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We show that in quantum logic of closed subspaces of Hilbert space one cannot
substitute quantum operations for classical (standard Hilbert space) ones and
treat them as primitive operations. We consider two possible ways of such a sub-
stitution and arrive at operation algebras that are not lattices what proves the
claim. We devise algorithms and programs which write down any two-variable
expression in an orthomodular lattice by means of classical and quantum opera-
tions in an identical form. Our results show that lattice structure and classical
operations uniquely determine quantum logic underlying Hilbert space. As a con-
sequence of our result, recent proposals for a deduction theorem with quantum
operations in an orthomodular lattice as well as a, substitution of quantum opera-
tions for the usual standard Hilbert space ones in quantum logic prove to be
misleading. Quantum computer quantum logic is also discussed.
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1. INTRODUCTION

Quantum computer theory recently introduced quantum logic as an algebra
of quantum bits (qubits) handled by quantum logic gates (1) and as a
quantum counterpart of the classical Boolean algebra which is an algebra



of classical bits handled by classical logic gates in today’s computers. This
quantum algebra is still not well defined but it may eventually emerge as
a variety of equations defining quantum logic of Hilbert space—so-called
Hilbert lattice (algebra of subspaces or, equivalently, operators of Hilbert
space)—introduced half a century ago. (2, 3) A project of reducing the two
logics to each other should first of all address those features of the Hilbert
space quantum logic whose implementation into the computer quantum
logic are hardly possible or problematic. Such features are:

• The Hilbert space quantum logic (Hilbert lattice) is (ortho)isomor-
phic to the lattice of the closed subspaces of any Hilbert space. It has
recently been shown that infinite orthogonality and unitarity added to the
lattice make sure that the field over which any infinite dimensional Hilbert
space is defined must be either complex, or real or quaternionic. This does
not hold for a finite dimensional Hilbert space which allows non-standard
(e.g., Keller’s (4)) fields that can make the space nonarchimedean. The latter
possibility should be eliminated in favor of a complex field, but this
requires further research since the theory of finite Hilbert lattices and of
finite complex Hilbert space is poorly developed. Quantum computer
quantum logic obviously must be finite dimensional and therefore we need
a finite Hilbert lattice theory with conditions that eliminate exotic proper-
ties and have a plausible physical interpretation. Besides, a finite dimen-
sional quantum theory might offer us a model for discrete space which goes
beyond any numerical grid approximation of quantum state equations (as
given, e.g., by Ref. 5 for quantum computer).

• Hilbert lattice theory contains conditions of the second order which
involve universal and existential quantifiers. Whether they can be trans-
lated into algebraic conditions and equational series, and as such possibly
handled and approximated by quantum computer, is an open question. An
algebraic approach to the Hilbert lattices, whose goal is to substitute the
aforementioned quantifier conditions with algebraic equations has been
started only recently. (6–9)

• There was a long standing question on whether a proper logic—not
its above considered algebraic model which is misleadingly called quantum
logic—underlying Hilbert space can play the same role classical logic,
underlying the Boolean algebra, played—it was believed—in any classical
physical and computer theory. (10–17) However, two years ago it was disco-
vered (18) that there are proper logics for neither quantum nor classical
theories. It turned out that both quantum and classical proper logics have
at least two ortholattice models each and that their syntax correspond to
models that are neither Hilbert lattice nor Boolean algebra, respectively.
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Hence, proper logics can characterize neither quantum nor classical com-
puters. More generally, they can characterize neither quantum nor classical
theories— physical as well as mathematical. For, obviously, one cannot
claim that a statement holds in proper quantum logic if and only if it is true
in orthomodular lattices and at the same time that a statement holds in
proper quantum logic if and only if it is true in non-orthomodular lattices.
The same holds for proper classical logic. Consequently, another long
standing proper quantum logic issue— whether or not there is a deduction
theorem for the logic—is put aside by the above result. However, the
deduction theorem was recently reformulated in a lattice theoretic frame-
work and we will consider the latter reformulation in the present paper.
This will take us to a problem of whether there is quantum lattice ordering
in Hilbert lattices.

• Orthomodular lattices—which contain Hilbert lattices—use opera-
tions taken over from Hilbert space. However, there are also five the so-
called quantum versions of them. (19) The latter reduce to the former for
compatible variables. For almost half a century various authors have tried
to find proper quantum operations. This will also take us to a problem of
possible quantum ordering in Hilbert lattices. It will turn out that in a
standard formulation of Hilbert lattices with standard operations there are
quantum orderings. But if we wanted to use only quantum operations and
only quantum orderings, we would arrive at algebras that are not lattices
and which therefore cannot be made (by means of additional conditions)
orthoisomorphic to the lattice of closed subspaces of Hilbert space. Hence,
the standard lattice operations inherited from Hilbert space are the only
‘‘proper’’ operations. The result greatly simplifies approaches to the first
two points above since it shows that any use of ‘‘quantum operations’’ in
finding new conditions and equations in Hilbert lattices can only be a
casual matter of convenience. E.g., in formulations of orthoarguesian laws
some of quantum operations appear in characterizations of equations (9)

and now we know that they only make equations shorter to write.

Taken together, setting down the problems with quantum operations,
ordering, and deduction will narrow the gap between the two logics and
this is what we strive at in this paper. However, before dwelling to the task,
the following historical comments might be helpful.

Thirty years ago Finch (20) noticed that, in an orthomodular lattice, the
operation a 5 (b 2 aŒ), which we denote as a 51 b and call quantum
conjunction, ‘‘could be interpreted as an operation of logical conjunction’’
and that it satisfies the following condition: b 51 a [ c Z a [ bQ1 c where
aQ1 b denotes (a 51 bŒ)Œ and is called quantum implication. Román and
Rumbos (21) tried to give a meaning to quantum operations and Román and
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Zuazua claim that Finch’s condition ‘‘is simply some kind of deduction
theorem. (22)’’ The condition really shows a striking similarity with what one
could call a deduction theorem in a Boolean algebra: b 5 a [ c Z a [ bQ c
[where aQ b, called standard implication, denotes (a 5 bŒ)Œ] and at the
same time is in an apparent striking contradiction with a previous result by
Malinowski according to which ‘‘no consequence operation determined by
any class of orthomodular lattices admits the deduction theorem. (23)’’ On
the other hand, there are authors who propose that we use quantum opera-
tions as ‘‘especially interesting from a physical point of view, (24)’’ Many
others considered particular quantum operations according to various
properties they judged such an operation should have. (25–27, 14, 15) Because the
whole issue is of a general interest for characterizations of algebras
underlying a Hilbert space formulation of quantum mechanical systems, in
this paper we investigate whether it is possible to formulate orthomodular
lattice by means of non-standard ‘‘quantum’’ operations.

