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Quantum implication algebras without complementation are formulated with the same
axioms for all five quantum implications. Previous formulations of orthoimplication,
orthomodular implication, and quasi-implication algebras are analyzed and put in per-
spective to each other and our results.
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1. INTRODUCTION

It is well-known that there are five operations of implication in an ortho-
modular lattice which all reduce to the classical implication in a distributive lat-
tice (Kalmbach, 1983). It was therefore believed that implication algebras for
these implications must all be different and such different algebras have explicitly
been defined in the literature (Abbott, 1976; Chagdaal, 2001; Clark, 1973;
Georgacarakos, 1980; Hardegree, 1981a; Piziak, 1974.)

In a previous paper (Paut and Megill, 1998), we have shown that one can
formulate quantum implication algebras with “negation” [(ortho)complementation]
with the same axioms for all five quantum implications. We arrived at such a
formulation of implication algebras by using a novel possibility, given in (Megill
and Pawit (2001) and Megill and Pasi€ (2002), of defining different quantum
operations by each other. Implicitly, the latter possibility provides us a direct way
of formulating quantum algebras without complementation and in this paper we
give it.

To do so, we were prompted by a recent formulation of an implication
algebra (Chajdat al, 2001). The authors formulate an algebra based on the
Dishkant implication previously considered by Kimble (1969), Abbott (1976),
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and Georgacarakos (1980); and cited by Hardegree (1981a) amitRand Megill
(1998). There are also other quantum implication algebras given by Finch (1970),
Clark (1973), Piziak (1974), Hardegree (1981a,b), Georgacarakos (198@jtPavi”
and Megill (1998), and others. In this paper we show how are all these algebras
interrelated.

2. PRELIMINARIES

Let us first repeat a definition of an orthomodular lattice. (Megill andé¥ayvi”
2002).

Definition 2.1. Anorthomodular lattice (OML) is an algebraic structikg U, * )
in which the following conditions are satisfied for aayb, c € L:

L1. a<alt & att<a

L2. a<aUb & b<aub

L3. a<b & b<a=a=b

L4. a<1

L5. a<b=bt<at

L6. a<b & b<c=acx<c

L7. a<c & b<c = auUb<c

8. a—ib=1 = a<hb i=1,...,5)

wherea <b & aub=b, 1% auat. Also

anb® @t ubt)t, o¥anat.
and the implications. —; b (i = 1,..., 5) are defined as follows
a1 b¥alu@nb) (Sasaki)
a—,bEbu@ Nbt) (Dishkant)
a—s3bE (@ nbu@lnb)u@n(@tub)  (Kalmbach)
a—sbE(@anbyu@nb)u(@- nb)nbt))  (nontollens)
a—ssh® (anb)u (@ Nnh)u@-Nnbt) (relevance)

The following theorem is well-known.

Theorem 2.1. The equation @ = a —; 0 is true in all orthomodular lattices
fori =1,...,5

Proof: The proof is straightforward and we omit it. O
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There are six Boolean-equivalent expressions for implication in an OML.
In addition to the fivequantumimplications above, which are distinguished by
satisfying L8 (also known as the Birkhoff-von Neumann requirement), we have
theclassicalimplication that does not satisfy L8 in every OML.:

a—sob®alub (classical)

3. IMPLICATION ALGEBRAS BASED ON THE
DISHKANT IMPLICATION

Two kinds of implicational algebras based on the Dishkant implication
have been proposed in the literatuogthoimplication algebragAbbott, 1976)
andorthomodular implication algebra@Chajdaet al., 2001). In this section we
summarize the two systems and some of their principal results, which are proved in
their respective articles. As much as is practical we attempt to use the terminology
of the authors of those articles.

