
International Journal of Theoretical Physics, Vol. 39, No. 10, 2000

Algorithms for Greechie Diagrams

Brendan D. McKay,1 Norman D. Megill,2 and
Mladen Pavičić3

Received July 5, 2000

We give a new algorithm for generating Greechie diagrams with arbitrary chosen
number of atoms or blocks (with 2, 3, 4, . . . atoms) and provide a computer
program for generating the diagrams. The results show that the previous algorithm
does not produce every diagram and that it is at least 105 times slower. We also
provide an algorithm and programs for checking Greechie diagram passage by
equations defining varieties of orthomodular lattices and give examples from
Hilbert lattices. We also discuss some additional characteristics of Greechie
diagrams.

1. INTRODUCTION

To arrive at a Hilbert space representation of measurement starting
from plausible “physical” axioms has been a dream of many physicists and
mathematicians for almost 70 years. Of course, one could not expect to
recognize the axioms from nothing but experimental data because they, pro-
vided they exist, must be rather involved. Therefore scientists took the oppo-
site road by starting with Hilbert space and trying to read off essential
mathematical properties so as to be able eventually to simplify them and
arrive at simple physically plausible axioms.

The first breakthrough along this opposite road was made by Birkhoff
and von Neumann in 1936 [1], who recognized that a modular lattice which

1 Department of Computer Science, Australian National University, Canberra, ACT, 0200,
Australia; e-mail: bdm@cs.anu.edu.au; Web page: http//cs.anu.edu.au/2bdm

2 Boston Information Group, Belmont, Massachusetts 02478; e-mail: nm@alum.mit.edu; Web
page: http//www.shore.net/2ndm/java/mm.html

3 Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250,
and University of Zagreb, Gradjevinski Fakultet, Kačićeva 26, HR-10000 Zagreb, Croatia; e-
mail: mpavicic@faust.irb.hr; Web page: http://m3k.grad.hr/pavicic

2381
0020-7748/00/1000-2381$18.00/0 q 2000 Plenum Publishing Corporation

2382 McKay, Megill, and Pavičić

can be given a physical background underlies every finite-dimensional Hilbert
space. In the early sixties Mackey [2] (and Zierler [3]) arrived at six axioms
for a poset (partially ordered set) of physical observables which he essentially
read off from the Hilbert space properties. In an additional famous seventh
axiom, he then postulated that the latter poset be isomorphic to the one of
the subspaces of an infinite-dimensional Hilbert space. A few years later
Piron [4], MacLaren [5], Amemyia and Araki [6], and Ma̧czyński [7], starting
with such a poset with infima and suprema of every two-element subset
(lattice) and using similar axioms, proved that the lattice, usually called the
Hilbert lattice, is isomorphic to a pre-Hilbert space. That enabled Ma̧czyński
[7] to postulate only the kind of field over which the Hilbert space should
be formulated: he chose the complex one. The Hilbert lattice is then a lattice
of the subspaces of the Hilbert space.

At that time it seemed that only two other fields could have been
postulated: the real and the quaternionic ones. But in the early eighties
Keller [8] showed that there are other nonstandard (non-Archimedean) fields
over which a Hilbert space can be defined. Also, the axioms themselves
proved to be too complicated to be given plausible physical support or
simplified. Thus, the whole project lost its appeal and the majority of
researchers left the field. However, in 1995 Solèr [9] proved that an infinite-
dimensional Hilbert space can only be defined over either a real, a complex,
or a quaternionic field (i.e., that only finite-dimensional ones allow nonstan-
dard fields).

The latter result renewed interest in the problem of reconstructing the
Hilbert space from an algebra of observables [10–15] Also, recently devised
quantum computers call for such a reconstruction from an algebra which
in the field of quantum computing is usually called quantum logic in analogy
to the classical logic underlying classical computers. In particular, if we
wanted quantum computers to function as quantum simulators, i.e., directly
to simulate quantum systems through their description in the Hilbert space,
we apparently have to start from such an algebra. For, this would be the
only presently conceivable way of typing in the Hamiltonian at the console
of the quantum simulator. This also means that we have to go around
the present standard axioms for the Hilbert lattice not because they are
complicated and physically nongrounded, but because they include universal
and existential quantifiers which are unmanageable by a quantum computer.
A way to do so would be to find lattice equations as substitutes for the
axioms. The Hilbert lattice satisfies not only the orthomodularity equation,
but a number of other equations as well. Thus, if we started with such a
lattice, which can easily be physically supported by, e.g., a quantum com-
puter design, we could obviously simplify the axioms and possibly ulti-
mately dispense with them. The problem is that only two groups of equations

Algorithms for Greechie Diagrams 2383

satisfied by Hilbert lattices, i.e., in any Hilbert space, have been found so
far. We do not know whether the Hilbert space equations form a recursively
enumerable set, i.e., whether we can determine them all. What we can do,
however, is to try to find as many such equations as possible and group them
according to their recursive algorithms. Each such equation can simplify the
present axioms.

However, since already equations with four variables contain at least
about 30 terms which one cannot further simplify, a proper tool for finding and
handling the equations is indispensable. A great help are Greechie diagrams
(condensed Hasse diagrams), which we will define precisely later. To show
that two equations cannot be inferred from each other it suffices to find two
Greechie lattices in which the equations interchangeably pass and fail. As
an illustration of how “easily” one can find a lattice without a computer
program we cite Greechie: “[In 1969] a student, beginning his dissertation,
found such a lattice. It was terribly complicated and had about eighty atoms.
The student left school and the example was lost. I’ve been looking for one
ever since. Recently [in 1977!] I found one” [16]. So, we need an algorithm
for finding Greechie diagrams and another for finding whether a particular
equation passes or fails them. In this paper we give both. They would not
only support the aforementioned project of obtaining the Hilbert space from
physically plausible axioms, but would also serve for obtaining new equations
in the theory of Hilbert spaces.

The first attempt at automated generation of Greechie diagrams was
made in the early eighties by Beuttenmüller, a former student of G. Kalm-
bach [17, pp. 319–328]. The algorithm itself is not given in the book, but
G. Beuttenmüller kindly sent us the listing of its translation into Algol.
We rewrote it in C, and with a fast PC it took about 27 days to generate
Greechie diagrams with 13 blocks. We estimated it would take around a
year for 14 blocks and half a century for 15 blocks, so we looked for
another approach.

The technique of isomorph-free exhaustive generation [18] of Greechie
diagrams gave us not only a tremendous speed gain—48 sec; 6 min; 51 min;
8 h and 122 h for 13–17 blocks, respectively (for a PC running at 800
MHz)—but also essentially new results: Beuttenmüller’s algorithm must be
at least incomplete since the numbers of nonisomorphic Greechie diagrams
in Kalmbach’s book ([17], p. 322) are wrong. In Section 2 we give the
algorithm for the above generation.