As we show in the next sections, it turns out that all previous authors
make use of the ordering relation [ from the standardly defined ortholat-
tice. This ordering relation is defined by means of the standard conjunction
operation: a [ b Zdef a 5 b=a and not by means of quantum operations.
However, if we wanted to switch from the standard operations to quantum
ones, we should redefine [ as well. (19) In Sec. 2 we do so and show that
quantum operations alone cannot serve us for defining quantum logic. In
Sec. 3 we construct an algebra based on the aforementioned quantum
conjunction 51 so as to contain both a quantum ordering and a deduction
theorem, but which is not a lattice—although one can embed an ortho-
modular lattice in it. In Secs. 3 and 6 we generalize the result to algebras
based on quantum disjunctions 2i, i=2,..., 5. In Secs. 3–5 we give an
algebra which for both classical and quantum operations of quantum
conjunction and disjunction have identical structural forms for all its
equations. Again, the resulting algebra is not a lattice although one can
embed an orthomodular lattice in it.

2. DEDUCTION AND ORDERING

Let us first define an ortholattice with the help of the lattice ordering
relation as follows. (28)

Definition 2.1. An ortholattice, OL is an algebra OOL0, Œ, 2, 5P
such that the following conditions are satisfied for any a, b, c ¥ OL0:
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OL1 a [ a

OL2 a [ b & b [ a S a=b

OL3 a [ b & b [ c S a [ c

OL4 a [ a 2 b & b [ a 2 b

OL5 a [ c & b [ c S a 2 b [ c

OL6 a [ b 2 bŒ

OL7 a=aœ

OL8 a [ b S bŒ [ aŒ

OL9 a 5 b=(aŒ 2 bŒ)Œ

where

a [ b Z
def a 2 b=b (2.1)

In addition, since a 2 aŒ=b 2 bŒ for any a, b ¥ OL0, we define:

1 =def a 2 aŒ (2.2)

0 =def a 5 aŒ (2.3)

This definition will prove itself convenient and economic, for yielding
our results, but since it is not widely known we shall first show its equiva-
lence to the following standard definition. (29)

Lemma 2.2. The above definition is equivalent to the following
standard one.

A lattice, L is an algebra OL0, 2, 5P such that the following condi-
tions are satisfied for any a, b, c ¥L0:

L1a a 2 b=b 2 a

L1b a 5 b=b 5 a

L2a (a 2 b) 2 c=a 2 (b 2 c)

L2b (a 5 b) 5 c=a 5 (b 5 c)

L3a a 2 (a 5 b)=a

L3b a 5 (a 2 b)=a

where a [ b Zdef a 2 b=b.
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An ortholattice, OL is an algebra OOL0, 2, 5 , Œ, 0, 1P such that
OOL0, 2, 5P is a lattice and in which the unary operation Œ and the con-
stants 0, 1 satisfy the following conditions for any a, b ¥ OL0:

OL1aŒ a 2 aŒ=1

OL1bŒ a 5 aŒ=0

OL2Œ a=aœ

OL3Œ a [ bS bŒ [ aŒ

Proof. That Definition 2.1 follows from the standard definition is
well-known. In particular, OL1 through OL5 follow from the conditions
for L only.

The proof of the other direction is slightly less obvious, so, we show
how to prove L1a, L2a, and L3a. L1b, L2b, and L3b are duals that follow
using OL9 and OL7.

L1a follows from OL4, OL5, and OL2.
To prove L2a we first apply OL4 twice and from OL3 we get

a [ (a 2 b) 2 c, b [ (a 2 b) 2 c, and c [ (a 2 b) 2 c. Applying OL5 first
to the last two equations and then reapplying OL5 yields a 2 (b 2 c) [
(a 2 b) 2 c. Analogously, we get (a 2 b) 2 c [ a 2 (b 2 c). OL2 then yields
L2a.

To prove L3a we first obtain a 5 b [ a from OL4, OL8, OL9, and
OL7. From this, OL1 and OL5 yield a 2 (a 5 b) [ a. The other direction
follows from OL4, and OL2 finally yields L3a. i

Next, we introduce the following additional operations:

Definition 2.3. We define quantum implications as

aQ1 b =
def aŒ 2 (a 5 b) (2.4)

aQ2 b =
def bŒQ1 aŒ (2.5)

aQ3 b =
def ((aŒ 5 b) 2 (aŒ 5 bŒ)) 2 (a 5 (aŒ 2 b)) (2.6)

aQ4 b =
def bŒQ3 aŒ (2.7)

aQ5 b =
def ((a 5 b) 2 (aŒ 5 b)) 2 (aŒ 5 bŒ) (2.8)

quantum conjunctions as

a 5i b =
def (aQi bŒ)Œ, i=1,..., 5 (2.9)
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and quantum disjunctions as

a 2i b =
def aŒQi b, i=1,..., 5 (2.10)

Classical implication, disjunction, and implication are denoted as
aQ0 b=

def aŒ 2 b, a 20 b=
def a 2 b, and a 50 b=

def a 5 b, respectively.
For a subsequent use we introduce the following definition of an

orthomodular lattice.

Definition 2.4. An ortholattice to which any of the following equiva-
lent orthomodularity conditions are added:

aQi b=1 Z a [ b, i=1,..., 5 (2.11)

is called an orthomodular lattice, OML. (30)

For the quantum operations defined above we can prove the following
lemmas:

Lemma 2.5. Quantum De Morgan law holds in any ortholattice for
quantum conjunction and disjunction:

a 5i b=(aŒ 2i bŒ)Œ, i=1,..., 5 (2.12)

Lemma 2.6. In any OML the following quantum ordering relations
hold for quantum conjunctions and disjunctions:

a [ 2 i+ b Z
def a 2i b=b, i=1, 3, 4, 5 (2.13)

a [ 2 i− b Z
def b 2i a=b, i=2, 3, 4, 5 (2.14)

a [ 5 i+ b Z
def a 5i b=a, i=1, 3, 4, 5 (2.15)

a [ 5 i− b Z
def b 5i a=a, i=2, 3, 4, 5 (2.16)

Proof. One straightforwardly checks reflexivity, antisymmetry, and
transitivity. In particular, if we use Lemma 2.7 below (whose proof does
not depend on this lemma), the proof becomes trivial. Negative results (for
i=1, 2) follow from failures in OML MO2 (Fig. 1a). i

In what follows we sometimes use [i to denote any of [ 2 i+, [ 2 i− ,
[ 5 i+, [ 5 i− from Lemma 2.6 (excluding the exceptions for i=1, 2).
One can easily prove the following two lemmas, using the fact that each
condition fails in the non-orthomodular lattice O6 (Fig. 1b): ((17), p. 22)
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Fig. 1. (a) Lattice MO2; (b) lattice O6.