Definition 3.1. (Abbott, 1978. An orthoimplication algebra (OIA) is an algeb-
raic structurel A, -) with a single binary operation that satisfies:

Oll (abja=a
OI2 (ab)b = (ba)a
OI3 a((ba)c) = ac

Definition 3.2. (Chajda et al., 200l An orthomodular implication algebra
(OMIA) is an algebraic structuréA, -, 1) with binary operation and constant
1 that satisfy:

Ol aa=1
02 a(ba) =1
03 (abja=a

04 (ab)b = (ba)a
05 (((ab)b)c)(ac) =1
06 (((((((((@b)b)c)c)c)a)a)c)a)a = (((ab)b)c)c

We note that the theoreaa = bbholds in both systems, and it can be proved
under OMIA without invoking axiom O1. Thus we may treat the constant 1 of
OMIA as a defined term £%faa (making axiom O1 redundant), or we may
extend OIA with a constant 1 (and add an axia@= 1 for it). For ease of
comparing the two systems, we choose the first approach and henceforth shall
consider 1 to be a defined term in OMIA.

Both OIA and OMIA aresoundfor the Dishkant implication in the sense that
if the binary operation is replaced throughout by, each axiom becomes an
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equation that holds in all OMLs. Thus each of these systems corresponds to a (not
necessarily complete) Dishkant implicational fragment of OML theory.

A join semilatticds a partially-ordered set thatis bounded above and in which
every pair of elements has a least upper bound. Both OIA and OMIA induce join
semilattices.A, U, 1) under the definitiona U b =% (ab)b and 1=1" aa, with
the partial order defined by < b <% aub=b < ab=1.

The algebras OIA and OMIA also induce, respectively, more specialized as-
sociated structures calls@miorthomodular lattices and orthomodular join semi-
lattices These are defined as follows.

Definition 3.3. (Chajdaetal, 2001). An orthomodular join semilattice (OJS) is
an algebraic structure4, U, 1, (i;x e A)) where(A4, U, 1) is a join semilattice
and(i; x € A)isasequence of unary operations, one for each mexdfed, such

that the structuréFy, U, ;) is an orthomodular lattice, whefg =% {y | x < y}
the principal filter of A generated bx.

Definition 3.4. (Abbott, 1976). A semiorthomodular lattice (SOL) is an OJS
with the further requirement

C a<b<c = ¢ =cyUb.
Theorem 3.1. (Abbott, 1976)(i) Every OlA induces an SOL under the definition

ap =%"ab forae Fy. (i) Every SOL induces an OIA under the definitionaff'
@ub).

Theorem 3.2. (Chajdaet al., 2001) (i) Every OMIA induces an OJS under
the definition g =9"ab for ae Fy. (i) Every OJS induces an OMIA under the
definition ab="" (a U b)}:.

4. RELATIONSHIP BETWEEN ALGEBRAS OIA AND OMIA

In this section we show that the axioms of OMIA can be derived from the
axioms of OIA but not vice-versa.

Theorem 4.1. Every OIA is an OMIA.

Proof: To show this, we derive the axioms of OMIA from the axioms of OIA.

O1is Lemma 1(i) of Abbott (1976).
02 is Lemma 1(v) of Abbott (1976).
O3 is the same as OI1.
04 is the same as OI2.
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O5 can be expressed as\{ b)c < ac. From Th. 2 of Abbott (1976)a <aUb.
Therefore from Th. 1 of Abbott (1976)a(U b)c < ac.

We can now assume that Lemma 4 of Chatlal. (2001), which makes use
of O1-05 only, holds in OIA.
The associative laa U (b U ¢) = (a U b) U cis derived as follows. Relations
OL1-0L5 of Megill and Pawit (2002) correspond to (v)—(viii) and (x) of Lemma
4 of Chajdeet al. (2001). In Megill and Pavic (2002) the associative law L2a is
proved using OL1-OL5 only, so it also holds in OIA. The associative law allows
us to omit parentheses and (with the help of OI2) disregard the order of joins in
what follows.
06 can be expressed as §((buUc)c)Ua)c) Ua=auUbuUc. The OM4
part of Th. 4 of Abbott (1976) contains a proof of
X<y & y=z = yuU(yu()x) =z
or using OI2 and rewriting,
X<y & y=z = ((zYuUyx)uy=z
We substitutee for x, au c for y, anda U b U c for z:
c<auc & auc<aUbuc =
((ttubuc)c)Uauc)c)Uauc=auUbuc
The hypotheses are satisfied by Th. 2 of Abbott (1976), so we have
((ttlubuc)c)Uauc)c)Uauc=aUbuc

From (v), (viii), and (x) of Lemma 4 of Chajdet al. (2001) we have < b =
aUb = h. By Lemma 1(v) of Abbott (1976); < xcso (xc) U c = xc. Applying
this twice, the above becomes

(((ttubuc))ua)c)Ua=auUbuc
which is O6. O

On the other hand, it turns out that not every OMIA is an OIA.
Theorem 4.2. There exist OMIAs that are not OlAs.