In Section 3 we give an algorithm for checking whether a particular
equation fails or passes in Greechie diagrams provided by the algorithm from
Section 2. The algorithm has helped us to find new equations that hold in
any infinite-dimensional Hilbert space [19].

2384 McKay, Megill, and Pavičić

2. ISOMORPH-FREE EXHAUSTIVE GENERATION OF
GREECHIE DIAGRAMS

The following definitions and theorem are taken from Kalmbach [17]
and Svozil and Tkadlec [20]. Definitions in the framework of quantum logics
(s-orthomodular posets) can be found in the book by Pták and Pulman-
nová [21].

Definition 2.1. A diagram is a pair (V, E), where V Þ 0⁄ is a set of atoms
(drawn as points) and E # exp V \{0⁄ } is a set of blocks (drawn as line
segments connecting corresponding points). A loop of order n $ 2 (n being
a natural number) in a diagram (V, E) is a sequence (e1, . . . , eb) P E n of
mutually different blocks such that there are mutually distinct atoms n1, . . . ,
nn with ni P ei ù ei11 (i 5 1, . . . , n, en11 5 e1).

Definition 2.2. A Greechie diagram is a diagram satisfying the follow-
ing conditions:

1. Every atom belongs to at least one block.
2. If there are at least two atoms, then every block is at least 2-element.
3. Every block which intersects with another block is at least 3-element.
4. Every pair of different blocks intersects in at most one atom.
5. There is no loop of order 3.

Theorem 2.3. For every Greechie diagram with only finite blocks there
is exactly one (up to an isomorphism) orthomodular poset such that there
are one-to-one correspondences between atoms and atoms and between blocks
and blocks which preserve incidence relations. The poset is a lattice if and
only if the Greechie diagram has no loops of order 4.

In the literature, a block is also called an edge and an atom is also called
a vertex or node. (However, we reserve the term node for an element of a
Hasse diagram.)

From the above definitions it is clear that a block can have not only
3 atoms, but also 2 or 4 or more atoms. However, practically all examples
of Greechie diagrams used in lattice theory are nothing but pasted 3-atom
blocks. We are aware of only two important contributions containing 4-
atom blocks (two proofs of the existence of finite lattices admitting no
states given in ref. 21, Fig. 2.4.5, p. 37, and ref. 17, Fig. 17.3, p. 275) and
of only one result for n and ` giving orthomodular lattices without states
[17, Fig. 17.4, p. 275].

For this reason, we have initially focused on generation of diagrams
with every block having size 3. Nevertheless, our description of the generation
algorithm will allow larger blocks in anticipation of the next version of our

Algorithms for Greechie Diagrams 2385

generation program. Our program for checking equations already handles
large blocks. Also, we are interested only in the diagrams which correspond
to lattices, i.e., only in those containing no loops of order 4. Since Condition
5 of Definition 2.2 states that there are no loops of order 3, this means that
we are interested only in diagrams with loops of order 5 and higher. Those
3-atom Greechie diagrams which correspond to lattices we call Greechie-3-
L diagrams.

A diagram is connected if, for each pair of atoms n, n8, there is a
sequence of blocks e1, e2, . . . , ek such that n P e1, n8 P ek , and ei ù
ei11 Þ 0⁄ for 1 # i # k 2 1. In Section 3 we will illustrate how the
properties of unconnected diagrams are not necessarily a simple combina-
tion of the properties of their connected components, so our algorithms
will handle both connected and unconnected diagrams. An isomorphism
from a diagram (V1, E1) to a diagram (V2, E2) is a bijection f from V1 to
V2 such that f induces a bijection from E1 to E2. The isomorphisms from
a diagram D to itself are its automorphisms, and together comprise its
automorphism group Aut(D).

If D 5 (V, E) is a diagram and e P E, then D 2 e is the diagram
obtained from D by removing e and also removing any atoms that were in
e, but in no other block. Conversely, if e is a set of atoms (not necessarily
all of them atoms of D), then D 1 e is the diagram (V ø e, E ø {e}).
Clearly, (D 1 e) 2 e 5 D.

We will describe the generation algorithm in some generality to assist
future applications. Suppose that # is some class of diagrams closed under
isomorphisms (for example, connected Greechie-3-L diagrams). If D 5 (V, E)
P # and .E. . 1, there may be some e P E such that D 2 e P #. If there
is no such block, we can D irreducible. It is obvious that all diagrams in #
can be made from the irreducible diagrams in # by adding a sequence of
blocks one at a time, all the while staying in #. Such a sequence of diagrams
is a construction path for D.

The basic idea behind our algorithm is to prune the set of construction
paths until (up to isomorphism) each diagram in # has exactly one construc-
tion path. This is achieved by two techniques acting in consort.

The first technique is to avoid equivalent extensions. Suppose D P #
and e1 and e2 are such that D 1 e1 and D 1 e2 P #. Then D 1 e1 and
D 1 e2 are called equivalent extensions of D if .e1. 5 .e2. and there is an
automorphism of D which maps V ù e1 onto V ù e2. It is easy to see that
the equivalence of e1 and e2 implies the isomorphism of D 1 e1 and D 1
e2, by an isomorphism that takes e1 onto e2, so we do not lose any isomorphism
types of diagram if we make only one of them.

The second technique is somewhat more complicated. Suppose we have
a function m with the following properties.

2386 McKay, Megill, and Pavičić

• m(?) takes a single argument D which is a reducible diagram in
#. It returns a value which is an orbit of blocks under the action
of Aut(D).

• D 2 e P # for every e P m(D).
• If D8 is a diagram isomorphic to D, then there is an isomorphism

from D to D8 that maps m(D) onto m(D8).

We will explain how to compute such a function m(?) later; for now we will
describe its purpose. Take any reducible D P # and e P m(D); then form
D 2 e. If we do the same starting with a diagram D8 isomorphic to D—take
e8 P m(D8), then form D8 2 e8—the third property of m(?) implies that D 2
e and D8 2 e8 are isomorphic. Thus, the function m(?) enables us to define
a unique isomorphism class, that of D 2 e for e P m(D), as the parent class
of the isomorphism class of D. Since we wish to avoid making isomorphism
types more than once, we can decide to only make each diagram from its
parent class. If we happen to make it from any other class, we will reject it.

The result of the theory in ref. 18 is that the combination of the above
two techniques results in each isomorphism class being generated exactly
once. The precise method of combination is given by the following algorithm.