Lemma 2.7.

a [i b Z a [ b, for all i from Lemma 2.6

make OL orthomodular and hold in any OML.

Lemma 2.8. An ortholattice to which any of the following conditions
is added:

aŒ 2i b=1 Z a [ 2 i+ b, i=1, 3, 4, 5 (2.17)

aŒ 2i b=1 Z a [ 2 i− b, i=2, 3, 4, 5 (2.18)

aŒ 2i b=1 Z a [ 5 i+ b, i=1, 3, 4, 5 (2.19)

aŒ 2i b=1 Z a [ 5 i− b, i=2, 3, 4, 5 (2.20)

is an OML and vice versa.

The main theorem of this section is:

Theorem 2.9. Conditions OL1–OL3 and OL5–OL9 as well the ortho-
modularity (Definition 2.4) hold with [i from Lemma 2.6 substituted for
[ and with 2i and 5i, i=1,..., 5 substituted, for 2 and 5, respectively.
As for OL4 we have:

(OL4) a [ 5 1+ a 21 b & b Á 5 1+ a 21 b & a Á 5 2− a 22 b &

b [ 5 2− a 22 b & a Ái a 2i b & b Ái a 2i b i=3, 4, 5

In addition, a 2i aŒ=aŒ 2i a=1 and a 5i aŒ=aŒ 5i a=0 hold for any i.

Proof. The positive results are easy to verify if we convert [i to [

using Lemma 2.7. For OL5, we illustrate the proof for i=3 and a 23 b:
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from a [ c and b [ c, we have a 5 b [ c, a 5 bŒ [ c, and aŒ 5 (a 2 b) [ c.
Hence (a 5 b) 2 (a 5 bŒ) 2 (aŒ 5 (a 2 b)) [ c. The negative results for OL4
are shown by their failures in OML MO2. i

Lemma 2.10. The following forms of a deduction theorem make
any OL orthomodular. (We say that b is deducible from C if there exist
a1, a2,..., an ¥ C such that an 51 (an−1 51 (...a1)...) [1+ b, where [1+
denotes any one of [ , [ 2 1+, [ 5 1+.) (31)

(b 51 a) [ c Z a [ bQ1 c (20, 22) (2.21)

(b 51 a) [ 2 1+ c Z a [ 2 1+ bQ1 c (2.22)

(b 51 a) [ 5 1+ c Z a [ 5 1+ bQ1 c (2.23)

and these conditions hold in any orthomodular lattice, OML. Equations
(2.22) and (2.23) do not hold for any other i from Lemma 2.6 substituted
together with the corresponding b 5i a for [1+ and b 51 a, respectively.

Consequences of Theorem 2.9. If we keep only to quantum operations
and quantum ordering we will arrive at an algebra which is not a lattice (in
the sense that 21 and 51 operations do not coincide with supremum and
infimum) because the lattice axiom OL4 is not satisfied. How this algebra
can be axiomatized (starting with those above conditions that hold in a
lattice) is an open problem. Specifically, such an axiomatization would be
able to prove those conditions that hold in any OML when 2 and 21 are
simultaneously interchanged throughout, i.e., conditions OL1-3, valid parts
of OL4, OL5-9, and the orthomodularity. In any case the algebra cannot
be made orthoisomorphic to the lattice of closed subspaces of Hilbert
space. If we still wanted to consider an algebra based only on quantum
operations and quantum ordering we would have the following alternatives:
To start with valid conditions from Theorem 2.9, take them as axioms of
an algebra, and add additional axioms so as to possibly eventually arrive at
a finite axiomatization of the algebra. Or, to express standard operations
from OML by means of quantum ones and arrive at algebras we will con-
sider in the next section. Finite axiomatizability of such algebras is also an
open question (except for those studied in Sec. 6). i

3. OPERATION ALGEBRAS QA[i]

As follows from Theorem 2.9 we cannot have a proper ‘‘quantum’’
lattice based on ‘‘quantum operations,’’ ‘‘quantum ordering,’’ and equipped
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with a deduction theorem since we cannot have any lattice based on them.
However, following the approach of Ref. 19 we can arrive at the following
algebra.

Definition 3.1. Operation algebra QA[i] is an algebra OA0, Œ, −P
such that the following rule is satisfied.

Substitution Rule. Any valid condition or equation one can obtain in
the standard formulation of OML containing only variables, 21 (where i is
one, or some, or all of i=0,..., 5), and negation written in QA[i] with −
substituted for 2i is a valid condition or equation in QA. Subscript [i]
denotes the range of i. (For brevity, we omit braces when i is an n-tuple, so
QA[0, 1] denotes QA[{0, 1}].)

Below, by giving explicit lattice expressions for i=0, i=1, and i=
0–5, we implicitly define algebras QA[0] (standard OML), QA[1] (with
a 2 b=a 21 (aŒ 51 b)), and QA[0–5] (with a 2 b=a 2i (b 2i (bŒ 5i (a 2i
(a 5i bŒ)))), i=0,..., 5).

Algebra QA[1] does contain a deduction theorem and one can embed
orthomodular lattice in it, but it is not a lattice (in the sense of 21 and 51
coinciding with supremum and infimum) although it shows a striking
similarity to a classical distributive lattice. The similarity is contained in the
form of orthomodularity (Lemma 2.8) and in the deduction theorem
(Lemma 2.10). However, if we agree that a deduction theorem is not a very
useful theorem in a lattice theory then Theorem 2.9 shows that there is no
particular reason to limit ourselves to 21 for −. For example, in algebra
QA[1−5] one can express all relevant operations from an orthomodular
lattice by means of 5 quantum disjunctions and conjunctions at once (e.g.,
a 2 b=((a 2i bŒ) 2i (bŒ 2i a))Œ 2i a, i=1,..., 5). (19) This might seem to take
us away from any ‘‘classical’’ feature of the algebra, but below we show
that in quantum-classical algebra QA[0–5] one can express all expressions in
an orthomodular lattice by means of either quantum or classical conjunc-
tions and disjunctions in structurally identical ways. More explicitly, we
express 96 possible two-variable expressions in an orthomodular lattice
(so-called Beran expressions (29)) by means of both quantum and classical
disjunctions and conjunctions, and negation.

