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Orthoarguesian Equations
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Abstract. We prove that the 7oa class (equational variety) of generalized
orthoarguesian lattices is properly included in all noa classes for n < 7.
This result strengthens the conjecture that any generalized orthoargue-
sian equation is strictly stronger than those of lower orders. The result
emerged from our recent analysis of whether three-dimensional Kochen–
Specker sets can be represented by Greechie lattices, which are a kind of
orthomodular lattice.

1. Introduction

For a lattice to correctly represent a given formal description of a quantum
system, it must at least satisfy all the equations satisfied by the lattice of
all closed subspaces of a Hilbert space. In 1937, Husimi discovered that, for
infinite-dimensional Hilbert spaces, this lattice satisfies the orthomodular law
[1]. Since 1975, additional equations that it satisfies have been discovered.
Among these, the only ones known that are directly related to the vector
space of the underlying Hilbert space (i.e., excluding those that are related to
states introduced on the lattice) are the generalized orthoarguesian equations
(nOA, n ≥ 3) [2]. Thus, these equations are an essential tool for analyzing
lattices conjectured to represent particular experimental setups. If a lattice
does not pass nOA for all n, then it is not a correct lattice [3].

In this paper, we show that Peres’ Kochen–Specker (KS) set [4] can gen-
erate a set of lattices that violate the generalized orthoarguesian equation of
order 7 but that satisfy the equations of orders 6 and less. This is achieved by
considering only the orthogonality relations between Hilbert space vectors and
ignoring any other relations between them. We describe a set of such orthog-
onality relations within Peres’ setup by means of a so-called Greechie lattice
(represented by a Greechie diagram). It turns out that “Peres’ Greechie lattice”
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and numerous smaller Greechie lattices we can derive from it are counterex-
amples that prove the long-sought result that the 7OA equations is strictly
stronger than the 6OA equation.

The goal of this paper is to show that Peres’ Greechie lattice satisfies
3OA through 6OA but violates 7OA [in Sect. 3]. If we call the correspond-
ing equational varieties (i.e., the classes of orthomodular lattices satisfying
the equations) by 3oa through 7oa, this proves the series of proper inclusions
3oa ⊃ 4oa ⊃ 5oa ⊃ 6oa ⊃ 7oa. This follows from the result in this paper
combined with our previous result, 3oa ⊃ 4oa ⊃ 5oa ⊃ 6oa [5,6]. Finally, we
show how we can modify Peres’ Greechie lattice to generate simpler lattices
with the same property, giving us counterexamples that are more practical to
work with.

2. Lattice Definitions and Theorems

The closed subspaces of a Hilbert space, partially ordered by inclusion, form
an algebra called a lattice [3]. Given a Hilbert space H, we denote this algebra
by C(H). In C(H), the operation meet , a ∧ b, corresponds to set intersection,
Ha

⋂
Hb, of closed subspaces Ha,Hb of Hilbert space H, the ordering relation

a ≤ b corresponds to Ha ⊆ Hb, the operation join, a ∨ b, corresponds to the
smallest closed subspace of H containing Ha

⋃
Hb, and the orthocomplement

a⊥ corresponds to H⊥
a , the set of vectors orthogonal to all vectors in Ha.

Within Hilbert space, there is also an operation which has no parallel in C(H)
(meaning that it cannot be defined in terms of lattice operations): the sum of
two (not necessarily closed) subspaces Ha + Hb, which is defined as the set
of sums of vectors from Ha and Hb. We also have Ha + H⊥

a = H. One can
define all the lattice operations on a Hilbert space itself following the above
definitions (Ha ∧ Hb = Ha

⋂
Hb, etc.). Thus, we have Ha ∨ Hb = Ha + Hb =

(Ha + Hb)⊥⊥ = (H⊥
a

⋂
H⊥

b )⊥, [7, p. 175] where Hc is the closure of Hc and,
therefore, Ha + Hb ⊆ Ha ∨ Hb. If H is finite-dimensional or if the closed sub-
spaces Ha and Hb are orthogonal to each other, then Ha + Hb = Ha ∨ Hb [8,
pp. 21–29], [1, pp. 66, 67], [9, pp. 8–16].

