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We show that one can formulate an algebra with lattice ordering so as to contain one
guantum and five classical operations as opposed to the standard formulation of the
Hilbert space subspace algebra. The standard orthomodular lattice is embeddable into
the algebra. To obtain this result we devised algorithms and computer programs for
obtaining expressions of all quantum and classical operations within an orthomod-
ular lattice in terms of each other, many of which are presented in the paper. For
guantum disjunction and conjunction we prove their associativity in an orthomodu-
lar lattice for any triple in which one of the elements commutes with the other two
and their distributivity for any triple in which a particular element commutes with
the other two. We also prove that the distributivity of symmetric identity holds in
Hilbert space, although whether or not it holds in all orthomodular lattices remains
an open problem, as it does not fail in any of over 50 million Greechie diagrams we
tested.

1. INTRODUCTION

Closed subspaces of Hilbert space form an algebra called a Hilbert lattice.
A Hilbert lattice is a kind of orthomodular lattice, which we, in the next section,
introduce starting with an ortholattice, which is a still simpler structure. In any
Hilbert lattice the operatiomneet a N b, corresponds to set intersectiéty M
‘Hy, of subspaces${, and H, of Hilbert spaceH; the ordering relatiorma < b
corresponds td{, C Hp; the operatiorjoin, a U b, corresponds to the smallest
closed subspace 6f containingH, U Hp; anda’ corresponds td4,, the set
of vectors orthogonal to all vectors H,. Within Hilbert space there is also an
operation that has no parallel in the Hilbert lattice: the sum of two subspaces
‘Ha + Hp, Which is defined as the set of sums of vectors fraippand Hy,. We
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also haveH, + H, = H. One can define all the lattice operations on Hilbert
space itself, following the above definitiorig{ N Hy = Ha M Hy, etc.). Thus we
haveHa, U Hp = Ha + Hp = (Ha + Ho)**+ = (Hy N H,)', (Isham, 1995, p. 175)
whereH, is a closure ofH., and thereforé{, + Hy, C Ha U Hy. WhenH is finite
dimensional or when the closed subspdggandHy, are orthogonal to each other,
thenH, + Hp = Ha U Hp (Halmos, 1995, pp. 21-29; Kalmbach, 1983, pp. 66—
67; Mittelstaedt, 1978, pp. 8-16).

In the past, scientists, starting with Birkhoff and von Neumann, wanted to
find parallels with a possible logic lying underneath the orthomodular lattice
and operations defined on such a logic. A possible candidate for the logic was
formulated (Chiara, 1986; Dishkant, 1974; Kalmbach, 1974; Kalmbach, 1983;
Mittelstaedt, 1978). However, it has recently been shown @faand Megill,
1998a) that the logic can have at least two models: Hilbert space and another
model that is not orthomodular—so there isproperquantum logic. One can
still consider operations within the model itself: the orthomodular lattice. The
problem of finding quantum operations that would reduce to classical ones for
compatible observables has been attacked many times in the past. In particular,
it has been shown that one can start with uniglassicalconjunction, disjunc-
tion, and implication and using them define fig@antumconjunctions, disjunc-
tions, and implications [which collapse into former classical ones for commuting
(compatible, commensurable) observables]. In this paper we show that one can
start with unique quantum operations and arrive at five classical ones. Thus it
turns out that the usual way of defining orthomodular lattice by means of unique
classical conjunction and disjunction is a consequence of a direct translation of
meet and join from Hilbert space. We also express all possible quantum and
classical operations by each other, even a chosen classical or quantum one by
means of all other quantum and classical ones in single equations. We do so with
the help of a computer program that reduces two-variable expressions to each
other.

In section 5 we prove that in an orthomodular lattice the associativity of both
guantum disjunctions and conjunctions holds for any triple of lattice elements as
soon as one of them commutes with the other two.

In the the end, we partially solve an open problem from Megill anddfavi”
(2000) by proving that the “distributive law” for a quantum identity holds in the
Godowski lattices and therefore in Hilbert space. It remains an open problem
whether or not the law holds in all orthomodular lattices.