Definition 2.4. Isomorph-free Greechie diagram generation procedure:

procedure scan (D: diagram; b: integer)
if D has exactly b blocks then

output D
else

for each equivalence class of extensions D 1 e do
if e P m(D 1 e) then scan(D 1 e, b)

end procedure

In Fig. 1 we show the top four levels of the generation tree as produced
by our implementation of the algorithm for connected Greechie-3-L diagrams.
The lines joining the diagrams show the parent–child relationship. Between
a parent and its child, one block is added. Note that diagram D4,3 is made
by adding a block to D3,1, but it could also be made by adding a block to
D3,2. The reason that D3,1 is its real parent is that m(D4,3) consists of the
upper right and lower right blocks (which are equivalent) of D4,3. (This is a
fact of our implementation which cannot be seen by looking at the figure.)
When D4,3 is made from D3,1, the new edge is seen to be in m(D4,3) and so
the diagram is accepted. When it is made from D3,2, the new edge is found
to be not in m(D4,3) and so the diagram is rejected. The idea is that each
(isomorphism type of) diagram is accepted exactly once, no matter how many
times it is made. This is proved in the following theorem.

Algorithms for Greechie Diagrams 2387

Fig. 1. Generation tree for connected Greechie-3-L diagrams.

Theorem 2.5. Suppose we call scan(D, b) for one D from each isomor-
phism class of irreducible diagram in # that has at most b blocks. Then the
output will consist of one diagram from each isomorphism class in # with
exactly b blocks.

Proof. The theorem is a special case of one in ref. 18, and the reader
is referred to that paper for a strictly formal proof. Here we will give a
slightly less formal sketch.

2388 McKay, Megill, and Pavičić

Let us say that a diagram D is accepted by the algorithm if a call scan(D,
b) occurs. We will first prove that at least one member of each isomorphism
class of diagram in # with at most b blocks is accepted. Then we will prove
that at most one member of each isomorphism class is accepted. These two
facts together will obviously imply the truth of the theorem.

Suppose that the first assertion is false: there is an isomorphism class
in #, with at most b blocks, that is never accepted. Let D be a member of
such a missing isomorphism class which has the least number of blocks. D
cannot be irreducible, since all irreducible diagrams are accepted explicitly.
Thus, we can choose e P m(D) and consider D 2 e. Since D 2 e P # and
D 2 e has fewer blocks than D, at least one isomorph D8 of D 2 e is accepted.

The isomorphism from D 2 e to D8 maps V(D) ù e onto some subset
of V(D8). Let e8 be a set of atoms consisting of that subset plus enough new
atoms to make e8 the same size as e. The for loop considers some extension
D8 1 e9 equivalent to D8 1 e8, since it considers all equivalence classes of
extensions. Moreover, since e P m(D) we can infer that e8 P m(D8 1 e8)
and consequently that e9 P m(D8 1 e9). This means that the algorithm will
perform the call scan(D8 1 e9, b), which is a contradiction, as D8 1 e9 is
isomorphic to D and the isomorphism class of D was supposed to be not
accepted at all. This proves that all isomorphism classes are accepted at
least once.

Next suppose that some isomorphism type is accepted twice. Namely,
there are two isomorphic but distinct diagrams D and D8 in #, with at most
M blocks, such that both D and D8 are accepted. Choose such a pair D, D8
with the least number of blocks.

As before, D and D8 cannot be irreducible, so they must be accepted
by some calls scan((D 2 e) 1 e, b) and scan((D8 2 e8) 1 e8, b) which arise
from the calls scan(D 2 e, b) and scan(D8 2 e8, b), respectively, where e P
m(D) and e8 P m(D8). The properties of m(?) ensure that D 2 e and D8 2
e8 are isomorphic, so they must in fact be the same diagram D9 (since
isomorphism classes with fewer blocks than D are accepted at most once by
assumption). However, D9 1 e and D9 1 e8 are equivalent, but distinct
extensions of D9, which violates the for loop specification. This contradiction
completes the proof. n

The success of the algorithm requires us to be able to find the irreducible
diagrams in # by some other method, but in many important cases this is
easy. We give the most important example.

Theorem 2.6. Suppose # is a class of Greechie diagrams defined by
some fixed set of permissible block sizes, some fixed set of permissible loop
lengths, and an optional restriction to connected diagrams. Then the only
irreducible diagrams in # are those with one block.

Algorithms for Greechie Diagrams 2389

Proof. Consider a diagram D P # with more than one block.
If # is not restricted to connected diagrams, D 2 e P # for any e P

E(D), so D is reducible.
Suppose instead that # contains only connected diagrams. Choose a

longest possible sequence S of distinct blocks e1, e2, . . . , ek , where ei ù
ei11 Þ 0⁄ for 1 # i # k 2 1. Let n1 and n2 be two atoms of D 2 ek. Since
D is connected, there is a chain of blocks from n1 to n2. This same chain is
in D 2 em unless it contains ek. However, all the blocks D intersecting ek are
in S (or else S can be made longer), so ek can be replaced in S by some
portion of S. Hence D 2 ek is connected, so D is reducible. n

The correctness of the algorithm does not depend on the definition of
m(?) provided it has the properties we required of it. The actual definition
of m(?) used in our program is carefully tuned for optimal observed perfor-
mance, and is too complicated to describe here in detail, but we will outline
a simpler definition that is the same in essence.

The key to our implementation of m(?) is the first author’s graph isomor-
phism program nauty [22]. nauty takes a simple graph G, perhaps with
colored atoms, and produces two outputs. One is the automorphism group
Aut(G), in the form of a set of generators. The other is a canonical labeling
of G, which is a graph c(G) isomorphic to G. The function c is “canonical”
in the sense that c(G) 5 c(G8) for every graph G8 isomorphic to G. To apply
nauty to a diagram (V, E), we can use the incidence graph G 5 (V ø E,
{(v, e).v P e}).

The generators for Aut(G) can be easily converted into generators for
Aut(D) and then used to determine the equivalence classes of extensions. This
enables us to implement the requirement of avoiding equivalent extensions.

The canonical labeling c(?) produced by nauty enables us to define
m(?). Take the block e such that D 2 e P # and e is given the least new
label by c(?). If we define m(D) to be the orbit of blocks that contains e, we
find that the three requirements we imposed on m(?) are satisfied.

As we have said, our real program uses a more complex definition of
m(?). We do not use the incidence graph G, but instead use a prototype variant
of nauty that operates on diagrams directly. Since our program makes
connected diagrams, we took m(D) to be an orbit of feet if there were any,
where a foot is a block with only one atom that also lies in other blocks.
This avoids many connectivity tests, since removal of a foot necessarily
preserves connectivity. It also avoids many futile extensions: adding a nonfoot
e must be done in such a way that any existing feet become nonfeet, as
otherwise e ¸ m(D 1 e).