2.1. Lattice Definitions

We briefly recall the definitions we will need. For further information, see
Refs. [5,6,10,11].

Definition 2.1. A partial order is a binary relation “≤” over a set P which is
reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P , we have:

a ≤ a (reflexivity);
a ≤ b & b ≤ a ⇒ a = b (antisymmetry);
a ≤ b & b ≤ c ⇒ a ≤ c (transitivity).
A set with a partial order is called a partially ordered set (poset).

Definition 2.2. [12] A lattice (L) is an algebra 〈LO,∧,∨〉 such that the fol-
lowing conditions are satisfied for any a, b, c ∈ LO: a ∨ b = b ∨ a, a ∧ b =
b∧a, (a∨b)∨c = a∨(b∨c), (a∧b)∧c = a∧(b∧c), a∧(a∨b) = a, a∨(a∧b) = a.
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Figure 1. A Greechie diagram and its corresponding Hasse
diagram

Theorem 2.3. [12] The binary relation ≤, defined on an L as a ≤ b
def⇐⇒ a =

a ∧ b, is a partial order. Thus every lattice is a poset.

Definition 2.4. [13] An ortholattice (OL) is an algebra 〈LO,⊥ ,∧,∨, 0, 1〉 such
that 〈LO,∧,∨〉 is a lattice with unary operation ⊥ called orthocomplemen-
tation which satisfies the following conditions for a, b ∈ LO (a⊥ is called the
orthocomplement of a): a∨a⊥ = 1, a∧a⊥ = 0, a ≤ b ⇒ b⊥ ≤ a⊥, a⊥⊥ = a.

Definition 2.5. [1] An orthomodular lattice (OML) is an OL in which the fol-
lowing condition (the orthomodular law) holds: a ∨ (a⊥ ∧ (a ∨ b)) = a ∨ b.

As we shall see later (Theorem 2.16), in any OL the nOA law implies the
orthomodular law.

Definition 2.6. A Boolean algebra (BA) is an OL in which the following con-
dition (the distributive law) holds: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

2.2. Orthogonalities, Greechie Diagrams, and Greechie Lattices

Orthogonal vectors determine directions in which we can orient our detec-
tion devices and, therefore, also directions of observable projections. Subspaces
(not necessarily closed) have a corresponding orthogonality relation denoted
Hx ⊥ Hy, which is defined as Hx ⊆ H⊥

y . We can choose one-dimensional
subspaces Ha, . . . ,He as shown in Fig. 1, where we denote them as a, . . . , e.
(Finite-dimensional subspaces are always closed and thus lattice elements of
C(H).)

Definition 2.7. A Hasse diagram is a graphical representation of a poset where
an element y is drawn above and connected to an element x if and only if
y > x and y is the least such element (i.e., y covers x).

Definition 2.8. In a poset with a least element 0, and atom is an element a
that covers 0, i.e., there is no element b such that 0 < b < a.

In the lattice C(H), an atom corresponds to a one-dimensional subspace
of Hilbert space.

The orthogonality between subspaces—in our case corresponding to each
chosen vector and a plane determined by the other two—can be seen in the
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Hasse diagram shown on the right in Fig. 1. In particular, the orthogonalities
are a ⊥ b, c, d, e since a ≤ b⊥, c⊥, d⊥, e⊥, b ⊥ c since a ≤ c⊥, and d ⊥ e since
d ≤ e⊥. Also, e.g., b⊥ is the orthocomplement of b, corresponding to a plane to
which any vector in b (and thus b itself) is orthogonal: b⊥ = a ∨ c. Eventually,
b ∨ b⊥ = 1 where, in the case of C(H), 1 stands for H.