4. CLASSICAL-QUANTUM ALGEBRA QA[0–5]

Let na, b, n=1,..., 96, a, b ¥ OML be a Beran expression. (29) As we
stressed in Ref. 19 there are 16 classical and 80 quantum Beran expressions.
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Classical expressions can be expressed by classical-quantum disjunctions
and conjunctions (where −=2i, i=0,..., 5; DeMorgan’s law holds a ' b=
(aŒ − bŒ)Œ, but we use both operations for the compactness of expressions)
and negation. Shortest such expressions are given below. We also give
shortest expressions by means of 21 and 51.

1=0Œ=96a, b=1
−

a, b=1=0Œ

a=22a, b=75
−

a, b=39b, a=58
−

b, a=a

a 2 b=(aŒ 5 bŒ)Œ=92a, b=93a, bŒ=94aŒ, b=95aŒ, bŒ=2 −a, b=3 −a, bŒ=4 −aŒ, b=5 −aŒ, bŒ
=a − (b − (bŒ ' (a − (a ' bŒ))))=b21 (bŒ 51 a)

a —0 b=(b 2 aŒ) 5 (bŒ 2 a)=88a, b=9 −a, b
=(a − b) ' ((a ' b)Œ ' ((a ' bŒ) − (aŒ ' b)))=(bŒ 51 aŒ) 21 (b 51 a)

Quantum Beran expressions are: quantum unities, 1abi, quantum zeros,
0abi, i=1, 2, quantum variables aabi, i=1, 2, 3, and the above defined
quantum identities, disjunctions and conjunctions, that all reduce to their
classical counterparts for compatible variables. They can be expressed
by classical-quantum disjunctions and conjunctions [DeMorgan’s law
holds a ' b=(aŒ − bŒ)Œ], and negation as given below (shortest possible
expressions). We also give their shortest expressions by means of 21 and 51.

1ab1=0
−

aŒbŒ1=((a 5 b) 2 (a 5 bŒ)) 2 ((aŒ 5 b) 2 (aŒ 5 bŒ))=16a, b=81 −a, b
=((a − b) − (b − aŒ)) ' (((aŒ ' b) − (b ' a)) − ((a − b)Œ − (bŒ ' a)))

=(a 21 (b 21 aŒ)) 51 (aŒ 21 (b 21 a))

1ab2=0
−

aŒbŒ2=(a 2 (aŒ 5 b)) 2 (aŒ 5 bŒ)

=32a, b=80aŒ, bŒ=48b, a=64bŒ, aŒ=17
−

aŒ, bŒ=65
−

a, b=33
−

bŒ, aŒ=49
−

b, a

=a − (((b − (a − b)Œ) ' (a − (a ' b))Œ) − a)=a 21 (b 51 a)Œ

ab1=((a 5 b) 2 (a 5 bŒ))=6a, b=7b, a=10bŒ, aŒ=11aŒ, bŒ
=86 −aŒ, bŒ=87

−

bŒ, aŒ=90
−

b, a=91
−

a, b

=a ' ((a − b) ' (aŒ − ((b ' a) − (a ' bŒ))))=a 51 (aŒ 21 (b 21 a))

ab2=(a 2 b) 5 (bŒ 2 (b 5 a))=54a, b=23bŒ, a=26 −bŒ, aŒ
=38a, bŒ=43

−

aŒ, bŒ=59
−

a, bŒ=71b, a=74
−

bŒ, a

=(bŒ − (a − bŒ)) ' ((a ' b) − (((b − a) − a) ' bŒ))=(bŒ 51 a) 21 a
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ab3=((a 2 b) 5 (a 2 bŒ)) 5 ((aŒ 2 (a 5 b)) 2 (a 5 bŒ))

=70a, b=27aŒ, bŒ=55b, a=42bŒ, aŒ

=(aŒ − (b − a)) ' (((b ' a) − (a ' bŒ)) − ((a − ((b − a) ' bŒ)) ' aŒ))

=(aŒ 51 (bŒ 51 a)) 21 ((bŒ 51 a) 21 a)

a —1 b=aŒ —3 bŒ=(a 2 bŒ) 5 (aŒ 2 (a 5 b))=72a, b=73a, bŒ=56b, a=57b, aŒ

=(a − (b − a))Œ − ((bŒ − a) ' ((b ' (a ' b)) − aŒ))

=(a 21 b)Œ 21 (b 51 a)

a —2 b=aŒ —4 bŒ=(a 2 bŒ) 5 (b 2 (bŒ 5 aŒ))=40a, b=41aŒ, b=24b, a=25a, bŒ

=(b ' (a ' b)) − ((a − bŒ) ' (b − ((b − a)Œ − b)))

=(b 51 a) 21 (a 21 (b 21 a))Œ

a —5 b=(bŒ 5 aŒ) 2 (b 5 a)=8a, b=89 −a, b

=(a − bŒ) ' ((a − (b − a))Œ − ((b ' a) ' b))=(b 21 aŒ) 51 (bŒ 21 a)

a 21 b=b 22 a=(aŒ 51 bŒ)Œ=(bŒ 52 aŒ)Œ=a 2 (aŒ 5 b)

=28a, b=29a, bŒ=44b, a=46b, aŒ=61bŒ, a=63bŒ, aŒ=78aŒ, b=79aŒ, bŒ

=18 −aŒ, bŒ=19
−

aŒ, b=34
−

bŒ, aŒ=36
−

bŒ, a=51
−

b, aŒ=53
−

b, a=68
−

a, bŒ=69
−

a, b

=(a − (b ' (a − (a ' b))Œ))

a 23 b=b 24 a=(aŒ 53 bŒ)Œ=(bŒ 54 aŒ)Œ

=(a 2 b) 5 ((aŒ 2 (a 5 bŒ)) 2 (a 5 b))

