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It is shown that operations of equivalence cannot serve for building algebras which would
induce orthomodular lattices as the operations of implication can. Several properties of
equivalence operations have been investigated. Distributivity of equivalence terms and
several other 3-variable expressions involving equivalence terms have been proved to
hold in any orthomodular lattice. Symmetric differences have been shown to reduce to
complements of equivalence terms. Some congruence relations related to equivalence
operations and symmetric differences have been considered.
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1. INTRODUCTION

It is well-known that any orthomodular lattice equations and conditions gen-
erated with at most two generators have classical and quantum constants, variables,
and operations—altogether 96 so-called Beran expressions (Beran, 1985; Megill
and Paviˇcić, 2001, 2002). All quantum constants, variables, and operations are
fivefold defined by means of classical ones (Paviˇcić and Megill, 1999). Also,
whenever all classical constants in an orthomodular lattice commute the ortho-
modular lattice becomes the Boolean algebra and quantum constants, variables,
and operations reduce to classical ones.

Classical constants are 0 and 1 (Beran expressions 1 and 96), classical vari-
ables area, b (22,39) and their complementsa⊥, b⊥ (58,75). Quantum constants
are quantum 0’s (17,33,49,65,81) and quantum 1’s (16,32,48,64,80). Quantum
variables are quantuma (6,38,54,70,86),b (7,23,55,71,87),a⊥ (11,27,43,59,91),
andb⊥ (10,26,42,74,90) (Megill and Paviˇcić, 2001, 2002).
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In this paper we show that the binary operations in an orthomodular lattice
can be divided into two groups. A group containing operations which together
with complementation can be used to express any other operation, and a group
which does not enable this. To the former group belong joins and meets and
to the latter operations of equivalence. Both of them again have classical and
quantum representatives. Classical meet,∪ and join,∩ with a, b, a⊥, a⊥ (Beran
expressions 2–5 and 92–95) and quantum meets and joins (12–21, 28–37, 44–53,
60–69, and 76–85) from the former group and classical equivalence,≡, and its
complement (88 and 9) and quantum equivalences,≡i , i = 1, . . . , 5, and their
complements (24,25,40,41,56,57,72,73,8,89) (Megill and Paviˇcić, 2001, 2002).
In the field of quantum logic and orthomodular lattices meet and joins have, in
the literature, been given various other names depending on the distribution of
complements. For example, implication, conditional, projection, skew operations
(Beran, 1985), sharp and flat operations (D’Hooghe and Pykacz, 2000; Pykacz,
2000), etc. Also operations of equivalence and their complements have been given
other names like (symmetric) (classical and quantum) identity (Paviˇcić, 1989,
1993, 1998) and asymmetric (quantum) identities (Megill and Paviˇcić, 2001, 2002;
Pavičić and Megill, 1999) and difference (Beran, 1985; Dorferet al., 1996) and
noncommutative symmetric differences (Dorfer, 2002).

In this paper we will concentrate on the equivalence operations and we first
show that one cannot use equivalence operations to express other operations and
therefore that an equivalence algebra cannot induce orthomodular lattices in a way
the implication algebras can (cf. implication algebras given by Abbott, 1976, 1969;
Clark, 1973; Georgacarakos, 1980; Hardegree, 1981a,b; Kimble, 1969; Megill and
Pavičić, 2003; Paviˇcić and Megill, 1998b; Piziak, 1974). In Section 3 we give
solutions to previously open three-variable problems of expressions containing
symmetric equivalence terms. In the end, in Section 4 we prove that recently intro-
duced non-commutative symmetric differences (Dorferet al., 1996) are nothing
but complements of asymmetric equivalence relations and that therefore the ma-
jority of the results obtained in Dorferet al. (1996) directly follow from the results
previously obtained in the literature (Megill and Paviˇcić, 2001, 2002; Paviˇcić and
Megill, 1999).