Definition 2.9 (Greechie diagram [14]). The Hasse diagram for an OML consists
of connected Hasse diagrams representing its maximal Boolean subalgebras,
called blocks, and has a shorthand notation called a Greechie diagram. The
notation represents the atoms within each block as dots connected by a line
or smooth curve. The following conditions must be satisfied.
1. All blocks share a common 0 and 1.
2. If an atom a belongs to an intersection of blocks and, therefore, to both

of them, then the blocks also share a⊥;
3. Blocks contain three or more atoms.
4. Two blocks may not share more than one atom.

This definition is equivalent to Greechie’s original definition [14].
Recently, the term Greechie diagram has been used to denote other kinds of
hypergraphs related to pastings [15–17], Kochen–Specker sets [18], test spaces
[19], etc. For these hypergraphs, condition 4 above does not necessarily hold,
but for our elaboration and the generation of our diagrams it is essential. Since
this condition is also present in the original definition, we embraced it.

Definition 2.10. A loop of order n > 2 is a set of blocks B1, . . . , Bn such that
Bi shares an atom with Bi+1 for i < n and B1 shares an atom with Bn.

Lemma 2.11. [14] A Greechie diagram represents an orthomodular lattice if
and only if the order of every loop of its blocks is at least 5.

This lemma is known as the Loop Lemma [1, p. 38].

Definition 2.12. The unique orthomodular lattice represented by a Greechie
diagram satisfying the Loop Lemma is called a Greechie lattice.

We stress here that the Loop lemma does not hold for lattices represented
by the aforementioned pasting hypergraphs but only for the original Greechie
diagrams and lattices as defined by Definition 2.9.

To write down a Greechie diagram as a string of characters, we adopt the
following conventions.

We encode the atoms of a Greechie diagram (e.g., a, b, c, d, e in Fig. 1)
by means of alphanumeric and other printable ASCII characters. Each vertex
(atom) is represented by one of the following characters: 1 2 3 4 5 6 7 8 9 A B C D E

F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z ! ” # $ %

& ’ ( ) * - / : ; < = > ? @ [ \ ] ˆ `{ | } ˜ , and then again all these characters prefixed
by ‘+’, then prefixed by ‘++’, etc. There is no upper limit on the number of
atoms that can be represented.

Each block (continuous line connecting dots in a Greechie diagram) is
represented by a string of characters that represent atoms. Blocks are sepa-
rated by commas. The order of the blocks is irrelevant, however, we shall often
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present them starting with blocks forming the biggest loop to facilitate their
possible drawing. A string ends with a full stop (i.e., a period). Skipping of
characters is allowed.

2.3. Generalized Orthoarguesian Equations

The generalized orthoarguesian equations nOA [5,6], which hold in the lattice
C(H), follow from the following set of equations.

Theorem 2.13. Let M0, . . . ,Mn and N0, . . . ,Nn, n ≥ 1, be any subspaces (not
necessarily closed) of a Hilbert space, and let

⋂
denote the set-theoretical inter-

section of two subspaces and + their subspace sum. We define the subspace term
Tn(i0, . . . , in) recursively as follows, where 0 ≤ i0, . . . , in ≤ n:

T1(i0, i1) = (Mi0 + Mi1)
⋂

(Ni0 + Ni1) (2.1)

Tm(i0, . . . , im) = Tm−1(i0, i1, i3, . . . , im)
⋂

(Tm−1(i0, i2, i3, . . . , im) + Tm−1(i1, i2, i3, . . . , im)), 2 ≤ m ≤ n (2.2)

For m = 2, this means T2(i0, i1, i2) = T1(i0, i1)
⋂

(T1(i0, i2)+ T1(i1, i2)).
Then, the following condition holds in any finite- or infinite-dimensional
Hilbert space for n ≥ 1:

(M0 + N0)
⋂

· · ·
⋂

(Mn + Nn) ⊆ N0 + (M0

⋂
(M1 + Tn(0, . . . , n))). (2.3)

Proof. As given in [20,3] �

We will use the above theorem to derive a condition that holds in the
lattice of closed subspaces of a Hilbert space. In doing so, we will make use
of the definitions introduced above and the following well-known [8, p. 28]
lemma.