In order to generate only the connected Greechie-3-L diagrams having
M blocks, but no feet, a reasonable approach is to generate all the diagrams,

2390 McKay, Megill, and Pavičić

having feet or not, with M 2 1 blocks first. Then the Mth block can be added
in such a way that uses at least two of the existing atoms and also turns any
feet into nonfeet. It is also possible to make a generator that makes foot-free
diagrams while staying entirely within that class, but it does not appear likely
to be much different in efficiency.

Program greechie. Our implementation of the algorithm is a self-
contained program called greechie4 that takes as parameters the number
of blocks, an optional upper bound on the number of atoms, and whether or
not feet are permitted. It then produces one representative of each isomorphism
class of connected Greechie-3-L diagram with those properties. The diagrams
can then be processed as they are generated, with no need to store them.
There is also an option for dividing the set of diagrams into disjoint subsets and
efficiently producing only one of the subsets. This allows long computations to
be broken into manageable pieces that can be run independently, even on
different computers, without much change to the total running time.

In Table I we list the number of Greechie-3-L diagrams for small values
of a and b. In each cell of the table, the upper value is the total number of
connected Greechie-3-L diagrams and the lower value is the number of those
which have no feet. Both counts are 0 if the table cell is empty. The table
includes all possible values of b for a # 29 and all possible values of a for
b # 17.

For reasons explained later, we have particular interest in those diagrams
containing close to the maximum number of blocks for a given number of
atoms. This prompted us to compute additional near-maximal diagrams past
the size where finding all the diagrams is practical.

To keep the discussion simple, we restrict ourselves to Greechie-3-L
diagrams, not necessarily connected. By the type of a diagram we mean the
pair (a, b), where a is the number of atoms and b is the number of blocks.
The rank of an atom is the number of blocks which contain it.

The first observation is that a diagram D of type (a, b) has an atom
whose rank is at most 3b/a. Over most of our computational range, a ,
b, so this value is at most 2. If there is an atom of rank 1, we can make D
either by adding a foot to a diagram of type (a 2 2, b 2 1) or by adding
one block and one atom to a diagram of type (a 2 1, b 2 1). On the other
hand, if there is an atom of rank 2 but none of rank 1, we can make D by
adding one atom and two blocks to a diagram of type (a 2 1, b 2 2). So,
if we have already made the diagrams of types (a 2 2, b 2 1), (a 2 1,

4ftp://m3k.grad.hr/pavicic/greechie, http://cs.anu.edu.au/2bdm/
nauty/greechie.html. Many of the diagrams computed with the program are also
available at those sites.

Algorithms for Greechie Diagrams 2391

Table I. Counts of Connected Greechie-3-L Diagrams

a \b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

3 1 1
1 1

5 0 0
1 1

7 0 0
2 2

9 0 0
4 4

10 1 1
1 1

11 0 0
8 8

12 1 1
3 3

13 0 2 2
19 2 21

14 1 1 2
14 1 15

15 0 6 1 1 8
48 16 1 1 66

16 1 12 1 14
62 15 11 78

17 0 11 21 2 34
126 119 24 3 272

18 1 71 27 4 103
281 209 31 4 525

19 0 19 261 67 6 353
355 819 490 84 6 1754

20 1 251 834 147 1 1234
1239 2347 1217 166 1 4970

Total 1 0 0 0 1 1 3 8 25 114 571 3675 27687 239644
1 1 2 4 9 22 64 205 771 3330 16571 95327 628555 4713887

b 2 1), and (a 2 1, b 2 2), we can easily extend them to make those of
type (a, b), provided a , b.

Sometimes the class (a 2 1, b 2 2) maybe too difficult to compute.
In this case, there are two other approaches we might be able to take to
making those diagrams of type (a, b) whose minimum atom rank is 2. Define
ai to be the number of atoms of rank i (and recall that we are assuming a1 5
0). Counting the pairs (block, atom in block) in two ways, we have 2a2 1
3a3 1 4(a 2 a2 2 a3) # 3b. Since also a2 1 a3 # a, we have

2a2 1 a3 $ 4a 2 3b and a2 $ 3a 2 3b (1)

Now consider the case of a Greechie-3-L diagram with a1 5 0 and

2392 McKay, Megill, and Pavičić

Table I. Continued

a \b 10 11 12 13 14 15 16 17 Total

21 0 29 2052 2884 405 4 5374
1037 5199 8273 3872 437 4 18822

22 1 675 12849 10885 905 4 25319
5377 22219 31805 13440 908 4 73753

23 0 42 10235 74698 45905 2837 17 133734
3124 30923 109467 141454 53075 2861 17 340921

24 1 1508 113376 435636 207767 10723 769050
22931 182581 588877 695281 225862 10756 1726327

25 0 57 37406 1061800 2670655 1030296 4849700
9676 173841 1194496 3508197 3787093 1091395 9814445

26 1 2997 664386 9287661 17387077 33292775
96213 1346088 8429567 22797227 22548822 61419172

27 0 75 110376 9494774 80621116 248439348
30604 932262 11227170 64431928 161294913 423756705

28 1 5463 2905751 120414885 2009490610
398359 9117775 99744819 530135665 3203436511

29 0 95 280150 60035427 17618049369
98473 4807157 94035090 945730356 26495317580

30 1 9329 10280997 ?
1630602 57743948 1021031346

31 0 118 636294 ?
321572 23993678 719130759

32 1 15096 ?
6612148 346356783

33 0 143 ?
1063146 116542189

34 1 ?
26603735

35 0 ?
3552563

Total 114 571 3675 27687 229844 2324571 24859047 290432072
3330 16571 95327 626565 4713887 39791306 374437794 3894029319

6a . 7b. Applying the second part of (1), we find that 2a2 . b, which
implies that some block contains at least two atoms of rank 2. Therefore, we
can make the diagram by adding two atoms and three blocks to a diagram
of type (a 2 2, b 2 3).

If 6a # 7b, but a . b, there might be no atoms of rank 1, nor two
atoms of rank 2 in the same block. In this case, we know that there are
exactly 2a2 blocks containing an atom of rank 2. The total rank of the atoms
of rank greater than 3 is 3b 2 2a2 2 3a3, so we have at least 4a2 2 (3b 2
2a2 2 3a3) 5 6a2 1 3a3 2 3b pairs (x, y) such that x and y are atoms of
rank 2 and 3, respectively, lying in the same block. Now, if we suppose that

Algorithms for Greechie Diagrams 2393

Table I. Continued

a \b 18 19 20 21 22 23 24 Total

24 39 769050
39 1726327

25 49350 134 2 4849700
49611 134 2 9814445

26 5702603 247469 581 33292775
5952608 248066 581 61419172

27 121218048 35519085 1471094 4180 248439348
147629428 36732179 1474036 4185 423756705

28 717349032 911521449 247041933 10216096 35992 8 2009490610
1237468066 1062867580 253438446 10229781 35992 8 3203436511

29 1448334695 6661929716 7447274324 1916771296 82563871 359550 245 17618049369
4690081789 10298834720 8422315646 1956383755 82670819 359550 245 26495317590

14a . 15b, we find that 6a2 1 3a3 2 3b . a3, implying that two of the
pairs (x, y) have the same y. That is, there is an atom of rank 3 lying in two
blocks which each contains an atom of rank 2. Therefore, we can make this
diagram by adding three atoms and five blocks to a diagram of type (a 2
3, b 2 5).

