by (40) and
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Figure 2: Lattice models of quantum and classical logic together
with the corresponding equivalence relations which define their
Lindenbaum-Tarski algebras.

(45) and that we cannot use those given by (44) and (46). For
A
𝑗
, 𝑗 = 1, 2, we have to use the latter ones and we cannot

use the former ones. This is in contrast to the completeness
proof given in [27] where we did not consider the set-
theoretical difference WOML∗ but only WOML. But since
WOML contains OML (unlike WOML∗), in [27] (unlike in
this paper) we can use both relations of congruence (40), (45)
and (44), and (46) to prove the completeness. We see that the
usage of set-theoretical differences in this paper establishes a
correlation between lattice models and equivalence relations
for a considered logic as shown in Figure 2.

Lemma 36. In the Lindenbaum-Tarski algebraA, if 𝑓(𝑋) = 1

for all𝑋 in Γ implies 𝑓(𝐴) = 1, then Γ ⊢ 𝐴.

Proof. We carry out the proof just for A
6
. Proofs for other

cases run analogously. Let us assume that 𝑓(𝑋) = 1 for
all 𝑋 in Γ imply 𝑓(𝐴) = 1, that is, |𝐴| = 1 = |𝐴| ∪

|𝐴|


= |𝐴∨¬𝐴|, where the first equality is fromDefinition 33,

the second equality follows from (22) (the definition of 1
in an ortholattice), and the third from the fact that ≈ is a
congruence. Thus 𝐴 ≈ (𝐴 ∨ ¬𝐴), which by definition means
Γ ⊢ 𝐴 ≡ (𝐴 ∨ ¬𝐴) & (∀𝑜 ∈ O6)[(∀𝑋 ∈ Γ)(𝑜(𝑋) =

1) ⇒ 𝑜(𝐴) = 𝑜((𝐴 ∨ ¬𝐴))]. The same holds for O7 and O8.
This implies, in particular (by dropping the second conjunct),
Γ ⊢ 𝐴 ≡ (𝐴 ∨ ¬𝐴). Now in any ortholattice, 𝑎 ≡ (𝑎 ∪ 𝑎


) = 𝑎

holds. By mapping the steps in the proof of this ortholattice
identity to steps in a proof in the logic, we can prove ⊢ (𝐴 ≡

(𝐴 ∨ ¬𝐴)) ≡ 𝐴 from QL axioms A2–A14. (A direct proof
of ⊢ (𝐴 ≡ (𝐴 ∨ ¬𝐴)) ≡ 𝐴 is also not difficult.) Detaching
the left-hand side (using A12, A13, A14, and R1), we conclude
Γ ⊢ 𝐴.

Theorem 37. The orthomodular law does not hold inA
𝑗
, 𝑗 =

6, 7, 8, for models WOML∗ (O6), WOML1∗, and WOML2∗.

Proof. We assumeF∘ contains at least two elementary (prim-
itive) propositions 𝑝

0
, 𝑝

1
, . . .. We pick a valuation 𝑜 that maps

two of them, 𝐴 and 𝐵, to distinct nodes 𝑜(𝐴) and 𝑜(𝐵) of O6

that are neither 0 nor 1 such that 𝑜(𝐴) ≤ 𝑜(𝐵) [i.e., 𝑜(𝐴)
and 𝑜(𝐵) are on the same side of hexagon O6 in Figure 1].
From the structure of O6, we obtain 𝑜(𝐴) ∪ 𝑜(𝐵) = 𝑜(𝐵) and
𝑜(𝐴)∪(𝑜(𝐴)


∩(𝑜(𝐴)∪𝑜(𝐵))) = 𝑜(𝐴)∪(𝑜(𝐴)


∩𝑜(𝐵)) = 𝑜(𝐴)∪

0 = o(𝐴).Therefore 𝑜(𝐴)∪𝑜(𝐵) ̸= 𝑜(𝐴)∪(𝑜(𝐴)


∩(𝑜(𝐴)∪𝑜(𝐵)),

that is, 𝑜(𝐴 ∨ 𝐵) ̸= 𝑜(𝐴 ∨ (¬𝐴 ∧ (𝐴 ∨ 𝐵))). This falsifies
(𝐴 ∨ 𝐵) ≈ (𝐴 ∨ (¬𝐴 ∧ (𝐴 ∨ 𝐵)) which is an alternative way of
expressing the orthomodularity property [45, 46]. Therefore
𝑎 ∪ 𝑏 ̸= 𝑎 ∪ (𝑎