5Consequently, the papers that are now appearing and claim—as, e.g., Dalla Chiara and Giuntini
(2001)—that quantum logic, defined as a genuine logical system, characterizes orthomodular lattices
are simply incorrect. All previous such papers and books are outdated by the result.
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2. QUANTUM AND CLASSICAL LATTICE OPERATIONS
One usually defines an ortholattice in the following way.

Definition 2.1. An ortholattice (OL) is an algebrgo,’ , U) such that the follow-
ing conditions are satisfied for amyb, ¢ € Lo:

L1 a=a" (2.1)
L2 a<aUb & b<aub & b<aud (2.2)
L3 a<b & b<a = a=b a=b = a<b (2.3)

L4 a<b = b <a (2.4)
L5 a<b & b<c = a=<c (2.5)
L6 a<c & b=<c = aUb=<c (2.6)
where
a<b®aub=b 1%¥ava, 0%ana. (2.7)

Then we can define six operations of implication:

Definition2.2. asob®aUba—;b®au@nb),a—=,b%¥y -, a,
a—s:bE(@nbu@nb)u@n @Ub),a—ssbZa 51, a5
b &' (anb)u (@ nb))u (@ ub’), where— is calledclassical implicatiorand
—, 1 =1,..., 5 quantum implication.

Quantumimplications reduce to the classical one wherseardb commute.

Definition 2.3. We say thata and b commute and writeaCb when any and
therefore all of the following equations hold: (Holland, 1995; Mittelstaedt, 1978;
Zeman,1979)dNnb)u(anb)u@ nNnbyu@nNb)=1,an@uUb) <b,a=
(@anbyu@nb).

We can also define:

Definition 2.4.

aub®a &b anb®@— by, i=o0,..,5 (2.8)

a=b% @ b)n(-—=oa), i =0,...,5, (2.9)

whereaUgb =aUb,angb=anbanda =g b are classical disjunction, con-
junction, and identity, respectively, whi¢eU; b, an; b,anda = b,i =1,...,5,
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are quantum ones, respectively. The latter obviously reduce to the formeravhen
andb commute.

For the above operations the following theorems hold. In them, we can also
pick any one of the conditions in Theorem 2.5 as our definition of an orthomod-
ular lattice and in Theorem 2.6 as our definition of a distributive lattice (Boolean
algebra).

Theorem 2.5. An ortholattice in which any one of the following conditions holds
is an orthomodaular lattice and vice ver@@avicic, 1987, 1989, 1993, 1998; Paid”
and Megill, 1998b)

a—ib=1 <« a<b, i=1,...,5 (210)
aUib=1 & al1b, i=1,...,5, (211)
anib=0 <« alb, i=1,...,5 (212)
a=sib=1 & a=hb, i=1,...,5 (213)
alb & aub=1 = alb, (2.14)

wherea Lb %'a <b

Theorem 2.6. An ortholattice in which any one of the following conditions holds
is a distributive lattice and vice verg®avcic, 1987, 1989, 1993, 1998; Paid”
and Megill, 1998b)

a—>ob=1 & acx<hb, (2.15)
aUb=aUyb=1 &« a Llb, (2.16)
anb=angb=0 <« adlb, (2.17)

a=gb=1 < a=h (2.18)

Actually, in any orthomodular lattice all expressions with two variables are
reducible to 1 of the 96 Beran canonical forms. (Beran, 1985, Table 1, p. 82) The
reader can easily reduce any two-variable expression with the help of our program
beran, which we describe in section 8. All 96 forms can be also viewed inside
the source code @feran.c. In general we can divide them into téssicaland
80 quantumones. Classical expressions are, classical implication and its nega-
tion (disjunction and conjunction) — Beran expressions 2-5 and 92-95; classical
identity and its negation — expressions 9 and 88; variafldsand their nega-
tions — expressions 22, 39, 58, and 75; and “0” and “1” — expressions 1 and 96,
respectively. Quantum expressions are all the other expressions, that reduce to
classical ones whenever the variables commute: quantum implications and their
negations (quantum disjunctions and conjunctions) — 12-15, 18-21, 28-31, 34-37,