Proof: Table | specifies an OMIA, i.e., any assignment to the variables in the
OMIA axioms will result in an equality using the operation values in this table.
On the other hand, this OMIA is not an OIA. To see this, chamse5, b = 2,
andc = 0 in Axiom OI3. Thema((ba)c) = 5((2- 5)0) = 5(3-0) = 5-2 = 10 but
ac=5-0=4. O
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Table I. Example of an Orthomodular Implication Algebra (OMIA), With
Operationab, That is Not an Orthoimplication Algebra (OIA)

b
a o 1 2 3 4 5 6 7 8 9 10 11
0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9 10 1
2 3 1 1 3 1 3 1 3 1 3 1 3
3 2 1 2 1 4 8 6 10 8 4 10 6
4 5 1 6 3 1 5 6 7 8 3 10 11
5 4 1 10 1 4 1 6 10 1 4 10 6
6 7 1 4 3 4 5 1 7 8 9 10 3
7 6 1 8 1 4 8 6 1 8 4 1 6
8 9 1 10 3 4 3 6 7 1 9 10 11
9 8 1 6 1 1 8 6 10 8 1 10 6
10 11 1 8 3 4 5 6 3 8 9 1 1
11 10 1 4 1 4 8 1 10 8 4 10 1

Note.The bold entries specify the partial functicﬂqisfor the OJS of Fig. 1.

Theorem 4.2 tells us that the axioms of OIA cannot be derived from the axioms
of OMIA. In particular, this proves that the axioms of OMIA are incomplete. In
other words there exist equational theorems of OML, expressible purely in terms
of the Dishkant implication, that cannot be proved from the axioms of OMIA.
Axiom OI3 of OIA is one such example. Another example that does not hold
in all OMIAs is the “implication version of the orthomodular law” of Abbott
(1976):

a <b<c implies c = (ca)b. ()

The OMIA of Table | violates this law as can be seen by chooairg0, b = 2,
c=4.

Similarly, not all OJSs are SOLs. The join semilattice of Fig. 1 along with the
ag operations specified by Table | (see table footnote) define an OJS. However,
this OJS violates condition C of Definition 3.4, as can be seen by choasing,

b = 2, c = 4. [Although this example also happens to be a lattice, we remind the
reader that in general join semilattices are not bounded below.]

Fig. 1. Join semilattice induced by the OMIA of Table I. When com-
bined with the partial functiona; of Table I (see table footnote), it
provides an example of an orthomodular join semilattice (OJS) that
is not a semiorthomodular lattice (SOL).
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In conclusion, we have shown that the axioms of OMIA are not complete,
since in particular they are strictly weaker than the axioms of OIA. On the other
hand, the completeness of the axioms for OIA is apparently not known (Hardegree,
1981a). Future work towards seeking a complete Dishkant implicational fragment
of OML theory might prove more fruitful by investigating OIA, rather than OMIA,
as a starting point.

5. IMPLICATION ALGEBRA BASED ON THE SASAKI IMPLICATION

Apparently the only other pure implicational fragment of OML theory that has
been studied are “quasi-implicational algebras” based on the Sasaki implication
—1 (Hardegree, 1981a,b).

Definition 5.1. (Hardegree, 198la). A quasi-implication algebra (QSIA) is an
algebraic structuréA, o) with a single binary operation that satisfies:

QSl (aoh)oca=a
QS2 (aob)o(aoc)=(boa)o(boc)
QS3 ((aob)o(boa))ca=((boa)o(aoh)ob

QSIA is sound for the Sasaki implication in the sense that if the binary
operationo is replaced throughout by, each axiom becomes an equation that
holds in all OMLs.