Using these ideas, we were able to compute (see Table II) the Greechie-
3-L diagrams with up to 36 atoms having the maximum and, in some cases,
near-maximum possible numbers of blocks.

The maximum-number of blocks shown in each row of the table is the
maximum possible. All the diagrams counted in the table turned out to be
connected, even though our programs did not assume connectivity.

Of some interest is that the Greechie-3-L diagrams of type (35, 35) and
(36, 36) contain only atoms of rank 3. There is a connection here to known
results in graph theory, as follows. Let D be a diagram in one of these two
classes. Define a graph G whose vertices are the atoms and blocks of D. A

Table II. Counts of Large Extremal Greechie-3-L Diagrams

a \b 25 26 27 28 29 30 31 32 33 34 35 36

30 3982 4
31 ? 81068 71 1
32 ? ? $313813 1643
33 ? ? ? ? $51643 66
34 ? ? ? ? ? $185733 2113 19
35 ? ? ? ? ? ? ? $70035 325 17 5
36 ? ? ? ? ? ? ? ? ? $7871 136 1
37 ? ? ? ? ? ? ? ? ? ? ? $1693

2394 McKay, Megill, and Pavičić

vertex which is an atom is adjacent in G to a vertex which is a block provided
the atom lies in the block and there are no other edges. (This is the same
incidence graph we defined earlier.) Then each vertex of the graph has valence
3, and moreover there are no cycles of length 9 or less (which is equivalent
to the requirement that D has no loops of length 4 or less). In graph-theoretic
language, G is a bipartite cubic (or trivalent) graph of girth at least 10. The
smallest such graphs are three with 70 vertices [23]. In two of the three
graphs, the functions of “atom” and “block” can be interchanged to produce
different Greechie diagrams, but in the third this interchange gives an isomor-
phic diagram. That is how the three graphs correspond to the five diagrams
we found.

Figure 2 shows the unique Greechie-3-L diagram of type (36, 36). Using
a slight adaptation of the program described in ref. 24, we have found that

Fig. 2. The unique Greechie-3-L diagram of type (36, 36).

Algorithms for Greechie Diagrams 2395

there are no Greechie-3-L diagrams of type (37, 37) with every atom having
rank 3, and exactly eight such diagrams of type (38, 38).

3. TESTING CONJECTURES WITH GREECHIE DIAGRAMS

In order to test equations conjectured to hold in various classes of
orthomodular lattices, it is useful to automate their checking against Greechie
diagrams. This will let us either falsify the conjecture or give us some
confidence that might hold in the class of interest before we attempt to prove
it. Also, finding a lattice in which one equation holds, but a second one fails
gives us a proof that the second is independent.

To this end we use a program called latticeg,5 which will check to
see if an equation or inference holds in each of the Greechie diagrams in a
list provided by the user.

The latticeg program internally converts a Greechie diagram to its
corresponding Hasse diagram and tests all possible assignments of nodes in
the Hasse diagram to the equation. In general Greechie diagrams correspond
to Boolean algebras “pasted” together.

The Hasse diagrams for the Boolean algebras corresponding to two-,
three-, and four-atom blocks are shown in Fig. 3. The Greechie diagram for
a given lattice may be drawn in several equivalent ways: Figure 4 shows
the same Greechie diagram drawn in two different ways, along with the
corresponding Hasse diagram. From the definitions we see that the ordering
of the atoms on a block does not matter, and we may also draw blocks using
arcs as well as straight lines as long as the blocks remain clearly
distinguishable.

Recall that a poset (partially ordered set) is a set with an associated
ordering relation that is reflexive (a # a), antisymmetric (a # b, b # a
imply a 5 b), and transitive (a # b, b # c imply a # c). An orthoposet is
a poset with lower and upper bounds 0 and 1 and an operation 8 satisfying
(i) if a # b, then b8 # a8; (ii) a9 5 a; and (iii) the infimum a ù a8 and the
supremum a ø a8 exist and are 0 and 1, respectively. A lattice is a poset in
which any two elements have an infimum and a supremum. An orthoposet
is orthomodular if a # b implies (i) the supremum a ø b8 exists and (ii)
a ø (a8 ù b) 5 b. A lattice is orthomodular if it is also an orthomodular

5 Available at ftp://ftp.shore.net/members/ndm/quantum-logic as the ANSI C
program latticeg.c. The program is simple to use and self-explanatory with the —help
option. A related program lattice.c handles general Hasse diagrams and has built-in those
lattices we have found most useful for preliminary testing of conjectures. These two programs,
along with beran.c for computing the canonical orthomodular form of any two-variable
expression, are the primary computational tools we have used for studying orthomodular and
Hilbert lattice equations.

2396 McKay, Megill, and Pavičić

Fig. 3. Greechie diagrams for Boolean lattices 22, 23, and 24 labeled with the atoms of their
corresponding Hasses diagrams shown above them. (24 was adapted from ref. 25, Fig. 18, p. 84).

poset. For example, Boolean algebras such as those of Fig. 3 are orthomodular
lattices. A s-orthomodular poset is an orthomodular poset in which every
countable subset of elements has a supremum. An atom of an orthoposet is
an element a Þ 0 such that b , a implies b 5 0.

In the literature, there are several different definitions of a Greechie
diagram. For example, Beran [25, p. 144] forbids two-atom blocks. Kalmbach
[17, p. 42] as well as Pták and Pulmannová [21, p. 32] include all diagrams
with two-atom blocks connected to other blocks as long as the resulting
pasting corresponds to an orthoposet. However, the case of two-atom blocks
connected to other blocks is somewhat complicated; for example, the defini-
tion of a loop in Definition 2.1 must be modified (e.g., ref. 17, p. 42) and

Fig. 4. Two different ways of drawing the same Greechie diagram, and its corresponding Hasse
diagram.

Algorithms for Greechie Diagrams 2397

no longer corresponds to the simple geometry of a drawing of the diagram.
The definition of a Greechie diagram also becomes more complicated; for
example a pentagon (or any n-gon with an odd number of sides) made out
of two-atom blocks is not a Greechie diagram (i.e., does not correspond to
any orthoposet).