Orthomodular Lattices and a Quantum Algebra 1391

44-47, 50-53, 60-63, 66-69, 76—79, and 82—85; quantum identties Iy =

a =3b,a=,b=a =4, a=sb)and their negations — 24, 25, 40, 41, 56, 57,
72, 73, 8, and 89; “quantum variables” (which reduce to “classicél’) and

their negations a: 6, 38, 54, 70, 86h: 7, 23, 55, 71, 87--a: 11, 27, 43, 59, 91,

and —b: 10, 26, 42, 74, 90; and “quantum 0,1” —“0": 17, 33, 49, 65, 81 and “1";
16, 32, 48, 64, 80. For some of these quantum expressions we give the following
definitions and theorems.

Definition 2.7. Quantum unitiemndzerosin an OML are,

Ly =& U@nb)u(@nb) (2.19)
L Z'bU@nb)u @ Nb) (2.20)
laap Z'au @ nb)u @ Nb) (2.21)
Lian Z'b' U@ Nb)U(anhb) (2.22)
Isep = (@anb)U(@anb)u (@ nb)u @ nb) (2.23)
Oy Z'an (@ Ub)n (@ Ub) (2.24)
Ozap) = b/ N (8 Ub) N (aUb) (2.25)
O3a,b) Lan (aub)n(@aub) (2.26)
Osap) 2 bN(@UD)N (@ UD) (2.27)
Osap) = (@Ub)N (@aUbB) N (@ Ub)N (@ Ub) (2.28)

Some consequences of these definitions are straightforward:

Lemma 2.8. Two variables commute iff any of tt8® two-variable quantum
expressionsis equal to its classical counterpart. Two variables also commute iff any
two of the five different forms of each quantum expression are equal to each other.

For example, fapy = 1 or Qap) = 0,i = 1,..., 5is equivalent t@Ch. In
particular, k@) = 1is the first expression from Definition 2.3. Also, for example,
Qb =a,i =1,...,5, whereg,,) are given by Beran expressions: 6, 38, 54,

70, 86, respectively, are equivalenta@h. In particular,a;ap = (@Nnb)u(@n

b’) = ais the third expression from Definition 2.3. Examples for the second claim
of the theorem are that - b=a—j b,aUib=auU; b, andan b=an;

b,i #j,i,j =1,...,5are equivalenttaCb(Pavri¢, 1993, p. 1487). The same
holds for 1(a,b) = 1j(a,b)v Qi(a,b) = Qj(a,b), A =i b=a =j b, i 75 j, i, j =1,...,5,

etc.
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Theorem 2.9. An ortholattice in which any one of the following conditions holds
is an orthomodular lattice and vice versa.

a—>ib=1j(a,b) = asb, i,j:l,...,5; I;ﬁj, (2.29)
aEib=lj(avb) < a=b, i,j=1,...,5 i#]. (2.30)

Proof. We will exemplify the proofs by proving the case= 1, j = 5. Other

cases the reader can prove analogously. We first use Eq. (2.13) to write the premise
as @ —1b) =5 1s = 1 (=5 should be used for all cases—in it the subscript 5 is
not j) and then we find the canonical expression of

(@—1b)=s1lsapn =(@—>1b)=s (@anb)u@nb)u@nNb)u(@ Nb)
by typing (see section 8 for details on our progresran)
beran “ ((aIb) = (((&b)v(ad-b))v((-ab)v(-a-b))))"
The program responds with
30 ((~avb)~((av(-a™-b))v(-ab)))

which is nothing buat — 3 b. Using Eq. (2.10) we get the desired conclusiom

3. RELATIONS BETWEEN OPERATIONS

Inthis section we show how one can connectthe operations defined in section 2
with each other in an orthomodular lattice defined in a standard way given by
Definition 2.1. In counting the cases for commuting operations later, we disregard
the order ofa andb.