An important result is that QSIA is alsmmpletdn the sense that whenis
interpreted as—, its theorems are precisely those equational theorems of OML
theory where each side of an equation is expressible purely in terms of polynomials
built from — 1 (Hardegree, 1981b).

A simple observation also shows that every QSIA induces an OIA (and an
OMIA by Theorem 4.1).

Theorem5.1. Every QSIA induces an OIA under the definition-a®§’ (b o a) o
(aoh).

Proof: InanyOML,a -, b= (b —;a) —1(a —1b).Since OlAis sound for

—, in OML, we can replace, for - throughout the axioms of OIA, then express
them in terms of- per this equation, to obtain equations built fresn that hold

in all OMLs. By the completeness of QSIA, each of these equations is provable
under QSIA after substituting for — . O

The converse, that every OIA induces a QSIA, is not obtainable with a sim-
ple substitutional definition since it is impossible to expressg in terms of a
polynomial built from—,. Thus there is a sense in which QSIA is “richer” than
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OIA. Whether there exists a more indirect isomorphism between OIA and QSIA
is unknown.

6. THE RELATIONSHIPS AMONG THE VARIOUS IMPLICATIONS

Fromthe observation in the previous section thatcan be expressedinterms
of —1, we were led to investigate the other ways of expressing one implication in
terms of another.

With the assistance of the computer programsan . c andbercomb. c (0b-
tainable from the authors), we exhausted the possibilities and obtained the results in
Table Il, where we show shortest expressions for each implication that can express
other ones. For completeness we also include the classical implicatjon

Any OML polynomial with two generators (variables) corresponds to one of
96 possible expressions (Beran expressions). For brevity, we label Beran expres-
sions with the numbers assigned in Beran (1985, p. 82). The Beran numbers for
implicationsa —; b are 94, 78, 46, 30, 62, and 14 foe= 0, ..., 5 respectively.

We refer the reader to Beran (1985, p. 82) for the expressions corresponding to
any Beran numbers we do not show explicitly.

Polynomials built from the-, operation generate only six of the 96 possible
expressionsa (with Beran number 22) —, a (29),b (39),a —, b (46),aUb
(92), and 1 (96).

The other quantum implications 1, — 3, —4, and— 5 generate respectively
28,18, 22, and 36 Beran expressions. In Table 11l we show their Beran numbers. In
particular, we note from this table that the intersection of the sets of Beran numbers
for all guantum implications is the same as the set of Beran numbers fpand
the union of them is the same as the set of Beran numbers for

Table Il. The Shortest Expressions of the Implications in Terms of Others

a—ib a —i b expressed in terms of other implications
a—ob= (b—18)—»18)—>1ba—z(@a—zh),((@—>ab)—>4b)—>4b,
(b »s5a) »s(@a—>sh),a—s5((b—>s5a) —>s5h)
a—1 b= a—>5(a—>5b)
a—sb= (b—1a)—>1(@—>1b),(b—3a) —3(@—>3Dh),((@a—>3b)—>3a) —>3Db,

a—4(@—>ab),((@—>sb)—>5b)—>5b,((b—>5a) —s5a)—>sbh,
(@—>sb)—sa)—sb

a—3b= @—1(0—18)—>1(b—1a)—1(a—1b)),

(@—s({—s5a) —>s5(@a—>sbh)
a—sb= (b—18) —»18)—1(@—>1b), (b >5a) >5b) >5b) >5(@a—>sh)
a—sh= [none other thaa — 5 b itself]

aWhen there are more than one shortest, all are shown.
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Table Ill. The Beran Numbers for All Possible Polynomials With Two Generators Built From
Implications—

—j Beran numbers for>; polynomials with two generators

—0 222839449394 96

—1 222328293032383944 4546 485460616264 7176777880 788086879293
94 96

—2 2229394692 96

—3 222328293032 38394445 46 48 86 87 92 93 94 96

—4 222829323944 46 4855 60 62 64 70 76 77 80 86 87 92 93 94 96

—5 6712131416 22232829 30323839444546485455606162647071767778

80 86 87 92 93 94 96

Thus—5 is the “richest” and—, the “poorest” generator. In particulas; 5
can generate all other implications, and all quantum implications can geregate