The definition of Svozil and Tkadlec [20] that we adopt, Definition 2.2,
excludes two-atom blocks connected to other blocks. It turns out that all
orthomodular posets representable by Kalmbach’s definition can be repre-
sented with the diagrams allowed by Svozil and Tkadlec’s definition. But
the latter definition eliminates the special treatment of two-atom blocks
connected to other blocks and in particular simplifies any computer program
designed to process Greechie diagrams.

Svozil and Tkadlec’s definition further restricts Greechie diagrams to
those diagrams representing orthoposets that are orthomodular by forbidding
loops of order less than 4, unlike the definitions of Beran and Kalmbach.
The advantage appears to be mainly for convenience, as we obtain only those
Greechie diagrams that correspond to what are sometimes called “quantum
logics” (s-orthomodular posets). (We note that the term “quantum logic” is
also used to denote a propositional calculus based on orthomodular or weakly
orthomodular lattices [26].)

The definition allows for Greechie diagrams whose blocks are not con-
nected. In Fig. 5 we show the Greechie diagram for the Chinese lantern MO2
using unconnected two-atom blocks. This example also illustrates that even
when the blocks are unconnected, the properties of the resulting orthoposet
are not just a simple combination of the properties of their components (as
one might naively suppose) because we are adding disjoint sets of incompara-
ble nodes to the orthoposet. As is well known [17, p. 16], MO2 is not
distributive, unlike the Boolean blocks from which it is built.

The latticeg program takes, as its inputs, a Greechie diagram ASCII

representation (or more precisely a collection of them) and an equation (or
inference) to be tested. This ASCII representation is compatible with the
output of the programs described in Section 2. Currently latticeg is

Fig. 5. Greechie diagram for the lattice MO2 and its Hasse diagram. The dashed line indicates
that the unconnected blocks belong to the same Greechie diagram.

2398 McKay, Megill, and Pavičić

designed to work only with Greechie diagrams corresponding to lattices, i.e.,
that have no loops of order 4 or less, as these are the most interesting for
studying equations valid in all Hilbert lattices. It converts the Greechie dia-
gram to its corresponding Hasse diagram (internally stored as truth tables).
Finally, the program tests all possible assignments of nodes in the Hasse
diagram to the input equation under test.

The latticeg program also incorporates classical propositional met-
alogic and predicate calculus to allow the study of such characteristics as
atomicity and superposition.

As a simple example of the operation of the latticeg program, we
show how it verifies the passage and failure of the modular law [Eq. (11)
below] on the lattices of Figs. 7b and 7c. We create a file with a name such
as m.gre to represent the lattices, containing the lines

123, 345.
123, 345, 567.

and run the program by typing

latticeg 2i m.gre “(av(b∧(avc)))5((avb)∧(avc))”

The program responds with

The input file has 2 lattices.
Passed #1 (5/2/12)
FAILED #2 (7/3/16) at (av(f∧(avb)))5((avf)∧(avb))

The notation should be more or less apparent, but is described in detail by
the program’s help. The numbers “5/2/12” show the atom/block/node count,
and the failure shows the internal Hasse diagram’s nodal assignment to the
equation’s variables.

Let us consider an application of the program. Closed subspaces *a ,
*b of any infinite-dimensional Hilbert space * form a lattice in which the
operations are defined in the following way: a8 5 *'

a , a ù b 5 *a ù *b,
and a ø b 5 (*a 1 *b)''. In such a lattice its elements satisfy the following
condition, i.e., in any infinite-dimensional Hilbert space its closed subspaces
satisfy the following equation, which is called the orthoarguesian equation:

a ' b & c ' d & e ' f

⇒ (a ø b) ù (c ø d) ù (e ø f)

b ø (a ù (c ø (((a ø c) ù (b ø d))

ù (((a ø e) ù (b ø f)) ø ((c ø e) ù (d ø f)))))) (2)

where a ' b means a # b8.

Algorithms for Greechie Diagrams 2399

We wanted, first, to reduce the number of variables in this equation and,
second, to generalize the equation to n variables. In attacking the first problem
the program helped us quickly to eliminate dead ends: a failure of a conjec-
tured equation in a lattice in which Eq. (2) held meant that the latter equation
was weaker and vice versa. Thus we arrived at the following 4-variable
equation, which we call the 4OA law:

(a1 →1 a3) ù (a1 [
(4)

a2) # a2 →1 a3 (3)

where the operation [
(4)

is defined as follows:

a1 [
(4)

a2 5
def

(a1 [
(3)

a2) ø ((a1 [
(3)

a4) ù (a2 [
(3)

a4)) (4)

where

a1 [
(3)

a2 5
def

((a1 →1 a3) ù (a2 →1 a3)) ø ((a81 →1 a3) ù (a82 →1 a3)) (5)

where a →1 b 5
def

a8 ø (a ù b). We then proved “by hand” that Eqs. (2) and
(3) are equivalent [19]. We also proved that the following generalization
(which we call the nOA law) of Eq. (3)

(a1 →1 a3) ù (a1 [
(n)

a2) # a2 →1 a3 (6)

where

a1 [
(n)

a2 5
def

(a1 [
(n21)

a2) ø ((a1 [
(n21)

an) ù (a2 [
(n21)

an)), n $ 4 (7)

holds in any Hilbert lattice. To show that this generalization is a nontrivial
one, the program is all we need, we need not prove anything “by hand.” It
suffices to find a Greechie diagram in which the 4OA law holds and 5OA
law fails. An 800-MHz PC took a few days to find such a lattice (shown in
Fig. 6) [19], while to find it “by hand” is, due to the number of variables

Fig. 6. Greechie diagram for OML L46.

2400 McKay, Megill, and Pavičić

in the equation and nodes in the corresponding Hasse diagram, apparently
humanly impossible.

Considerable effort was put into making the program run fast, with
methods such as exiting an evaluation early when a hypothesis of an inference
fails. Truth tables for all built-in compound operations (such as the various
quantum implications and the quantum biconditional) are precomputed. The
innermost loop (which evaluates an assignment) was optimized for the fastest
runtime we could achieve. The number of assignments of lattice nodes to
equation variables that must be tested is nv, where n is the number of nodes
in the Hasse diagram and v is the number of variables in the equation. The
algorithm requires a time approximately proportional to knv, where k is the
length of the equation expressed in Polish notation. For a typical equation
(k 5 20) with no hypotheses, the algorithm currently evaluates around 1
million assignments per second on an 800-MHz PC. The speed is typically
faster when hypotheses are present, particularly if they have fewer variables
than the conclusion. If a lattice violates an equation, it often happens (with
luck) that the first failure will be found quickly, in which case further evalua-
tions do not have to be done.