2. NO-GO FOR EQUIVALENCE ALGEBRA

All implications from a quantum logic (an orthomodular lattice) reduce to
the classical one in a classical theory (a Boolean algebra). So, as we show in
Pavičić and Megill (1998a), not onlya↔i b but also (a→i b) ∩ (b→ j a), i 6=
j (i = 0, 1,. . . , 5, where→i correspond to Beran expressions: 94,78,46,30,62,14,
respectively) must reduce toa↔0 b in a classical theory. To handle the Beran
expressions, we use programs beran and bercomb. (Megill and Paviˇcić, 2001). Let
us have a look at what we get in an orthomodular lattice in Table I, where B(a, b)
are Beran expressions (5 of 96 ones given in Beran (1985).
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Table I. Products (a→i b) ∩ (b→ j a), i = 0, . . . , 5, j = 0, . . . , 5, Reduced to Beran
Expressions

i↓\ j→ b→0 a b→1 a b→2 a b→3 a b→4 a b→5 a

a→0 b B88(a,b) B56(a,b) B24(a,b) B40(a,b) B72(a,b) B8(a,b)
a→1 b B72(a,b) B8(a,b) B8(a,b) B8(a,b) B72(a,b) B8(a,b)
a→2 b B40(a,b) B8(a,b) B8(a,b) B40(a,b) B8(a,b) B8(a,b)
a→3 b B24(a,b) B8(a,b) B24(a,b) B8(a,b) B8(a,b) B8(a,b)
a→4 b B56(a,b) B56(a,b) B8(a,b) B8(a,b) B8(a,b) B8(a,b)
a→5 b B8(a,b) B8(a,b) B8(a,b) B8(a,b) B8(a,b) B8(a,b)

The expressions B(i ), i =24,40,56,72, are asymmetrical and at first we would
think it would be inappropriate to name them equivalence operations. But we
were able to prove Theorem 2.1 and Theorem 2.2 below and therefore we define
symmetric and asymmetric equivalence operations as follows:

a ≡0 b
def= (a′ ∪ b) ∩ (a ∪ b′) (= B88(a, b))

a ≡1 b
def= (a ∪ b′) ∩ (a′ ∪ (a ∩ b)) (= B72(a, b))

a ≡2 b
def= (a ∪ b′) ∩ (b∪ (a′ ∩ b′)) (= B40(a, b))

a ≡3 b
def= (a′ ∪ b) ∩ (a ∪ (a′ ∩ b′)) (= B24(a, b))

a ≡4 b
def= (a′ ∪ b) ∩ (b′ ∪ (a ∩ b)) (= B56(a, b))

a ≡5 b
def= (a ∪ b) ∩ (b′ ∪ a′) (= B8(a, b)).

Theorem 2.1. (Pavǐcić and Megill, 1999). Ortholattices in which

a ≡i b = 1 ⇔ a = b, i = 1, . . . , 5, (1)

hold are orthomodular lattices and vice versa.

Theorem 2.2. (Pavǐcić, 1998). Ortholattices in which

a ≡o b = 1 ⇔ a = b (2)

holds is a Boolean algebra and vice versa.

A natural question which springs from these theorems is whether one can express
joins and complements by means of the two above-defined operations of equiv-
alence, i.e., whether “equivalence algebras,” analogous to implication algebras
(Abbott, 1969, 1976; Megill and Paviˇcić, 2003; Paviˇcić and Megill, 1998b), can
be formulated. In Paviˇcić (1998) we answer such a question for the symmetric
equivalence,≡5, in the negative. By the following theorem we answer to this
question in the negative for the classical,≡0, and the asymmetric equivalences,
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≡i , i = 1, . . . , 4, as well. Therewith we also prove that an “equivalence algebra”
cannot be formulated.

Theorem 2.3. Orthocomplementation in an orthomodular lattice can be ex-
pressed as a′ = a ≡i 0, i = 0, 1,. . . , 5. However, classical and quantum joins
(including implications) and classical and quantum meets and their complements
in an orthomodular lattice cannot be expressed by means of the operations of
equivalence.