7. QUANTUM IMPLICATION ALGEBRA

In Pavicic and Megill (1998), we showed that a single, structurally identical
expression, that holds when its operation is any one of quantum implications, can
represent the join operation:

aub=(@-—ib)—i(((@a—ib)—i(b—ia)—ia (2

holds in any OML fori = 1,..., 5. This observation allowed us to construct, by
adding a constant 0, an OML-equivalent algebra with an (unspecified) quantum
implication as its only binary operation. Prompted by this result, we investigated the
possibility of a purely implicational system having a single quantum implication
as its sole operation.

In the previous section we observed that-the implication is unique in that
it can be generated by any one of the other quantum implications. It turns out that
there exists aingleexpression with an operation which, if replaced throughout by
any one of the quantum implications;,i = 1,..., 5, will evaluate to—».

Theorem 7.1. The equation
a—2b=(b—i(b-—ia)—i{((@a—ib)—>ia)—ib) ©))
holds in any OML, for all i€ {1, 2, 3, 4, 5.

Proof: The verification is straightforward. O

This allows us to define an implicational algebra that works when the binary
operation is interpreted as any quantum implication.
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Definition 7.1. A quantum implication algebra (QIA) is an algebraic structure
(A, o) with a single binary operation that satisfies:

Q1 (axb)yxa=a
Q2 (axb)xb=(bxa)xa
Q3 ax((bxa)xc)=axc

wherea b & (be (bea)) e ((@eb)ea)eb)

Theorem 7.2. QIA is sound for any quantum implicatior;,i =1,...,5in
the sense that if the binary operatieris replaced throughout by, each axiom
becomes an equation that holds in all OMLs.

Proof: The axioms of QIA are the same as the axioms of OIA witlubstituted
for -. Soundness follows from Theorem 7.1 and the soundness of OIA. O

Theorem 7.3. EveryQIA induces arOIA under the definition ab=2%"a « b.

Proof: The axioms of QIA become the axioms of OIA wheis substituted
for x. O

As a corollary, every QIA induces a semiorthomodular lattice (SOL), follow-
ing the proof of Abbott (1976). Conversely, every SOL induces a QIA by Theorem
7.5(ii) below.

Lemma 7.4. The following equation holds in eve@®lA (and everyOMIA):
ab = (b(ba)) (((ab)a)b) 4)

Proof: We show this equation holds in OMIA, and that it holds in OIA follows
from Theorem 4.1. (ip(ba) = ((ba)b)(ba) = ba using O3 twice. (ii) (Ab)a)b =
abusing O3. (iii)ab < (ba)(ab) using O2. (iv)a < ba using 02, sol§a)(ab) <
a(ab) = ab by Lemma 4(ix) of Chajdat al. (2001) and O3. (v) From (iii) and
(iv), we haveab = (ba)(ab) by Lemma 4(vi) of Chajdat al.(2001). Substituting
(i) and (ii) into this we obtain the result. O

Theorem 7.5. (i) Every OIA induces a QIA under the definitiors & =% ab.
(i) Every SOL induces a QIA under the definitios & =%' (a U b);.

Proof: (i) We convert each axiom of OIA by simultaneously expanding each
occurrence of into the right-hand side of Eq. (4). Substitutiador - throughout,
we obtain the axioms of QIA. (ii) Immediate from (i) and Theorem 3.1 (ii). O
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The system QIA that we have givenis not complete. For example, the equation
ae(aea)=aseais notatheorem of QIA (by virtue of the structure of Axioms
Q1-Q3) even though it is sound for all quantum implications. QIA was devised
for our purposes to be sufficient to induce an OIA, and nothing more. What such
a complete axiomatization would look like, and even whether it can be finitely
axiomatized, remain open problems.