=76a, b=30aŒ, b=31aŒ, bŒ=45bŒ, a=47bŒ, aŒ=60b, a=62b, aŒ=77a, bŒ

=66 −aŒ, bŒ=20
−

a, bŒ=21
−

a, b=35
−

bŒ, a=37
−

b, a=50
−

bŒ, aŒ=52
−

bŒ, a=67
−

aŒ, b

=(aŒ − (b − a)) ' (((b ' a) − (a ' bŒ)) − ((a − b) ' aŒ))

=(aŒ 51 b) 21 (b 21 a)

a 25 b=(aŒ 55 bŒ)Œ=((a 5 b) 2 (a 5 bŒ)) 2 (aŒ 5 b)

=12a, b=13aŒ, b=14aŒ, bŒ=15a, bŒ=82
−

aŒ, bŒ=83
−

aŒ, b=84
−

a, b=85
−

a, bŒ

=(a − b) ' (((aŒ ' b) ' (b − a)) − ((b ' a) − (a ' bŒ)))

=(a 21 b) 51 (aŒ 21 (bŒ 21 a))
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Each of the 96 −, ' expressions above (which are polynomials in −,
', Œ, 0, 1) is a shortest representative of an (infinite) equivalence class of
polynomials of QA[0–5] that evaluate (in an OML) to the same Beran
expression for each of 2i, 5i, i=0,..., 5 substituted for − , '. In addition
to these polynomials, there are many other polynomials that do not
evaluate to the same Beran expression for all i, for example a − b. Every
polynomial belongs to an equivalence class of polynomials that can be
connected with the= sign. For example, a 2i b=a 2i (b 2i (a 5i (a 2i b)))
holds for i=0,..., 5, so a − (b − (a ' (a − b))) belongs to the same equiva-
lence class as a − b. In fact, there are 24×66=746496 such equivalence
classes of expressions with at most 2 distinct variables.

By means of an exhaustive computer search, the authors determined
that a shortest polynomial for a member of each equivalence class requires
from 0 to 14 variable occurrences. We have 0 and 1 with no variable
occurrences; a, b, aŒ, bŒ with one occurrence; a − b, b − a, a ' bŒ, etc. (16
cases) with two occurrences; and so on. An example of a shortest represen-
tative of a class requiring at least 14 variable occurrences is (a ' (b '
(b− a)))− ((aŒ' ((b− a)' b))− ((b− ((b− (a− b))' aŒ))' bŒ)). The num-
ber of equivalence classes vs. the number of variable occurrences required
for a shortest representative is shown in Table I. The computer search
yielded a list, available from the authors, with a shortest representative of
each of the 746496 classes. (The list also includes as subsets shortest repre-
sentatives for all possible operation algebras QA[i], i ı {0,..., 5}. The next
section shows how these can be extracted from the list.)

There are usually several shortest representatives of a given equiva-
lence class, and the relationship is not always obvious. For example,
a ' (b − a)Œ=a ' (b ' aŒ) are two shortest representatives of one class.
Other interesting classes include those that can permute quantum opera-
tions to others; for example ((bŒ ' a) ' (a − b)) − ((a ' b) − (b ' aŒ)),
i.e., ((bŒ 5i a) 5i (a 2i b)) 2i ((a 5i b) 2i (b 5i aŒ)) evaluates to a 25−i b,
i=0,..., 5.

The situation for − , ' expressions with 3 or more distinct variables
appears to be much more complicated and is poorly understood. Apparently

Table I. (a) Number of Equivalence Classes for QA[0–5] Polynomials with at Most 2
Distinct Variables (Total 746469); (b) Number of Variable Occurrences in

a Shortest Representative of those Classes

(a) 2 4 16 224 1926 10568 29444 101168 195380 204296 138584 48852 14272 1684 76
(b) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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the only known non-trivial conditions with 3 variables in QA[0–5] are the
Foulis–Holland-like associativity and distributivity properties presented in
Ref. 24, the condition OL5 of Theorem 2.9, and the following conditions
for the Sasaki projection ja(b)=

def a 5 (aŒ 2 b)=a ' (b − (a ' (a − b))Œ).

Theorem 4.1. The following conditions hold in QA[0–5]:

ja(c)=jb(c) S a ' c=b ' c (4.1)

ja(cŒ)=jb(cŒ) S a − c=b − c (4.2)

Proof. For (4.1), we successively operate on both sides of the hypo-
thesis with either c or a previous equality, using the identities a 5 c=
c 5 ja(c), a 51 c=ja(c), a 52 c=(cQ1 (ja(c))Œ)Œ, a 53 c=(((a 51 c)Q1 c)
Q1(a 52 c)Œ)Œ, a 54 c=((cQ1 (a 51 c))Q1 (a 51 c)Œ)Œ, and a 55 c=(a 51 c)
2 (a 52 c) on the left-hand side (and the analogous ones for b on the right-
hand side). For (4.2), we use the identity jaŒ(cŒ)=(cŒQ2 ja(cŒ))Œ after
operating on both sides with c, then use (4.1) to obtain aŒ ' cŒ=
bŒ ' cŒ, from which the result follows by complementing both sides and
applying DeMorgan’s law. i

Comment From the identity jaŒ(c)=(cQ2 ja(c))Œ, we also note the
interesting consequence ja(c)=jb(c)Z jaŒ(c)=jbŒ(c), which holds in all
OMLs and is equivalent to the orthomodular law. This is also equivalent to
aQ1 c=bQ1 cZ aŒQ1 c=bŒQ1 c.

An open problem is whether QA[0–5] can be represented with a finite
set of equations. i

5. CONSTRUCTION OF QA[0–5] EXPRESSIONS

In the previous section we showed several examples of shortest repre-
sentatives of the 746496 equivalence classes for 2- variable QA[0–5] expres-
sions, which were found by exhaustive search. In this section we describe
an algorithm that will produce a representative of any desired equivalence
class. Although the expressions produced with this algorithm will usually
be extremely long and not practical to work with, the algorithm is
nonetheless instructive as it illustrates another way to describe and classify
the equivalence classes. It also provides a proof that all possible 746496
equivalence classes can be represented in QA[0–5].
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The 96 Beran expressions correspond to the 96 elements of the free
OML F(a, b) with 2 free generators a, b. Each element can be separated
into a ‘‘Boolean part’’ and an ‘‘MO2 part. (32)’’ A Beran expression can be
identified with an ordered pair of numbers, the first of which (0 through 15)
identifies the Boolean part nB and the second (0 through 5) the MO2 part nM.
We choose these numbers in such a way that Beran’s numbering nBeran
(1 through 96) is recovered by nBeran=16nB+nM+1. Conversely, given the
Beran number the Boolean part is nB=(nBeran−1) mod 16 and the MO2
part is nM=N(nBeran−1)/16M.