Lemma 2.14. Let M and N be two closed subspaces of a Hilbert space. Let ∨
denote the join of two subspaces (as defined at the beginning of Sect. 2). Then

M + N ⊆ M ∨ N (2.4)

M ⊥ N ⇒ M + N = M ∨ N (2.5)

Theorem 2.15 (Generalized Orthoarguesian Laws). Let M0, . . . ,Mn and
N0, . . . ,Nn, n ≥ 1, be closed subspaces of a Hilbert space. We define the
term T ∨

n (i0, . . . , in) by substituting ∨ for + in the term Tn(i0, . . . , in) from
Theorem 2.13. We also substitute ∧ for

⋃
and ≤ for ⊆, since these are equiv-

alent as described at the beginning of Sect. 2. Then, the following condition
holds in any finite- or infinite-dimensional Hilbert space for n ≥ 1:

M0 ⊥ N0 & · · · & Mn ⊥ Nn

⇒ (M0 ∨ N0) ∧ · · · ∧ (Mn ∨ Nn) ≤ N0 ∨ (M0 ∧ (M1 ∨ T ∨
n (0, . . . , n))).

(2.6)

Proof. By the orthogonality hypotheses and Eq. (2.5), the left-hand side of
Eq. (2.6) equals the left-hand side of Eq. (2.3). By Eq. (2.4), the right-hand
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side of Eq. (2.3) is a subset of the right-hand side of Eq. (2.6). Equation (2.6)
follows by Theorem 2.13 and the transitivity of the subset relation. �

Theorem 2.16. An OL in which Eq. (2.6) holds is an OML.

Proof. It suffices to show this for the lowest-order equation, which follows from
the higher order ones. For n = 1, we can express Eq. (2.6) as

x ⊥ y & z ⊥ w ⇒ (x ∨ y) ∧ (z ∨ w)≤y ∨ (x ∧ (z ∨ ((x∨z) ∧ (y ∨ w)))). (2.7)

Putting b, 0, a, a⊥ for x, y, z, w respectively, the hypotheses are satisfied
and the conclusion becomes (b∨0)∧(a∨a⊥) ≤ 0∨(b∧(a∨((b∨a)∧(0∨a⊥))))).
Simplifying, we get b ≤ b∧ (a∨ (a⊥ ∧ (a∨ b). Dropping the conjunct b from the
right-hand side, adding the disjunct a to the left-hand side, and noticing that
the other direction of the resulting inequality holds in any OL, we arrive at
a ∨ b = a ∨ (a⊥ ∧ (a ∨ b)), which is the orthomodular law (Definition 2.5). �

We mention that the orthomodular law also follows (in any OL) from the
nOA laws in the form of Eq. (2.9) below. However, those equations make use of
the orthomodular law for their derivation from Eq. (2.6). The above theorem
gives us an alternate way to derive the orthomodular law directly from Hilbert
space that is, in some ways, more elementary than the traditional proof by
contradiction (e.g., Ref. [1, p. 65]).

Reference [5] shows that in any OML, Eq. (2.6) is equivalent to the
(n + 2)OA law Eq. (2.9), thus establishing the proof of Theorem 2.18.