Proof: Free orthomodular lattices with two generators (expressions with two ele-
ments) can be represented by the direct product M02× 24 (Beran, 1985). Denoting
the elements of the Boolean algebra 24 by b1 = (0, 0, 0, 0),b2 = (1, 0, 0, 0),. . . ,
b16 = (1, 1, 1, 1), we can write down all 96 elements of the lattice in the form
(ai , bj ), i = 1, . . . , 6, j = 1, . . . , 16, whereai are the elements of the orthomod-
ular lattice M02 (also called OM6; Fig. (1) of Pavičić (1998)). We can easily check
that (ai , b12) through (ai , b15), i = 1, . . . , 6, are exactly all six joins (quantum and
classical; among them, of course, implications), while (ai , b2) through (ai , b5) are
their negations, i.e., quantum and classical meets. When we look at the Boolean
part only, we can see that they are all characterized by an odd number of 1’s (0’s)
(either one or three).

Looking at the Boolean parts of the other Beran expressions, we find that they
all have an even number of 1’s and 0’s. Quantum and classical 0’s are represented by
(0,0,0,0), 1’s by (1,1,1,1),x’s by (1,1,0,0),−x’s by (0,0,1,1),y’s by (1,0,1,0),−y’s
by (0,1,0,1), equivalences by (1,0,0,1), and their negations by (0,1,1,0). Simple
checking then shows that whatever expression we introduce into equivalences
and/or their negations we always end up with expressions whose Boolean parts
have only even number of 1’s and 0’s. This proves the theorem. ¤

3. SOME OML EXPRESSIONS CONTAINING EQUIVALENCE TERMS

In Megill and Pavičić (2000) we investigated an equational variety of ortho-
modular lattices (OMLs) whose equations hold in the lattice of closed subspaces
of infinite-dimensional Hilbert spaceC(H). We showed that this variety could
be defined by an infinite set of symmetry relations for equivalencelike terms. In
the variety we were also able to prove a “distributivity of equivalence terms”
in Theorem 7.2 of Megill and Paviˇcić (2001) (we called it the “distributivity of
identity terms”), shown as Eq. 6 below. In the two papers we conjectured that
this “distributivity” might hold in every OML, but were missing the proof. In the
meantime we succeeded in finding one and we provide it below. We also prove
several related equations that answer a number of open questions in those papers.
All of these results are primarily a consequence of a more general result expressed
as Eq. 3 below.
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We use the notationa ≡ b as an abbreviation fora ≡5 b.

Theorem 3.1. The following equations hold in all OMLs.

(a→1 b) ∩ (b→2 c) ∩ (c→1 d) ∩ (d→2 a)

= (a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d) (3)

(a→5 b) ∩ (b→5 c) ∩ (c→5 d) ∩ (d→5 a)

= (a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d) (4)

(a→1 b) ∩ (b→2 c) ∩ (c→1 a) ≤ a ≡ c (5)

(a ≡ b) ∩ ((b ≡ c) ∪ (a ≡ c))

= ((a ≡ b) ∩ (b ≡ c) ∪ (a ≡ b) ∩ (a ≡ c)) (6)

(a ≡ b) ∩ ((b ≡ c) ∪ (a ≡ c)) ≤ a ≡ c (7)

(a ≡ b)→0 ((a ≡ c)(b ≡ c)) = 1 (8)

Proof: For Eq. 3, we have

(a→1 b) ∩ (b→2 c) ∩ (c→1 d) ∩ (d→2 a)

= (b→2 c) ∩ (c→1 d) ∩ (d→2 a) ∩ (a→1 b)

= ((b′ ∩ c′) ∩ (c∩ d)) ∩ ((d′ ∩ a′) ∩ (a ∩ b))

= (b′ ∩ c′ ∩ d′ ∩ a′) ∪ (b′ ∩ c′ ∩ a ∩ b)

∪(c∩ d ∩ d′ ∩ a′) ∪ (c∩ d ∩ a ∩ b)

= (b′ ∩ c′ ∩ d′ ∩ a′) ∪ 0∪ 0∪ (c∩ d ∩ a ∩ b)

= (a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d).