The Boolean part of any expression of QA[0–5] is the same for
i=0,..., 5 when 2i, 5i are substituted for −, '. The MO2 part can
differ for each i. We represent any equivalence class by a septuple
OnB, nM0 ,..., nM5P where nB identifies the Boolean part and nM0 ,..., nM5 the
MO2 parts.

When nM0=·· ·=nM5 , the expression is in the equivalence class of
one of the 96 Beran expressions. For example, a 2 b=a − (b − (bŒ ' (a −
(a ' bŒ)))) from the previous section, with Beran number 92, is in the
equivalence class O11, 5, 5, 5, 5, 5, 5P. When the nMi are not all the sane, the
equivalence class does not correspond to any Beran expression. For
example, a − b is in the equivalence class O11, 5, 1, 2, 4, 3, 0P. The example
((bŒ ' a) ' (a − b)) − ((a ' b) − (b ' aŒ)) from the previous section is in
the equivalence class O11, 0, 3, 4, 2, 1, 5P, allowing one to easily see that it
evaluates to a 25−i b, i=0,..., 5 by reversing the order of the six MO2
components. Continuing with some other examples from the previous
section, we have O0, 0, 0, 0, 0, 0, 0P for 0, O15, 5, 5, 5, 5, 5, 5P for 1,
O5, 1, 1, 1, 1, 1, 1P for a, O6, 2, 2, 2, 2, 2, 2P for b, O10, 4, 4, 4, 4, 4, 4P for aŒ,
O9, 3, 3, 3, 3, 3, 3P for bŒ, O1, 0, 1, 2, 4, 3, 5P for a ' b, O1, 0, 2, 1, 3, 4, 5P
for b ' a, O0, 0, 1, 0, 4, 1, 1P for a ' (b ' aŒ), and O6, 3, 5, 5, 0, 3, 3P for
(a' (b' (b− a)))− ((aŒ' ((b− a)' b))− ((b− ((b− (a− b))' aŒ))' bŒ)).

For operation algebras other than QA[0–5], a representative expression
can be obtained by simply ignoring the omitted MO2 component(s). For
example, to obtain a shortest representative for a 2 b in QA[1], we look at
each septuple of the form O11, . , 5, . , . , . , .P where ‘‘.’’ means ‘‘don’t care,’’
and pick a shortest from the list of 746496 mentioned in the previous
section. In this case a shortest is a 2 b=a 21 (aŒ 51 b), obtained from
a − (aŒ ' b) in equivalence class O11, 1, 5, 2, 1, 2, 5P. There are also 3 other
shortest ones: b − (bŒ ' a) in O11, 2, 5, 1, 2, 1, 5P, (aŒ ' b) − a, in O11, 1, 5,
1, 1, 4, 5P, and (bŒ ' a) − b in O11, 2, 5, 2, 2, 3, 5P.

Now we are ready to describe an algorithm for constructing a repre-
sentative expression for a given septuple OnB, nM0 ,..., nM5P. In what follows,
for brevity we will interchangeably use expressions and their corresponding
septuples. Our construction starts with the Boolean part chosen from
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Table II. Equivalence Classes and Shortest Representatives for the Boolean Part of a
QA[0–5] Construction. These Correspond to Beran Expressions 81 Through 96, Respectively

O0, 5, 5, 5, 5, 5, 5P ((a ' b) ' (b ' aŒ)) − (((aŒ − b) ' (b − a)) ' ((a ' b)Œ ' (bŒ − a)))
O1, 5, 5, 5, 5, 5, 5P (a ' b) − (((aŒ − b) ' (b − a)) ' ((b − a) ' (a − bŒ)))
O2, 5, 5, 5, 5, 5, 5P (a ' bŒ) − (((a ' b)Œ ' (b − a)) ' ((bŒ − a) ' (a − b)))
O3, 5, 5, 5, 5, 5, 5P (b ' aŒ) − (((b ' a)Œ ' (a − b)) ' ((aŒ − b) ' (b − a)))
O4, 5, 5, 5, 5, 5, 5P ((a − b) ' (((aŒ ' b) ' (b − a)) − ((b ' a) − (a ' bŒ))))Œ
O5, 5, 5, 5, 5, 5, 5P a − ((a ' b) − (aŒ ' ((b − a) ' (a − bŒ))))
O6, 5, 5, 5, 5, 5, 5P b − ((a ' b) − (aŒ ' ((b − a) ' (a − bŒ))))
O7, 5, 5, 5, 5, 5, 5P (a ' b) − ((a − b)Œ − ((a − bŒ) ' (aŒ − b)))
O8, 5, 5, 5, 5, 5, 5P (a ' bŒ) − ((a ' (b ' a))Œ ' ((b − a) − b))
O9, 5, 5, 5, 5, 5, 5P bŒ − ((a − b)Œ − (a ' ((b ' a)Œ ' (a − b))))
O10, 5, 5, 5, 5, 5, 5P aŒ − ((a − b)Œ − (((a − b) ' (b ' a)Œ) ' b))
O11, 5, 5, 5, 5, 5, 5P a − (b − (bŒ ' (a − (a ' bŒ))))
O12, 5, 5, 5, 5, 5, 5P a − (bŒ − (b ' (a − (a ' b))))
O13, 5, 5, 5, 5, 5, 5P b − (aŒ − (a ' (b − (b ' a))))
O14, 5, 5, 5, 5, 5, 5P (a ' (bŒ ' a)) − (a ' (b ' a))Œ
O15, 5, 5, 5, 5, 5, 5P 1

Table II, obtaining OnB, 5, 5, 5, 5, 5, 5P. We then operate on each of the
MO2 components in succession, changing them from 5 to the desired value.

For the MO2 components that we want to keep unchanged, we make
use of the fact that a ' 1=a for any a. More specifically, the expression
OnB,..., nMi ,...P ' O15,..., 5,...P is equal tosomeotherexpressionOnB,..., nMi ,...P
where MO2 component nMi is unchanged but the other MO2 components
are possibly different.