Definition 2.17. We define an operation
(n)
≡ on n variables a1, . . . , an (n ≥ 3)

as follows:

a1

(3)
≡ a2

def= ((a1 → a3) ∧ (a2 → a3)) ∨ ((a⊥
1 → a3) ∧ (a⊥

2 → a3))

a1

(n)
≡ a2

def= (a1

(n−1)
≡ a2) ∨ ((a1

(n−1)
≡ an) ∧ (a2

(n−1)
≡ an)), n ≥ 4. (2.8)

The operation a → b is defined as a⊥ ∨ (a ∧ b). In the transition from
n − 1 to n, the hidden implicit variables in the notation are not renamed. For
a worked-out example of this notation, the reader can consult the footnote to
Def. 5.1 in Ref. [20].

Theorem 2.18. The nOA laws

(a1 → a3) ∧ (a1

(n)
≡ a2) ≤ a2 → a3. (2.9)

hold in the lattice C(H).

The class of equations (2.9) is the generalized orthoarguesian equations
nOA. [5,6]

3. Main Result: Lattices That Satisfy 6OA and Violate 7OA

The KS theorem claims that experimental recordings cannot be predetermined,
i.e., fixed in advance. Its best known proof is based on sets (KS sets) to which
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Figure 2. Peres’ Greechie lattice. Red (online) rings denote
atoms at which Peres’ lattice violates 7OA, i.e., the failing
assignment of atoms and co-atoms to the variables of 7OA in
the form of Eq. (2.9)

it is impossible to ascribe classical 0-1 values. One of them is Peres’ set (Fig. 2).
It has 57 vectors and 40 triads of mutually orthogonal vectors.

As explained in Sect. 2.2, three atoms in a block of a three-dimensional
Greechie diagram are orthogonal to each other. Also, any three vectors in a
triad in Peres’ set are orthogonal to each other. Since every loop made of
Peres’ triads is of order at least 5, we build a Greechie diagram with the idea
of obtaining a Greechie lattice. We label a block in the diagram according to
labels in Peres’ set and we label each atom of the diagram according to labels
of Peres’ vectors. This Peres’ Greechie diagram can be written as: 123, 345,

467, 789, 92A, ABC, CD4, AE+J, 5F+J, IG+9, IH+5, I7+1, JC++1, ++1+2+3, +3+4+5,

+4+6+7, +7+8+9, +9+2+A, +A+B+C, +C+D+4, +A+E++J, +5+F++J, +I+G++9,

+I+71, +I+H++5, +J+C+1, +1++2++3, ++3++4++5, ++4++6++7, ++7++8++9,

++9++2++A, ++A++B++C, ++C++D++4, ++A++EJ, ++5++FJ, ++I++G9, ++I++

7++1, ++I++H5, ++J++C1, 1+1++1.

Since now every loop made of this Peres’ Greechie diagram is also of
order at least 5, according to Lemma 2.11, it represents a Greechie lattice.
We call it Peres’ Greechie lattice. We stress that the Peres’ Greechie lattice
is not a lattice that corresponds to the C(H) lattice of a full Hilbert space
description of Peres’ set. The only thing these two lattices have in common
are the atoms of their respective Hasse diagrams. Peres’ Greechie lattice is not
even a subalgebra of the latter lattice [3].

When we check—by our program latticeg described in Sect. 4—whether
Peres’ Greechie lattice satisfies the nOA equations, we find out that it satisfies
3OA through 6OA but violates 7OA at ++1, ++4, 1, 7, +1, ++A, ++23, which
we indicated with the help of rings in Fig. 2. Now, we show how to arrive at
much smaller lattices that also satisfy 6OA and violate 7OA. The procedure
makes use of the program latticeg to eliminate atoms and blocks that did
not take part in the violations of 7OA we originally found.