∩ (𝑎 ∪ 𝑏)), providing a counterexample to

the orthomodular law for F∘/ ≈. We can follow the steps
given above by taking 𝑜(𝐴) = 𝑥 and 𝑜(𝐵) = 𝑦 in Figure 1(a).
For O7 and O8 the proofs are analogous. For instance, the
orthomodularity is violated in Figure 1(b) for 𝑜(𝐴) = 𝑥 and
𝑜(𝐵) = 𝑦 and in Figure 1(c) for 𝑜(𝐴) = 𝑤 and 𝑜(𝐵) = 𝑦.

Theorem 38. The orthomodular law holds inA
1
for an OML

model.

Proof. It is well-known.

Theorem 39. The distributive law does not hold in A
6
, for

WDL∗ (O6).

Proof. It is as given in [28].

Schechter [30, Sec. 9.4] gives O6 a set-valued interpre-
tation by assigning {−1, 0, 1, } to 1 in Figure 1(a), {−1, 0} to
𝑦, {0, 1} to 𝑥

, {−1} to 𝑥, {1} to 𝑦

, and ⌀ to 0 and calls
it the hexagon interpretation. “The hexagon interpretation
is not distributive. That fact came as a surprise to some
logicians, since the two-valued logic itself is distributive” [30,
Sec. 9.5]. Schechter also gives crystal (6 subsets) and Church’s
diamond (4 subsets) set-valued interpretations ofCL in his
Sections 9.7.–13. and 9.14.–17.

Theorem 40. The distributive law holds inA
2
for a DL model

(Boolean algebra).

Proof. It is well-known.

Lemma 41. MA
𝑗

= ⟨A
𝑗
, 𝑓⟩, 𝑗 = 6, 7, 8, 1, 6, 2, is a proper

WOML∗ (O6), WOML1∗, WOML2∗, OML, WDL∗ (O6), or
DL model.

Proof. It follows from Lemma 35.

Now we are able to prove the completeness of QL and
CL; that is, if a formula𝐴 is a consequence of a set of wffs Γ in
allO6,WOML∗,WOML1∗,WOML2∗, andOMLmodels and
in all O6, WDL∗, and DLmodels then Γ ⊢QL 𝐴 and Γ ⊢CL 𝐴,
respectively. In particular, when Γ = ⌀, all valid formulae are
provable in QL.

Theorem 42 (completeness of quantum logic). One has

Γ ⊨MA
𝑗

𝐴 ⇒ Γ⊢QL 𝐴, 𝑗 = 6, 7, 8, 1. (48)

Proof. Γ ⊨M 𝐴 means that, in all WOML∗ (O6), WOML1∗,
WOML2∗, and OML models M, if 𝑓(𝑋) = 1 for all 𝑋 in Γ,
then𝑓(𝐴) = 1 holds. In particular, it holds forMA = ⟨A, 𝑓⟩,
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which is a WOML∗ (O6), WOML1∗, WOML2∗, or OML
model by Lemma 41. Therefore, in the Lindenbaum-Tarski
algebraA, if 𝑓(𝑋) = 1 for all𝑋 in Γ, then 𝑓(𝐴) = 1 holds. By
Lemma 36, it follows that Γ ⊢ 𝐴.

Theorem 43 (completeness of classical logic). One has

Γ ⊨MA
𝑗

𝐴 ⇒ Γ⊢CL 𝐴, 𝑗 = 6, 2. (49)

Proof. It is as given in [28].

5. Discussion

We have shown that quantum and classical axiomatic logic
are metastructures for dealing with different algebras, in our
case lattices, as their models. On the one hand, well- formed
formulas in logic can be mapped to equations in different
lattices, and on the other, equations from one lattice, which
we are more familiar with or which are simpler or easier to
handle, can be translated into equations of another lattice,
through the logic which they are both models of.

In Section 4 we proved that quantum logic can be mod-
elled by five different lattice models only one of which is
orthomodular and that classical logic can be modelled by at
least three lattice models only one of which is distributive.
As we indicated in [39] there might be many more, possibly
infinitelymany, different latticemodels quantumand classical
axiomatic logic can be modelled with. (See also the remarks
belowTheorem 39.)