The expressions from Table III allow us to operate on specific MO2
components in succession while keeping all other MO2 components
unchanged. (The table omits the cases where nMi=5 since in those cases
there is nothing to be done.) To construct the MO2 part for i=0, we pick
O15, nM0 , 5, 5, 5, 5, 5P from the first part of Table III and obtain

OnB, 5, 5, 5, 5, 5, 5P ' O15, nM0 , 5, 5, 5, 5, 5P=OnB, nM0 , 5, 5, 5, 5, 5P (5.1)

To construct the MO2 part for i=1, we pick O15, 5, nM1 , 5, 5, 5, 5P from
the second part of Table III and obtain

OnB, nM0 , 5, 5, 5, 5, 5P ' O15, 5, nM1 , 5, 5, 5, 5P=OnB, nM0 , nM1 , 5, 5, 5, 5P
(5.2)

Continuing in this fashion for i=2, 3, 4, 5, we finally arrive at an expres-
sion representing OnB, nM0 ,..., nM5P.
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Table III. Equivalence Classes and Shortest Representatives for the MO2 Parts of a QA[0–5]
Construction. These Have no Corresponding Beran Expressions

O15, 0, 5, 5, 5, 5, 5P (a ' b) − ((a ' bŒ) − (aŒ ' (aŒ ' ((b − a)Œ − b)))
O15, 1, 5, 5, 5, 5, 5P a − ((aŒ ' b) − (b − a)Œ)
O15, 2, 5, 5, 5, 5, 5P b − ((bŒ ' a) − (a − b)Œ)
O15, 3, 5, 5, 5, 5, 5P bŒ − ((b ' a) − (aŒ ' b))
O15, 4, 5, 5, 5, 5, 5P aŒ − ((a ' b) − (bŒ ' a))

O15, 5, 0, 5, 5, 5, 5P (a ' (aŒ − b)) − ((a − (b − aŒ)) ' ((a ' b)Œ − b))
O15, 5, 1, 5, 5, 5, 5P a − (a − ((b − a) − aŒ))
O15, 5, 2, 5, 5, 5, 5P b − (a − (b ' (b − a))Œ)
O15, 5, 3, 5, 5, 5, 5P bŒ − (a − ((b ' a) − b))
O15, 5, 4, 5, 5, 5, 5P aŒ − (b − ((a ' b) − a))

O15, 5, 5, 0, 5, 5, 5P ((a − b) ' bŒ) − ((a − (aŒ − b)) ' ((b − a) − bŒ))
O15, 5, 5, 1, 5, 5, 5P a − (b − (bŒ − (b − a)))
O15, 5, 5, 2, 5, 5, 5P a − (aŒ − ((a − b) ' b))
O15, 5, 5, 3, 5, 5, 5P a − (a ' ((a − b) ' b))Œ
O15, 5, 5, 4, 5, 5, 5P b − (b ' ((b − a) ' a))Œ

O15, 5, 5, 5, 0, 5, 5P (a ' (a − (b − a))) − (a − (a ' (b − a)))Œ
O15, 5, 5, 5, 1, 5, 5P a − (aŒ − (b − a))
O15, 5, 5, 5, 2, 5, 5P b − (bŒ − (a − b))
O15, 5, 5, 5, 3, 5, 5P b − (a − (a − b)Œ)
O15, 5, 5, 5, 4, 5, 5P a − (b − (b − a)Œ)

O15, 5, 5, 5, 5, 0, 5P (a ' ((a − b) − a)) − (a − ((a − b) ' a))Œ
O15, 5, 5, 5, 5, 1, 5P a − ((a − b) − aŒ)
O15, 5, 5, 5, 5, 2, 5P b − ((b − a) − bŒ)
O15, 5, 5, 5, 5, 3, 5P a − ((a − b)Œ − b)
O15, 5, 5, 5, 5, 4, 5P b − ((b − a)Œ − a)

O15, 5, 5, 5, 5, 5, 0P (a − b) − (a ' b)Œ
O15, 5, 5, 5, 5, 5, 1P a − (a − (b − (b − (b ' a)Œ))
O15, 5, 5, 5, 5, 5, 2P b − (a − ((a ' b)Œ − b))
O15, 5, 5, 5, 5, 5, 3P bŒ − (b − (a − (a − b)))
O15, 5, 5, 5, 5, 5, 4P aŒ − (a − (b − (b − a)))

6. FINITE AXIOMATIZATIONS FOR QA[0],..., QA[5]

As we mentioned above, it is an open problem whether in general
QA[i] is finitely axiomatizable in general for i ı {0,..., 5}. However, when i
is a singleton, finite axiomatizations exist. QA[0] is of course just standard
OML. We show them for each singleton in what follows by displaying
a specific finite axiomatization.
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For the following definition we stress that 2 is a defined (not
primitive) operation.

Definition 6.1. An algebra QA −

[i] (where i is one of 0,..., 5) is a triple
OAi, Œ, −P satisfying axioms QA1 −i–QA10 −i, where QA1 −i–QA8 −i are displayed
identically to axioms OL1–OL8 of Definition 2.1 and for any a, b ¥Ai :

QA9 −i a [ bS a 2 (aŒ 5 b)=b

QA10 −i a − b=a 2i b

where

a ' b =def (aŒ − bŒ)Œ

a 2 b =def a − (b − (bŒ ' (a − (a ' bŒ))))

a 5 b =def (aŒ 2 bŒ)Œ

a [ b Z
def a 2 b=b

and where 2i is defined as in Definition 2.3 only with the above defined 2
and 5 which are themselves defined by means of the primitive −.

Theorem 6.2. Algebra QA −

[i] is an axiomatization for (i.e., is equiva-
lent to) algebra QA[i] from Definition 3.1 where i is one of 0,..., 5.

Proof. It is straightforward to show that each of QA1 −i–QA10 −i holds
in an OML when − is replaced with 2i and thus is an axiom of QA[i]
according to the Substitution Rule.

For the converse, we note that the axioms QA1 −i– QA9 −i are struc-
turally identical to the axioms for an OML (compare Definition 2.1 to
QA1 −i–QA8 −i, using the definition of 5 for the structure of OL9, and adding
QA9 −i for the structure of the OML law). With this structure, we can mimic
an OML proof of any condition (equation or inference) involving (in addi-
tion to Œ) only the defined symbol 2.