8. UNIFIED QUANTUM IMPLICATION ALGEBRAS

In the previous section we have shown how one can construct an impli-
cation algebra with the same axioms for all five possible implications. If we
are interested in specific implications, we can construct more specialized alge-
bras with somewhat shorter axioms if we—in Definition 7.1—chase =%"
aeb (for —3), or (bea)e(aeb) (for -1 and —3), or (@eb)ea)eb (for
—3 and —s5), or ae (aeb) (for —4). Another possible choice ia b =%
(aub) eb whereau b is defined as in Definition 8.1. None of these algebras
is proven to be complete (and therefore “maximal”) in the sense of QSIA (see
Section 5).

On the other hand, one can take a more direct approach of finding implication
algebras which would comply with the following objectives:

1. proving that the algebras are partially ordered sets bounded from above;

2. proving that the algebras induce join semilattices in which every principal
order filter generates an orthomodular lattice;

3. proving that the algebras, when they contain a smallest element 0, can
induce orthomodular lattices.

While QIA satisfies these objectives, its axioms are very long. Systems de-
signed specifically with these objectives as their goal can have shorter axioms that
are easier to work with. Here we give examples of such systems.

Definition 8.1. A unified quantum implication algebras UQIAI are algebraic
structures.A4, o) with single binary operations that satisty:

UQl aea=beb

UQ2 ae(aub)=1

UQ3 be(aub)=1

UQ4 ael=1

UQb aeb=1 & bea=1 & a=bhb

UQ6 aeb=1 & bec=1 = aec=1
UQ7 aec=1 & bec=1 = (aub)ec=1
UQ8 bea=1 = au(aeb)=1

UQ9 bea=1 = ((aeb)eb)ea=1
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UQl0 bea=1 = ae((aeb)eb)=1
UQllbea=1 & cea=1 & ceb=1 = (aec)e(bec)=1
UQl2cea=1 & ceb=1 & aeb=1 & au(bec)=1

= bea=1

where 1%’ a ¢ aanda u bmeans eithei e b) e b (for either—, or —5), or (@ e
b) e (b e a)) e a (for either—, or —3), or (a e (a e b)) e b (for —4), or ((((@ e b)
e(bea))ea)eb)eb(For—,i =1,...,5).

The above nonunique ways of expressing b is a consequence of the fact
that in an OML one cannot expreasl b in unique ways by using nothing but
implications. (By “unique” we mean that an expression, in an OML, evaluates to
a U b for only one of the five implications and no others.) In an OML one can use
implicationsandcomplements in, e.g., the following way:

1. aUb=b* —; (bt -1 at)t -1 (b —1at)h)*
2. aUb=Dbt -, (bt -, (bt »zal))t —>a
3. aUb=>bt >3 (bt —3a)

4. aUb=at -, (bt —4a)
5.aUb=(a—s5b") »5 (bt —5a)

Here, e.g., no one of>;,i =1,...,5 except—3 would satisfy the 3rd line.
However, one can again express implications by each other, so that, in the end,
ambiguous expressions are equally proper as these ones.

Like QIA, algebras UQIA(i) are fragments of “maximal” algebras for their re-
spective implications or sets of implications. However, they are sufficiently strong
to accomplish our objectives above. Among other possibilities, they could be use-
ful starting points in a search for maximal algebras (which are currently open
problems for all cases except the; of QSIA).

Theorem 8.1. Every unified quantum implication algebldQIA = (A, o) de-
termines an associated partially ordered set with an upper bound under:

a<b®ap=1 (5)

Proof: We have to prove
Dacx<a
(2)a<b & b<a = a=b
()a<b & b<c = a=<c
@a<1

(1) follows from the definition of 1 and Eq. (5).
(2) follows fromUQ5 and Eg. (5).
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(3) follows fromUQ6 and Eq. (5).
(4) follows fromUQ4 and Eq. (5). O

Theorem 8.2. (A, <,U, 1) in which one defines: ab%au b, is a join
semilattice.