In Pavcic and Megill (1998b) we have shown how one can express classical
disjunction by quantum and classical implications within a single equation. (That
equation was one of the four smallest ones. Another one is presented later.)

Lemma 3.1. (i) The equation
aub=(((b—ja) —j@—ib) »>ib)—ja —ia (3.1)

is true in all orthomodular lattices for = 1, ..., 5and in all distributive lattices
fori =0,...,5;

(i) an ortholattice in which Eq. 3.1 holds is an orthomodular lattice for
i =1,...,5and a distributive lattice for i= 0.

This equation does not contain negations and if we wanted to define an algebra
by means of so merged implications and without using negation we should at least
introduce 0. Alternatively one can use the negation and define 0. In this paper we
adopt the latter approach. We do not give proofs of the lemmas in this section
because all expressions can be trivially checked with the help of the computer
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programberan written by one of us (N. D. M.), which the reader can download
from our web sites.

Lemma 3.2. There is only one “smallest” (lowest humber of occurrence of
variables, 5, and negations, 2) expression of classical disjunction by means of
guantum implications:

aUb=((@ —ib)—>ib)—ia—a i=1,...,5 (3.2)

and seven smallest (5 variables, 4 negations) expressions of classical conjunction
by means of quantum implications, one of which is,

anb=(@—i((@—=ib)—i (M- a)); i=1,...,5 (3.3)

There are two smallest (5 variables, 3 negations) expressions of classical disjunc-
tion by means of quantum disjunctions, one of which is,

aUb=(auib)y (Wua)uva i=1,...,5, (3.4)
and two (5,5) by means of quantum conjunctions, one of which is,
aUub=((@nbyn(bnma))yna); i=1,...,5 (3.5)

An equal number of smallest expressions of classical conjunction by means of
guantum disjunctions and conjunctions we get by usinge= (a’ U b’)'and an;
b = (&’ U; b')’ (of course with reversed smallest number of negations).

Any of these equations when added to an ortholattice makes it orthomodular.

Lemma 3.3. Here are samples of the smallest expressions (with their numbers
being given in curly brackets) of classical conjunction and disjunction by means

of both, classical(i = 0) and quantuni{i = 1,..., 5) implications, disjunctions,

and conjunctions in single equations in any orthomodular lattice:
aub=(b—ia—i(@—ib)—ib)—ia) {1 (3.6)
aUb=(0bUi (@i (@uib)ui (b'u; a)))) {16} (3.7)
aub=(@nib)n@nbnbna))) {8 (3.8)
anb=(@-—i(@—i(@-—ib) —ib))—ia)) {23 (3.9)
anb=(b' U @y (@u b)))u; (U a)) {8} (3.10)
anb=(bn @n ((@an b)yn; (b'n; a)))) {16}, (3.11)

wherei=0,..., 5. Any of these equations fo= 1, ..., 5and Eqs(3.6), (3.8),
(3.9), and(3.10)for i = 0 when added to an ortholattice makes it orthomodular
(fails in O6). For i = 0, there are no such smallest samples of the type given by
Egs.(3.7)and(3.11)and there arel8 samples that pag36 of Eq.(3.9)type,4 of
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(3.8)type, and4 of (3.10)type. Samples of the latter ones are,

anb=(a—i(b—i((b—ia) —i (b —ia))) (3.12)
aub=('n; @ n (@ N b)n; (bn; @)))) (3.13)
anb=WUY @y (@ by (by a)))y, (3.14)

respectively.