For the second step we used Lemma 3.14 of Megill and Paviˇcić (2000). For the third
step we used the Marsden–Herman Lemma, given for example, as Corollary 3.3 of
Beran (1985, p. 259). For the last step we used Lemma 3.11 of Megill and Paviˇcić
(2000).

Equation 4 follows easily from Eq. 3, noticing thata ≡ b ≤ a→5 b ≤ a→1

b, a→2 b. We twice use the transitive law (a ≡ b) ∩ (b ≡ c) ≤ a ≡ c,
which is Theorem 2.8 of Megill and Paviˇcić (2000), in order to
establish

(a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d) = (a ≡ b) ∩ (b ≡ c) ∩ (c ≡ d) ∩ (d ≡ a) (9)

for the purpose of the proof.
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Equation 5 is obtained from Eq. 3 by substitutinga for d, then using in the
trivial a→2 a = 1 on the left-hand side and symmetry of equivalencea ≡ c =
c ≡ a on the right-hand side.

In the proof of Eq. 6 in Theorem 7.2 of Megill and Paviˇcić (2001), the only
use of the (stronger-than-OML) Godowski equations was to establish Eq. 5 above.
Since we now have a proof that Eq. 5 holds in all OMLs, it follows that Eq. 6 also
holds in all OMLs.

Equations 7 and 8 follow from Eq. 6 by Theorem 2.9 of Megill and Paviˇcić
(2000). ¤

Now we address some open questions answered by this theorem. In Megill
and Paviˇcić (2001), we wondered if Eq. 5 above holds in all OMLs; the answer
is affirmative. In addition, together with Eq. 6 above this result answers all open
questions posed in the paragraph after Theorem 3.16 of Megill and Paviˇcić (2000).
Equations. 6, 7, and 8 answer the question, posed after Theorem 2.9 of Megill and
Pavičić (2000), of whether these equations hold in all OMLs.

Equation 4 above extends the three-variable version of it, given as Eq. 3.21
of Lemma 3.14 of Megill and Paviˇcić (2000), to four variables. This in turn
allows us to prove the assertion of Theorem 3.15 of that paper forn = 4 (al-
though that assertion still remains an open problem forn > 4). It is unknown
whether Eq. 4 holds in all OMLs when extended to five variables. An exten-
sion of Eq. 4 to six (or more) variables does not hold in all OMLs, because
it fails in the OML of Fig. 2(a) of Megill and Paviˇcić (2000). (We mention
that the extension of Eq. 4 to any number of variablesdoeshold in the lat-
tice C(H), since it is a consequence of Theorem 3.12 of Megill and Paviˇcić
(2000)).

Recall that a WOML (weakly orthomodular lattice) is an OL in which the
following additional condition is satisfied (Paviˇcić and Megill, 1999):

(a′ ∩ (a ∪ b)) ∪ b′ ∪ (a ∩ b) = 1 (10)

In Megill and Pavičić (2000) we asked whether Eqs. 6 and 8 above hold in all
WOMLs. The next theorem provides the answer.

Theorem 3.2. Equation 8 holds in all WOMLs. Equation 6 does not hold in all
WOMLs.

Proof: Equation 8 holds in all OMLs by Theorem 3.1. Since the left-hand side
of Eq. 8 evaluates to 1, it therefore also holds in all WOMLs by Lemma 3.7 of
Pavičić and Megill (1999).

Equation 6 fails in the WOML of Fig. 1. ¤
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Fig. 1. WOML that violates Eq. 6. (Found by Mike Rose
and Kristin Wilkinson at Argonne National Laboratory with
the program SEM; Zhang and Zhang (1995)).