The propositional metalogic feature of latticeg, when carefully used
in a series of hypotheses with a successively increasing number of variables,
can sometimes be exploited to achieve orders of magnitude speedup with
certain equations containing many variables. For example, we tested the
eight-variable Godowaki equation against a 42-node lattice in 16 hr, whereas
without the speedup it would have required around 105 hr. To illustrate how
this speedup works, we can add to the four variable Godowski equation [Eq.
(9) below] hypotheses as follows:

,(d →1 a # a →1 d) & , ((c →1 d) ù (d →1 a) # a →1 d)

⇒ (a →1 b) ù (b →1 c) ù (c →1 d) ù (d →1 a) # a →1 d (8)

Here , means metalogical NOT. The hypotheses are redundant in any ortholat-
tice, which is the case for the Greechie diagrams that are of interest to us.
We take advantage of the latticeg feature that exits the evaluation of a
lattice nodal assignment if a hypothesis fails. If an assignment to the first
hypothesis, with only two variables, fails (as it typically does for some
assignments) it means we do not have to scan the remaining variables.
Similarly, if the first hypothesis passes, but the second (with three variables)
fails, we can skip the evaluation of the four-variable conclusion.

We are currently exploring the exploitation of possible symmetries inher-
ent in the Greechie diagram to speed up the program further, but we have
not yet achieved any results in this direction. For certain special cases such
as the Godowski equations we are also exploring the use of a “dynamic

Algorithms for Greechie Diagrams 2401

programming” technique that may provide a runtime proportional to kn4

instead of knv, regardless of the number of variables.
For fastest runtime, it is desirable to screen equations with the smallest

Greechie diagrams first. For this purpose what matters is the size of the
Hasse diagram and not the Greechie diagram. In a chain of blocks each
having two atoms connected, a three-atom block adds four nodes to the Hasse
diagram, whereas a four-atom block adds 12 nodes. For example, the decagon
(10 blocks) has 42 nodes with three-atom blocks and 122 nodes with four-
atom blocks. With three-atom blocks, a six-variable equation—our practical
upper limit when there are no strong hypotheses—must be evaluated 426 5
5.5 billion times (a few hours of CPU time on an 800-MHz PC), but with
four-atom blocks it would take 1226 5 3.3 trillion evaluations, which is
currently impractical. So far most of our work has been done using diagrams
with every block having size 3.

Two other heuristics have helped us to falsify conjectures more quickly.
The first is to first scan Greechie diagrams with the highest block-to-atom
ratio (Table I). Such diagrams seem to have the most complex “structure”
with the most likelihood of violating a nonorthomodular equation (“nonor-
thomodular equation” here means an equation which turns the orthomodular
lattice variety into a smaller one when added to it). A drawback is that
at higher atom counts, virtually every such diagram violates almost any
nonorthomodular equation, making it very useful for identifying nonor-
thomodular properties, but less useful for proving independence results. For
example, for 35 and 36 atoms (the case we elaborated in Section 2) the
highest ratio is 1 (Table II) and in those diagrams all equations that we know
to be nonorthomodular fail. Hence, for example, 36 3 36 (36 atoms, 36
blocks) is a very useful tool for an initial scanning of equations we want to
check for “nonorthomodularity.”

The second heuristic is our empirical observation that Greechie diagrams
without feet often behave in the same way as the same diagram with feet
added. For example, the Peterson OML (Fig. 7a), with 32 nodes, is the
smallest lattice that violates Godowski’s four-variable strong state law [19],
which holds in any infinite-dimensional Hilbert space:

(a →1 b) ù (b →1 c) ù (c →1 d) ù (d →1 a) # a →1 d (9)

but not Godowski’s three-variable law (which also holds in infinite-dimen-
sional Hilbert spaces)

(a →1 b) ù (b →1 c) ù (c →1 a) # a →1 c (10)

The Peterson OML is useful as a test for an equation derived from the four-
variable law and conjectured to be equivalent to it: if it does not violate the
conjectured equation, we know the equation is weaker than the four-variable

2402 McKay, Megill, and Pavičić

Fig. 7. (a) Peterson OML, (b) Greechie diagram obeying modular law, (c) Greechie diagram
violating modular law.

law. Now, we observe empirically that we may add a foot (a three-atom block
connected at only one point) to any of its 15 atoms without changing this
behavior. We have also not seen a chain of feet or combination of feet that
changes this behavior when added to the diagram.

So, by scanning only lattices without feet, we can obtain a speedup of
20 times for 14-block lattices (Table I). Supporting this heuristic is the fact
that complex Greechie diagrams with feet are rarely found in the literature.
We obtained an additional support by scanning the 4OA law given by Eq.
(3) and Godowski’s three-variable equation (10) through several million
lattices with free feet versus those with feet stripped: we did not find a single
difference. To our knowledge there is only one special case for which feet
do make a difference. Figure 7b shows a lattice that obeys the modular law

a ø (b ù (a ø c)) 5 (a ø b) ù (a ø c) (11)

but violates it when a foot is added (Fig. 7c). This special case might well
be insignificant because, of all Greechie diagrams, only star-like ones (Fig.
7b, D3,2 and D4,4 from Fig. 1, etc.) are modular. As soon as we add any block
to any other atom apart from the central one in such a lattice, we make
it nonmodular.

Another heuristic for reducing the number of diagrams to be scanned
is suggested by the following observation, although we have not implemented
it. We can list the diagrams in such a way that (except for the first diagram)
each is formed by adding one block to a diagram earlier in the list. Whenever
the earlier diagram violates an equation, we have observed that it is very
likely that the new diagram will also violate the equation. By skipping the
new diagram in this case (presuming the probable violation), a speedup can
be obtained.

Algorithms for Greechie Diagrams 2403

However the above observation does not universally hold, i.e., sometimes
the new diagram will pass an equation violated by the earlier one. An example
is shown in Fig. 8. The diagram L38 violates the orthoarguesian law [Eq.
(2)]. But if we extend L38 by adding two blocks as shown in Fig. 8b, the
resulting diagram will pass not only this law [equivalent to 4OA given by
Eq. (3)], but also 5OA and 6OA [given by Eq. (6) for n 5 5 and n 5
6, respectively].

If our various speedup heuristics are used for practical reasons, the user
must be aware that a diagram scan may be incomplete. So if, in our example,
the extended L38 (by passing) could serve to prove a certain independence
result, it would be missed by the scan. Currently we have no data to indicate
how often such cases would be missed.

Any scan of diagrams to test an equation is, of course, a priori incomplete
since the number of diagrams is infinite. The various heuristics we have
described may cause some lattices in any finite list to be skipped. But if a
lattice with the desired properties is found more quickly, our goal is achieved.
Of course a scan can be continued for any diagrams omitted by the heuristics
if more completeness is desired.