Lemma 3.4. The shortest expressions of some operations defined here by each

other are,

aUb=aUgb=buU;(bu;a) =aU,(b'Ua) =bUz(bUsza)
=aUs(bUsa)=bUs (bUsa) (3.15)

aUib=bU,a=(aUzb)usb=bus(busa)=auUs(buUsa) (3.16)
aUsb=buUja=(bUsa)Usa=aUs(@aUsb)=bUs(buUsa) (3.17)
aUsb=buUsa=(aU;b) Uy (bU;sa)=(aU,b)U, (b’ Uy a)

= (aUsb) Us (aUs (b Us a’))’ (3.18)
aUsb=buUsa=(bUia) U;(@U; b) = (bU,a)Us (@ U, by
= (b Us a) Us (b Us (a Us b)) (3.19)

aUsb=buUsa=((auyb) U (@ U (bu;a)y

= ((buza) Uz ((aUzb) Uz &)Y

= ((buza) Uz ((bUsa) Uz a))

= ((bUz @) Us (b Ug (b Uy @) (3.20)
a=ob=(a=sb)=(bUa)u by a); i=1...5 (3.21)
a= b=a =3b' =(aUysbh) Uy s(b Uyza)

= (@ U4 b") Us s (b Uz 4a)

= (aUs (@Us b)) Us (@ Us (b Us &) (3.22)
a=b=a=,b=0bUza) U s(@usz(bUsza))

= ((@ Uz2b)y U2 (aUz (b Uz @)))

= (@Usb) Uy (@' Uy (b Ug )y

= ((bUs (bUsa’)) Us (aUs (b Us @)')) (3.23)

Dual expressions on both sides of equations we get by usmda= (a’ U; b')'.



Orthomodular Lattices and a Quantum Algebra 1395

Lemma3.5. Samples of expressions of particular quantum disjunctions by means
of all five of them together in single equations are

aUib=auy; (b'y; (by; a)) (3.24)
aUb=by; @y (ay; b)Y (3.25)
aUsb=(@Uu (buia)ui(bu (@ui b)u (b'Uia)))  (3.26)
aUsb = ((b'Ui (@ui b)) Ui (@Ui (bu @) Ui (@ Ui b)))  (3.27)
aUsb=(buia)u (Ui ((@ui b)Ui (bu; a)))Y, (3.28)
where i=1,..., 5. Dual expressiongaUb by means of & b, and anb by

means of aJ; b and an; b) we get by using @ab= (2’ Ub’) and anj b=
(@ ui by.

4. QUANTUM ALGEBRA

In Lemma 3.2, Eq. (3.4), we have shown how one can express the classical
disjunction by means of quantum ones in a single equation. So, we can substitute
this expression for the disjunctions in conditions that define an orthomodular lattice
(Definition 2.1) and obtain five formally identical ways to write those conditions
using five quantum disjunctions. But we can do even more and define an algebra
with a lattice ordering as follows.

Definition 4.1. A quantum algebra QA is an algebtalo,’, U) such that the
following conditions are satisfied for amy b, ¢ € Ao:

Al a=a’ & b<1l (4.1)
A2 a<(@ub)uua)yuvua & b=<(aub)u@®ua)uva (4.2)
A3 a<b & b<a = a=Db, a=b = ac<b 4.3)
A4 a<b = b<a (4.4)
A5 a<b & b=<c = ac=<c (4.5)
A6 a<c & b<c = (aub)uua)wva=<c (4.6)
A7 alb & ((aub)uua)ywvwa=1 = a Lb, 4.7)
where

a<bE(aub)u®ua)yuva=bh (4.8)

1% @uaju@ua))yva & 0L (ava)u(@ua) ua. (4.9)
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Substitution RuleAny valid condition or equation one can obtain in the standard
formulation of OML containing only variableg); (satisfied forali = 1,..., 5),

and negations written in QA withy substituted forJ; is a valid condition or
equation in QA.