4. EQUIVALENCES VS. DIFFERENCES

A recent paper (Dorfer, 2002) “deal[s] with the following question: What
is the proper way to introduce symmetric differences in orthomodular lattices?
Imposing two natural conditions on. this operation, six possibilities remain.” In
this section we show that these “six possibilities” are complements of the six
equivalence operations from Paviˇcić and Megill (1999) and Section 2. We also
draw the readers’ attention to the fact that Navara’s technique of handling two
variable OML expressions used in Dorfer (2002) have previously been given a
computer program support (Megill and Paviˇcić, 2001) which directly gives all
needed results. In the end we comment on the congruence relations from Dorfer
(2002) and from Paviˇcić and Megill (1999).

Below, on the left-hand sides of the equations are symmetric differences from
Theorem 2 of Dorfer (2002).

a∇b = (a ≡0 b)′ = B9(a, b)
a1b = (a ≡5 b)′ = B84(a, b)

a+l b = (a ≡1 b)′ = B25(a, b)
a+r b = (a ≡4 b)′ = B41(a, b)
a+l ′ b = (a ≡3 b)′ = B73(a, b)
a+r ′ b = (a ≡2 b)′ = B57(a, b)

Hence, Definition 1, Theorem 2, most two variable parts of Propositions 3–
14, and those of Corollaries 5–13 of Dorfer (2002) directly follow from Paviˇcić
and Megill (1999) (see Section 2) and Megill and Paviˇcić (2001) (programberan).
For example, for the proof of Corollary 8 of Dorfer (2002) ((x +l y)+l y = x) we
write

beran “ − (−(x ≡1 y) ≡1 y)”

and we get the output75 x, where75 stands for the Beran expression (x).
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In Pavičić and Megill (1999), it was shown that each ofa ≡i b = 1, i =
0, 1,. . . , 5, is a relation of equivalence and of congruence. Therefore, in an or-
tholattice, OL or in a WOML (see Section 3) there are five such congruence
relations. In an orthomodular lattice, OML, due to Theorem 2.1 they all reduce to
the following equality:a = b. In Dorfer (2002) in Section 3, congruence relations
are considered in relation to symmetric differences but are not explicitly defined.
For example, in Theorem 15 (iii) of Dorfer (2002) we read:aθb iff ( a ≡5 b)′ ∈ I ,
whereI a p-ideal; in Theorem 15 (iii′) we are offeredaθb iff ( a ≡i b)′ ∈ I . It would
be interesting to know examples ofaθb in orthomodular lattices and whichaθb re-
lations would satisfy the conditions from the aforementioned Dorfer’s Theorem 15
in any orthomodular lattice.

5. CONCLUSION

In Section 2 we show that six operations of equivalence in an orthomodular
lattice and the Boolean algebra, we introduced in Paviˇcić and Megill (1998a),
cannot build equivalence algebras which would yield orthomodular lattices in the
way the implication algebras.

In Section 3 we show that the distributivity of equivalence terms holds in any
orthomodular lattice which has been an open problem so far. We actually prove a
more general result, in the form of Eq. 3, that has as a consequence this distributivity
as well as the answer to several other open problems raised in previous papers.

In Section 4 we show that six symmetric differences from Dorfer (2002) are
nothing but complements of the six equivalence operations from Paviˇcić and Megill
(1999). We also draw the readers’ attention to the fact that Navara’s technique of
handling two-variable OML expressions used in Dorfer (2002) have previously
been given a computer program support (Megill and Paviˇcić, 2001) which directly
gives all needed results. In the end we consider congruence relations from Dorfer
(2002) and Paviˇcić and Megill (1999).

All two-variable expressions used in the paper have been given their Beran
meaning and numbers.
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Megill, N. D. and Paviˇcić, M. (2001). Orthomodular lattices and a quantum algebra.International
Journal of Theoretical Physics40, 1387–1410. (arXiv.org/abs/quantph/ 0103135)
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