When we apply latticeg to the equation 7OA and it arrives at atoms
(or more precisely, lattice nodes) at which 7OA fails, the program gives the
nodes we listed above, and it also gives us the following additional information
about the failure:
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7

++5 ++F

C

9

++G
++J I

+H

J

+8

+G

8
+9

+I

++B

++C

++A ++2
++8

++9

++D

++3

++4 ++6

++7

++I
++E

++1 1 +1

+7

G

U
M

L

J
I

N

O

P

Q

R
S

T

V
W

X

1 2

5
4

3

6

7

8

9

A

B

C

D
E

FGH

K

Figure 3. A lattice with 33 atoms and 21 blocks that satisfies
6OA and violates 7OA. Red (online) rings show atoms that
take part in a violation of 7OA. The left and right diagrams
are isomorphic to each other (i.e., are two ways of drawing
the same lattice)

Greechie atoms not visited: 2 3 4 ...
Greechie blocks that do not affect the failure: 345 ABC CD4 ...

If, during the evaluation of the failing assignment, the meets and joins
contained in a block are never used, then that block is unrelated to the failure.
The program accumulates such blocks and puts them into a list called “don’t
affect the failure” as illustrated by the sample printout above. After removing
these from the Peres’ Greechie lattice of Fig. 2 and renaming the atoms, we
end up with the smaller Greechie lattice 123, 345, 567, 789, 9AB, BCD, DEF, FGH,

HIJ, JKL, LMN, NOP, PQR, RS1, 4EK, 4AP, AVH, BXL, DUQ, FWN, JTQ which is shown
in Fig. 3. The left figure shows the blocks we dropped from Fig. 2, and the
right one is given in the representation we previously used to show violations
of 3OA through 6OA at lattices presented in [2,6,20] with the maximal loop
(tetrakaidecagon, 14-gon) it contains.

A set of lattices between Peres’ 57-40 and the 33-21 shown here can be
obtained by adding to the 33-21 lattice any of the blocks removed from the
57-40, giving us 240−21 = 219 lattices altogether. All of these violate 7OA,
because the removed blocks do not participate in the 7OA failure we observed.
It is expected that most or all of these lattices will satisfy 6OA, which would
provide many additional counterexamples, if they are desired, that will dis-
tinguish the two equations. (Our observation has been that in most cases, if
a lattice satisfies an equation, it will continue to satisfy it when a block is
removed. But since removing a block does not necessarily create a sublattice,
there are rare exceptions [3].)

4. Algorithms and Programs

The main program that we used for this work was latticeg, which is a
general-purpose utility for testing equations against orthocomplemented lat-
tices expressed in the form of Greechie diagrams. Its algorithm is described in
Ref. [21].
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The nOA law in the form derived directly from Hilbert space, Eq. (2.6),
has 2n − 2 variables, whereas in the equivalent form of Eq. (2.9) it has n
variables. Since testing an equation with m variables against a lattice with k
nodes requires that up to km combinations be checked, it is more efficient to
use the form of Eq. (2.9).

Equation (2.9) has 8 · 3n−3 + 4 occurrences of its n variables. For faster
computation, we found an equivalent with 6 · 3n−3 + 3 variable occurrences
(which equals 166 for 6OA and 489 for 7OA). The following theorem shows
this equivalent form for n = 3. The proof is similar for larger n. The general
form for larger n can be inferred by looking at the proof, although we have
not defined a “compact” notation for it as we have for Eq. (2.9).

Theorem 4.1. An OML in which the equation

a ∧ ((a ∧ b) ∨ ((a → c) ∧ (b → c))) ≤ b⊥ → c (4.1)

holds is a 3OA and vice-versa.

Proof. For Eq. (4.1): To obtain the 3OA law, Eq. (2.9), from Eq. (4.1), we
substitute a → c for a and b → c for b, then we use the OML identities
(a → c) → c = a⊥ → c, (b → c) → c = b⊥ → c, and (b⊥ → c) → c = b → c.

For the converse, since x ≤ x⊥ → y,

a ∧ ((a ∧ b) ∨ ((a → c) ∧ (b → c)))

≤ (a⊥ → c) ∧ (((a⊥ → c) ∧ (b⊥ → c)) ∨ ((a → c) ∧ (b → c)))

= (a⊥ → c) ∧ (a⊥(3)
≡b⊥)

≤ b⊥ → c,

where for the last step we used an instance of Eq. (2.9) for n = 3. �

Because of the large size of the nOA equations for larger n, in order
to ensure that our input to latticeg was free from typos we used an auxil-
iary utility program, oagen, to generate nOA equations in the form of either
Eq. (2.9) or Eq. (4.1).