4. CONCLUSIONS

Greechie diagrams (we used the version given by Definition 2.1, and
discussed the others in Section 3) are generators of examples and counterex-
amples of orthomodular nonmodular lattices. They are special cases of lattices
one obtains by using the recent generalization by Navara and Rogalewicz
[27, 28] of Dichtl’s pasting construction for orthomodular posets and lattices
[29]. Navara and Rogalewicz’s method exhaustively generates all finite ortho-
modular nonmodular lattices, but Greechie diagrams are apparently easier to
generate and certainly much easier to test lattice equations with. For these
reasons, Greechie diagrams have been used almost exclusively so far.

a b

Fig. 8. Greechie diagrams for (a) L38 and (b) L38 with two blocks added.

2404 McKay, Megill, and Pavičić

Since any infinite-dimensional complex Hilbert space is orthoisomorphic
to a Hilbert lattice which is orthomodular and nonmodular, Greechie diagrams
represent an indispensable tool for Hilbert space investigation. This has also
been prompted by recent developments in the field of quantum computing.
However, as we stressed in the Introduction, the existing (both manual and
automated) constructions of Greechie diagrams and their application to Hilbert
space properties (which resulted in many important results at the time) recently
reached the frontiers of human manageability. Therefore, in Section 2 we gave
an algorithm and a program for generating Greechie lattices with theoretically
unlimited numbers of atoms and blocks. The algorithm is of a completely
different kind from the only earlier algorithm and the program is at least 105

times faster. In Section 3 we then gave an algorithm and programs for
automated checking of lattice properties on Greechie diagrams.

Our algorithm for generating Greechie diagrams, given by Definition
2.4, works by defining a unique construction path for each isomorphism class
of diagrams. It enabled us to produce a self-contained program greechie
for automated generation of diagrams with a specified number or range of
atoms and/or blocks. Several properties and several special types of Greechie
diagram construction are discussed in that section, as are connections to some
equivalent results in graph theory.

The algorithm for automated checking of lattice properties described in
Section 3 works by converting a Greechie diagram to its corresponding Hasse
diagram and then converting the Hasse diagram to a truth table for supremum
and orthocomplementation. It enabled us to construct a self-contained program
latticeg which takes, as its inputs, Greechie diagrams in ASCII representa-
tion and an equation or inference or quantified expression to be tested. Many
programming speedups have been used to make the program run as fast as
possible. For example, all built-in compound operations are precomputed,
many C code tricks are used, etc. Also, additionally to speed up scanning,
we use many Greechie diagram heuristics that we found recently: a lattice
equation is most likely to fail in a lattice with the highest block-to-atom ratio,
scanning of an equation on a diagram with no feet and on the same diagram
with feet added makes no difference for most diagrams, etc. Several properties
and several special cases of Greechie lattices are given and discussed in
Section 3. In particular, it is explained how we proved that our recent n-
variable generalization of the orthoarguesian equation is a nontrivial one by
using nothing but latticeg applied to an output of greechie.

ACKNOWLEDGMENTS

One of us (M.P.) is grateful to his host Yanhua Shih and the Department
of Physics, Univ. of Maryland Baltimore County (UMBC), Baltimore for

Algorithms for Greechie Diagrams 2405

their kind hospitality and all necessary technical support. He would like to
acknowledge support of the Ministry of Science of Croatia through the Project
No. 082006, ofthe US State Department (USIA) through a Senior Fulbright
Grant, and of the University of Zagreb, Croatia through the Department of
Mathematics of the Faculty of Civil Engineering. Without these supports
together his stay in the USA would not have been possible. He would also
like to thank the computer centers of the Faculty of Civil Engineering and
the Faculty of Sciences of the University of Zagreb, Croatia and Y. Shih for
enabling him to use their software and hardware, partially “at a distance.”

REFERENCES

1. G. Birkhoff and J. von Neumann (1936), Ann. Math. 37, 823.
2. G. W. Mackey (1963), The Mathematical Foundations of Quantum Mechanics, Benjamin,

New York.
3. N. Zierler (1961), Pac. J. Math. 11, 1151.
4. C. Piron (1994), Helv. Phys. Acta 37, 439.
5. M. D. MacLaren (1964), Pac. J. Math. 14, 597.
6. I. Amemiya and H. Araki (1966/67), Publ. Research Inst. Math. Sci. Kyoto Univ. Series

A 2(3), 423.
7. M. J. Ma̧czyński (1972), Rep. Math. Phys. 3, 209.
8. H. A. Keller (1980), Math. Z. 172, 41.
9. M. P. Solèr (1995), Comm. Alg. 23, 219.

10. S. S. Holland, Jr. (1995), Bull. Am. Math. Soc. 32, 205.
11. A. Prestel (1995), Manuscripta Math. 86, 225.
12. R. Mayet (1998), Int. J. Theor. Phys. 37, 109.
13. A. Dvurečenskij (1996), Int. J. Theor. Phys. 35, 2093.
14. A. Dvurečenskij (1998), Int. J. Theor. Phys. 37, 23.
15. M. Pavičić and N. D. Megill (1998), Helv. Phys. Acta 71, 610.
16. R. J. Greechie (1978), Another nonstandard quantum logic (and how I found it), in

Mathematical Foundations of Quantum Theory, A. R. Marlow, eds., Academic Press, New
York, pp. 71–85.

17. G. Kalmbach (1983), Orthomodular Lattices, Academic Press, London.
18. B. D. McKay (1998), J. Algorithms 26, 306.
19. N. D. Megill and M. Pavičić (2000), Equations, states, and lattices of infinite-dimensional

Hilbert spaces, Int. J. Theor. Phys. 39, 2337.
20. K. Svozil and J. Tkadlec (1996), J. Math. Phys. 37, 5380.
21. P. Pták and S. Pulmannová (1991), Orthomodular Structures as Quantum Logics,

Kluwer, Dordrecht.
22. B. D. McKay (1990), nautyUser’s Guide (version 1.5), Department of Computer Science,

Australian National University Technical Report TR-CS-90-02.
23. M. O’Keefe and P. K. Wong (1980), J. Combinatorial Theory B 29, 91.
24. B. D. McKay, W. Myrvold, and J. Nadon (1998), Fast backtracking principles applied to

find new cages, in Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
New York, pp. 188–191.

2406 McKay, Megill, and Pavičić

25. L. Beran (1985), Orthomodular Lattices; Algebraic Approach, Reidel, Dordrecht.
26. M. Pavičić and N. D. Megill (1999), Helv. Phys. Acta 72, 189; http://xxx.lanl.gov/abs/

quant-ph/9906101.
27. V. Rogalewicz (1988), Comment. Math. Univ. Carolin. 29, 557.
28. M. Navara and V. Rogalewicz (1991), Math. Nachr. 154, 157.
29. M. Dichtl (1981), Algebra Universalis 18, 380.