The models are presented in a chart in Figure 2. The key
step that allows the multiplicity of lattice models for both
kinds of logic is the refinement of the equivalence relations
for the Lindenbaum-Tarski algebras in Theorems 29, 30, 31,
and 32. They are also given in the chart where we can see
that two different equivalence relations enable O6 to be a
model of both quantum and classical logic. This is possible
because both the weak orthomodularity (30) and the weak
distributivity (34) passO6 as pointed out belowDefinition 19.

The essence of the equivalence classes of the
Lindenbaum-Tarski algebras is that they are determined
by special simple lattices, for example, those shown in
Figure 1, in which conditions that define definite other lattice
models fail. The failure is significant because it proves that
the orthomodularity (27) of OML is not needed to prove
the completeness of quantum logic for WOML2∗, that
neither orthomodularity (27) nor condition (32) is needed
to prove the completeness for WOML1∗, and that neither
orthomodularity (27) nor condition (32) nor condition (31)
is needed for WOML∗.

At the level of logical gates, classical or quantum, with
today’s technology for computers and artificial intelligence,
we can use only bits and qubits, respectively, that is, only valu-
ations corresponding to two-valued DL (digital, binary, two-
valued Boolean algebra) and OML, respectively. And when
we talk about logic today, we take for granted that they have
the latter valuation—{TRUE, FALSE} in the case of classical
logic and Hasse diagrams in the case of quantum logic [40].
This is because a valuation is all we use to implement a logic.
In its final application, we do not use a logic as given by its

axioms and rules of inferences but as given by its models. So,
it would be interesting to investigate how other valuations,
that is, variousWOMLs andWDLs,might be implemented in
complex circuits.Thatwould provide uswith the possibility of
controlling essentially different algebraic structures (logical
models) implemented into radically different hardware (logic
circuits consisting of logic gates) by the same logic that we use
today with the standard bit and qubit gate technology.

With these possible applications of quantum and classical
logic we come back to the question which we started with:
“Is Logic Empirical?” We have seen that logic is not uniquely
empirical since it can simultaneously describe distinct reali-
ties. However, we have also seen (cf. Figure 2) that by means
of chosen relations of equivalence we can link particular
kinds of “empirical” models to quantum logic on the one
hand and classical logic, on the other. Let us therefore briefly
review the most recent elaborations on the question given
by Bacciagaluppi [47] and Baltag and Smets [19]. They state
“quantum logic is suitable as a logic that locally replaces
classical logic when used to describe ‘a class of propositions
in the context of quantum mechanical experiments.’”

Our results show that this point can be supported as
follows. The propositions of quantum logic correspond to
elements of a Hilbert lattice and are not directly linked
to measurement values. Such logic employs models which
evaluate particular combinations of propositions and tells us
whether they are true or not. Evaluation means mapping
from a set of propositions to an algebra (lattice), through
which a correspondence with measurement values indirectly
emerges. Since the algebra must be an orthomodular lattice
and cannot be a Boolean algebra we can say that quantum
logic which has an orthomodular lattice as one of its models
is “empirical” whenever we theoretically describe quantum
measurements, simply because it can be linked to its algebraic
model which serves for such a description: an orthomodular
Hilbert lattice, that is, the lattice of closed subspaces of a
complex Hilbert space.
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[27] M. Pavičić and N. D. Megill, “Non-orthomodular models for
both standard quantum logic and standard classical logic:
repercussions for quantum computers,” Helvetica Physica Acta,
vol. 72, pp. 189–210, 1999.
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Greechie diagrams,” International Journal ofTheoretical Physics,
vol. 39, no. 10, pp. 2381–2406, 2000.

[41] J. Jay Zeman, “Generalized normal logic,” Journal of Philosoph-
ical Logic, vol. 7, no. 2, pp. 225–243, 1978.

[42] G. M. Hardegree, “The conditional in abstract and concrete
quantum logic,” in The Logico-Algebraic Approach to Quantum
Mechanics, C. A. Hooker, Ed., vol. 2, pp. 49–108, D. Reidel,
Dordrecht, The Netherlands, 1979.



12 Advances in Mathematical Physics
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[46] M. Pavičić, “Unified quantum logic,” Foundations of Physics, vol.
19, no. 8, pp. 999–1016, 1989.

[47] G. Bacciagaluppi, “Is logic empirical?” inHandbook ofQuantum
Logic and Quantum Structures, K. Engesser, D. Gabbay, and D.
Lehmann, Eds., Quantum Logic, pp. 49–78, Elsevier, Amster-
dam, The Netherlands, 2009.