The evaluation of the 7OA equation on the Peres Greechie diagram
involves 7 nested loops, each with 116 iterations (since its Hasse diagram has
116 nodes). For the shorter equation of the form of Eq. (4.1), each evalua-
tion at the innermost loop involves an assignment to 489 variable occurrences
and 487 join, meet, and → operations (the last having a precomputed table
in memory from its join, meet, and orthocomplementation expansion). Thus,
1167 · 489 = 138, 202, 145, 015, 414, 784 (138 quadrillion) operation evaluations
(489 = 487 + 1 + 1 includes the final ≤ comparison and a single orthocomple-
mentation) are required for a full scan.

Such a direct, full evaluation is a challenge on today’s hardware, even
with a cluster of processors, unless one is very lucky to encounter a failure
early on in the scan (and we were). In addition, we made several enhance-
ments to latticeg to help make this project more feasible:
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• The main algorithm was improved. The original algorithm assigned each
possible combination of lattice nodes to the equation variables, then eval-
uated the resulting equation according to the structure of the lattice (i.e.,
the suprema, infima, and orthocomplements in the Hasse diagram derived
from the input Greechie diagram). The main scan consists of nested loops
that processes all nodal assignments to the first variable in the outermost
loop, then all assignments to the second variable in the next inner loop,
and so on. Since it has seven variables, testing the 7OA equation involves
7 nested loops.

The new algorithm takes into account, at each loop level, the vari-
ables in outer loops (which have known assignments) and evaluates as
much of the equation as it can with those known variables. The equa-
tion is then shrunk with these partial evaluations, for further processing
at that and deeper loop levels. Eventually, the equation is shrunk to
a length of one, which means that it is completely evaluated. While a
length of one will always be obtained at the innermost loop level, it may
also occur at an outer level (such as when an expression containing not-
yet-assigned variables is conjoined with a partial evaluation that resulted
in lattice 0). In such cases, processing of further inner loops becomes
unnecessary. So, the new algorithm benefits from (1) shorter equations
to evaluate at deeper loop levels and (2) possible skipping of the deepest
loops. Overall, this results in an empirical speedup of about a factor of
10 for the 7OA equation evaluation.

Because of the complexity of the new partial evaluation algorithm, it
was put into a new version of latticeg called lattice2g. This allows us
to check that the old and new algorithms produce the same result, help-
ing to make sure there is not a program bug in the new algorithm. Having
two programs also allow us to directly measure the speedup afforded by
the new algorithm.

• For testing a huge lattice, a feature was added to break up the testing
into several independent parts. In this way, the different parts can be run
on different processors in our cluster. The test can be partitioned into
any number of outermost and first inner loop iterations. For example,
the Peres’ Greechie diagram has a Hasse representation with 116 nodes.
We can specify, e.g., that the cluster test the 98th iteration (out of 116)
of the outmost loop and the 101st through 110th iteration (out of 116)
of the next inner loop.

• A feature was added to analyze an equation failure to determine what
nodes, atoms, and blocks were not involved in the failure. In particular, a
block is said not to affect the failure whenever all operations that “visit”
(non-0 and non-1) nodes in the block do not involve any other (non-0 and
non-1) nodes in that block. This is described in more detail in Sect. 3,
where we show how this feature was used to determine which blocks could
be removed from Peres’ Greechie lattice to obtain a smaller lattice that
satisfies 6OA but violates 7OA
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5. Conclusion

After 65 years of research carried out in the field of the algebraic structure
underlying quantum Hilbert space—the Hilbert lattice—only one equation
(beyond the orthomodular lattice laws) that holds in it was found: the orthoar-
guesian equation. Some equivalent forms and consequences of the orthoar gue-
sian equation, which collectively we will call OAs, were found in the 1980s and
1990s. All other equations known to hold in C(H) require a state introduced
onto the lattice elements.