Suppose E is an axiom of QA[i] per the Substitution Rule. We write
down a condition EŒ with only 2 symbols, obtained from E by expanding
all − symbols according to the right-hand-side of QA10 −i. Then EŒ will be
structurally identical to a condition that holds in OML (because QA10 −i is
structurally identical to the OML definition for 2i), so EŒ can be proved
using QA1 −i–QA9 −i to mimic the OML proof. Then from EŒ we obtain E by
applying QA10 −i. i

The axioms for QA −

[i] can be quite long when expressed in terms of the
primitive −. Some economy can be achieved by replacing the definition of
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2 with 6 different ones, one for each i, by making use of the OML identi-
ties a 2 b=a 20 b=a 21 (aŒ 51 b)=b 22 (bŒ 52 a)=a 23 (a 23 b)=a 24
(b 24 a)=a 25 (aŒ 55 b). In addition, QA −

[0] reduces to standard OML,
and for QA −

[1] an implicational algebra such as the one in Ref. 33 might
provide a starting point for a more compact system.

For singleton i, it is easy to see that each QA[i] is equivalent to an
OML system as the next theorem shows.

Theorem 6.3. Algebras QA −

[i], where i is one of 0,..., 5, are equivalent
to an OML (and thus to each other and to each QA[i] as well).

Proof. For one direction, we define 2 in terms of − per Defini-
tion 6.1. For the other direction, we define − in terms of 2 by treating
QA10 −i as a definition. That the axioms of each system are satisfied in the
other is a straightforward verification. i

For algebras such as QA[0–5] with non-singleton i, the equivalence in
the above sense does not hold. For, although we can define a 2 b in terms
of a − b, we cannot define a − b in terms of a 2 b. With the first definition,
we can write down axioms from the Substitution Rule that correspond
to the axioms for an OML, but there are additional axioms such as
a ' (b − a)Œ=a ' (b ' aŒ) that have no corresponding 2 version under this
embedding.

7. CONCLUSION

Our results have shown that the so-called quantum operations cannot
be used for building an operation algebra underlying Hilbert space. In par-
ticular, Theorem 2.9 proves that no quantum operation can satisfy all
lattice conditions. Hence, the aforementioned operation algebra cannot
have the lattice of closed subspaces of Hilbert space as its model. This is
not a problem though, because in Hilbert lattice the standard conjunction
a 5 b, corresponds to set intersection, Ha 4Hb, of subspaces Ha, Hb of
Hilbert space H, the ordering relation a [ b corresponds to Ha ıHb, the
standard disjunction a 2 b, corresponds to the smallest closed subspace of
H containing Ha 1Hb, and aŒ corresponds to H+

a , the set of vectors
orthogonal to all vectors in Ha. We then prove that Hilbert lattice is
orthoisomorphic to the lattice of closed subspaces of any Hilbert space and
this is what we need Hilbert lattice for. From the framework of quantum
theory and/or Hilbert space theory no need for new algebras based on
quantum operations emerges.
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The whole issue of quantum operations have recently been put
forward by a reconsideration of the so-called deduction theorem within a
lattice theory originally formulated by Finch 30 years ago. (20) Román and
Zuazua (22) attempted to give a new formal and Hilbert space interpretation
of Finch’s formulation. Essentially they advocated the usage of the
quantum operations the theorem is based on, instead of the standard lattice
operations. Other authors also recently advocated their usage as ‘‘especially
interesting from a physical point of view. (24)’’ However, they all failed to
substitute quantum for standard operations in the definition of the order-
ing relation too, and this is what we did in Sec. 2. Our Theorem 2.9 shows
that a consistent substitution of quantum for standard operations take us
to algebras none of which is a lattice and for which we do not know
whether they are all finitely axiomatizable. To be more specific, when we
use only quantum operations—even to define the ordering relation—then it
turns out that the set of equations we get, satisfies all but one conditions of
an orthomodular lattice. Therefore, we can try to use the conditions which
are satisfied by quantum operations according to Theorem 2.9 to even-
tually arrive at a hypothetical well defined algebraic system which might
even be finitely axiomatizable. Or, we can disregard these conditions
altogether and simply express all standard operations by means of
quantum ones. This is what we did in Sec. 3. We arrive at well defined
algebras which we call operation algebras in analogy to implication alge-
bras. (33, 28) Some of them are finitely axiomatizable (‘‘singleton’’ operation
algebras from Sec. 6) and for the others this is still an open question (see
Sec. 4). All operation algebras properly contain any orthomodular lattice
and ‘‘singleton’’ operation algebras are moreover completely equivalent to
OML and to each other as we show in Sec. 6. Still, none of these algebras
is a lattice (in the sense of satisfying condition OL4 of Theorem 2.9) and
therefore they can hardly play any role in the quantum theory from a
foundational point of view.

However, it is not a problem but a virtue of quantum logic that the
only way to formulate it as an orthomodular lattice is exactly that one
which maps the simplest operations defined on elements of Hilbert space.
Once we have a lattice structure it is actually completely irrelevant which
operation we use and this is what we have shown in Sec. 3: All 96 Beran
expressions of an orthomodular lattice (quantum logic) can be formulated
by ‘‘merged’’ conjunction and disjunction in such a way that we can sub-
stitute either classical or any of the five quantum conjunctions or disjunc-
tions for the ‘‘merged’’ ones at will. For example in a 23 b=((aŒ − (b − a)) '
(((b ' a) − (a ' bŒ)) − ((a − b) ' aŒ))) we can substitute either 2 and 5,
or 21 and 51, or 25 and 55, etc., for − and ', respectively, and
we will always get, a 23 b on the left hand side. Hence, it is not ‘‘logical
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properties’’ of operations but lattice structure what is essential. This lattice
structure of Hilbert space we will most probably soon use as a basis for the
architecture of a would-be quantum computer in a similar way we use the
Boolean algebra for a classical computer. Here, an equational Hilbert
lattice theory partially or even completely equivalent to the Hilbert space
theory would be an appropriate tool for constructing finite dimensional
quantum logic for quantum computers. Of such equations, one class of
state-determined orthomodular lattice equations of nth order has been
known for 20 years. (6) The second such class of Hilbert operator deter-
mined orthomodular lattice equations—orthoarguesian equations of nth
order—was found only recently. (34, 9) Very recently we found a third such
class—possibly the last one. All these equations are structurally determined
by the properties of Hilbert space. No semantic considerations whatsoever
enter any of the algorithms which served for finding the equations.
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