Proof: We have to prove tha U b = supa, b}, i.e., that the following condi-
tions are satisfied:

Da<aub

(2)b<aub

(3)a<c & b=<c = aub=xc

(2) follows fromUQ2
(2) follows fromUQ3
(3) follows fromUQ7 O

Theorem 8.3. If m € A is a fixed element and one defines:

a: &am, (6)
and
anb & (am)u®m)m  for a b e Im @)

then (Jm, U, N, m, 1,a1), whereJm = {a € A | m < a} is the principal order
filter generated by m, is an orthomodular lattice.

Proof: Proof We have to prove that the following conditions for the abowve(
a) are satisfied:

Lauvar=1 (8)
(2) aym =2 ©9)
(3)a<b = bl <al (10)

(1) follows fromUQ8 sincema = 1 holds for anya.

(2) follows fromUQ9, UQ10 andUQ5.

(3) follows fromUQ11 by takingc = m sincema= 1 andmb= 1 hold for any
a andb.

Then we have to prove thatn b = inf{a, b}, i.e., that the following condi-
tions are satisfied:

)anb<a
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(2)anb<hb
(B)a<b & a<c = ax<bhnec

(1) follows fromUQ2 and Eq. (10).
(2) follows fromUQ3 and Eq. (10).
(3) follows fromUQ7 and Egs. (10) and (9).

In the end we have to prove the orthomodularity. By taking m, we get
ma=1andmb=1, i.e.,m < aandm < b for anya andb so thatUQ12 gives
us the orthomodularity:

a<b & aUbL=1 = b<a O

Corollary 8.4. A UQIA with a smallest elemert, i.e. satisfying the axiom

Oe a =1, induces arOML under the definitions & b gef aubandd gef ae0.A

QIA with a smallest elemertt induces anOML under the definitions a/ b def
(axb)xband d%ax0.

Proof: Straightforward. O

9. CONCLUSION

We have investigated implication algebras for orthomodular lattices. We have
first compared the systems previously given by Abbott (1976) (OIA, orthoimpli-
cation algebra), Chajdet al. (2001) (OMIA, orthomodular implication algebra),
and Hardegree (1981a,b) (QSIA, quasi-implication algebra).

In Section 4, we proved that the axioms of OMIA can be derived from the
axioms of OIA but not vice-versa. In other words, we have shown that the axioms
of OMIA are not complete. In particular, the implication version of the orthomod-
ular law does not hold in OMIA contrary to its namerthomodularimplication
algebra). Whether OIA is complete in the sense of Hardegree’'s QSIA remains an
open problem. For, QSIAs theorems are precisely those equational theorems of
the OML theory where each side of an equation is expressible purely in terms
of polynomials built from the corresponding OML (Sasaki) implication. If one
wanted to attack the completeness problem along the way taken by Hardegree,
we conjecture that the relevance implicatior=5) would be the most promising
with respect to Table Il. Also, we would like to point out that the first axiom of
both OIA and QSIA is the OML propertg U b = b U a expressed by means of
implications. Their second axiom is the OML propeaty= a, where the lefa is
given as its shortest implication presentation involving two variables (Megill and
Paviic, 2002).
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In Section 6, we investigate the other ways of expressing one implication in
terms of another and in Section 7, we combined the obtained results to show how
one can formulate quantum implication algebras, QIAs which keep the same form
for all five possible implications from OML thus capturing an essential properties
that are common to all quantum implications.

In Section 8, we formulated unified quantum implication algebras (UQIAS)
for allimplications. They are so weak that they do not yield a single axiom of either
OIA or QSIA. still, their join semilattices with 0 induce orthomodular lattices.

An open problem is devising a maximal extensions of QIA and UQIA that are
complete, in the sense that its theorems are precisely those equational theorems of
OML theory that hold regardless of which quantum implicatien,i = 1,...,5
we substitute fos. A complete axiomatization of QIA and UQIA would be interest-
ing because it would provide a general way to explore properties that are common
to all quantum implications. It would also provide a way around philosophical
debates about which qguantum implication is the “proper” or “true” implication for
guantum logic, since any of its results immediately apply to whichever one we pre-
fer. And, finally, it might reduce concerns about being led astray by “toy” systems
(Urquhart, 1983) since we would not be focusing on the specialized properties of
any one implication in particular.
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