Then in 2000, we found [5] a class (noa) of lattices determined by gener-
alized orthoarguesian equations (nOA) and proved that the following inclusion
holds: noa ⊇ (n+1)oa. We also proved that all previously found OAs are equiv-
alent to either 3OA or 4OA, we proved that 4OA is strictly stronger than 3OA,
and we found lattices in which 4OA passed but 5OA failed and (after much
computational work) lattices in which 5OA passed and 6OA failed. [6]

In this paper, we found a set of lattices—shown in Figs. 2 and 3 and
obtained as explained in Sect. 3—in which 6OA passes and 7OA fails.

Because we do not have a proof for the conjecture that the inclusion
noa ⊃ (n + 1)oa is strict for all n, each new counterexample, especially for
small n, provides important additional evidence.

The new counterexample is also important because it provides an addi-
tional lattice in the sequence of counterexamples. Finding a pattern in this
sequence—which is an ongoing project, as we investigate features such as com-
mon isomorphic subgraphs and the details of failures—may provide an impor-
tant clue for arriving at a general proof, such as one by induction. We point
out that the numbers of elements (atoms and blocks) of the smallest known
lattices that satisfy nOA but violate (n + 1)OA do not appear to grow expo-
nentially. For 3 ≤ n ≤ 7 we have 13, 17, 22, 28, 33 and 7, 10, 13, 18, 21 atoms
and blocks, respectively [6].

We obtained the lattices in this paper by analyzing three-dimensional
Peres’ Kochen–Specker set. In three-dimensional Hilbert space, a correspon-
dence between Kochen–Specker sets and Greechie diagrams can be established.
We scanned over 10,000 KS Greechie diagrams, and they all violated 3OA
except Peres’. When we reached the result that it satisfied 6OA we wanted to
see whether it would violate 7OA. The verification turned out to be extremely
demanding because of the number of terms 7OA consists of, and we had to
design a number of algorithms and programs for the task. The algorithms and
programs are described in Sect. 4. The task ran over a month on a 500 CPU
cluster.

And indeed we found that the Peres’ Greechie lattice that corresponds
to Peres’ Kochen–Specker set can serve as a counterexample for the above
proof (see Fig. 2). It also served as a generator for smaller counterexamples
we described in Sect. 3, the smallest of which is shown in Fig. 3.

An open question is what additional conditions must be added to the
nOA equations to specify C(H), for both the finite and the infinite dimen-
sional cases? Are there other classes of lattice equations that hold in C(H)
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when we do not introduce states on it? (The other known equations such as
Godowski’s and Mayet’s [6] assume states.) How far can we define C(H) only
by means of sets of equations added to an OL?
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Institute for Theoretical Atomic, Molecular, and Optical Physics
Physics Department at Harvard University and Harvard-Smithsonian
Center for Astrophysics
Cambridge, MA 02138, USA

and

Physics Chair, Faculty of Civil Engineering, University of Zagreb
Zagreb, Croatia
e-mail: pavicic@grad.hr

Communicated by Carlo Rovelli.

Received: October 29, 2010.

Accepted: March 8, 2011.


	Kochen--Specker Sets and Generalized Orthoarguesian Equations
	Abstract
	1. Introduction
	2. Lattice Definitions and Theorems
	2.1. Lattice Definitions
	2.2. Orthogonalities, Greechie Diagrams, and Greechie Lattices
	2.3. Generalized Orthoarguesian Equations

	3. Main Result: Lattices That Satisfy 6OA and Violate 7OA
	4. Algorithms and Programs
	5. Conclusion
	Acknowledgements
	References