We can easily check that the above ordering is a proper ordering and that
for a, b, c € Ao lower upper and greater lower bounds exist — they are given by
(aub)u (bva))y yaand ((@ Ub)u (bw a/)’}/ W a’), respectively. Obviously
we can introduce the following definitionu y cef (aub)u(buva))y vaand
obtain the standard definition of OML as given in section 2. This enables us to
formulate the abovBubstitution Rulavhich actually introduces an infinite number
of conditions. Whether or not they can be replaced with a finite set of individual
conditions is an open problem. Along this rule, A7 becomes Eq. (2.14). Equation
(2.14)isequivalent to Eq. (2.13), which fpe= 5 reads (Paxit and Megill, 1999):
a=sb=(anb)u(a@ Nb’) =1« a=nb. Since from Eq. (3.23) we havee=s
b=(bu;a)u (bua)),i =1,...,5, we get A8. Similarly, we get A9, etc.

Of course, we can never arriveat aUb,au(amb) = a,au (@ m(@ub)) =

aub, or many other equations we are used to in OML. For example, if we had had
au (amb) = a, that would have reduced Eq. (4.12) to Eq. (2.17) and therefore
turn QA into a Boolean algebra.

Lemma 4.2.
A8 (hua)m(b'wa)=1 < a=h, (4.10)
A9 auva =1, (4.11)
A10 am((bu(bma))=0 <« alb, (4.12)
All ((bva)yma) ub)ma=am(bw(bma)), (4.13)
Al2 aub=1 < alb, (4.14)

where anb &' @ uby.

On the other hand, Lemma 3.4 indicates that there might be different ways of
expressing classical disjunctions by means of quantum ones. And irsdedrl=
(aUs b) Us (b’ Us @) does not match any othey — meaningaU b # (aU; b) Uj;
by a),i =1, 2,3,4The sameis true with Eq. (3.15) fog andu,, as well as
withaUb= (@ U b)Y Ui b) U (au b)Y Us @) andaub = ((@ Uy ') U,
a’) U, (b U, (b Uy @)'). Thus we arrive at the following theorem.

Theorem 4.3. In QA one can express classical disjunction in the following five
nonequivalent ways:

aUgrb = (@Qub)Yub)Yu((aub) va' (4.15)
aUgb = (@Qub)Yuwa)udmubua))y (4.16)
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aUgsb = bu(bua) (4.17)
aUgsb = au(bua) (4.18)
aUgsb = (aub)u (b’ va’y. (4.19)

Of course, there are many other such nonequivalent 5-tuples. Altogether, there
are (3)° 5-tuples.

In conclusion, by using the parallels with the standard orthomodular lattice
theory, in QA we can derive all the equations that hold in the lattice theory in
terms ofy;,i = 1,...,5, and negation, even those that cannot be obtained by
the method presented in secti@ — for examplea U; (bnja) =ay; (b N; a)
oray; (by; (@ N (ay; b))) = au; b where neither side of these equations are
equal to particular Beran expressions foria¥ 1, ..., 5, while the equations
themselves do hold for all=1,...,5. On the other hand, by usingu b def
(aub)u (b va)) waand A1-A7 from Definition 4.1 we can embed the standard
orthomodular lattice theory in QA.

5. CONDITIONAL ASSOCIATIVITY OF QUANTUM OPERATIONS

Quantum disjunctions and conjunctions are not associative. However, a con-
ditional associativity, similar to Foulis—Holland (F—H) distributivity, does hold in
any orthomodular lattice as proved in the theorem later. D’'Hooghe and Pykacz
(2000, p. 648) proved the theorem foe 1, 2, and 5, and conjectured it foe= 3
and 4. Here we confirm their conjecture by giving the proofd fer3 and 4. By
doing so we prove that the conditional associativity holds for the unified quan-
tum disjunction and conjunctiony(and m) from the previous section. For this
purpose, we may takeCbto beau (a’ mb) = bwa, noting that in any OML
ay; (@ ni b)=by; ais equivalenttaCbfori =1,...,5.

Theorem 5.1. In any orthomodular lattice any tripl¢a, b, c} in which one of
the elements commutes with the other two is associative with respectated
n,i=1,...,5:

aCb & aCc = (auibuc=ay; (byc), i=1,...,5 (6.1
aCh & bCc = (aUibjuic=auy;(byic), i=1,...,5 (5.2
aCc & bCc = (@uUibuc=ay;(byc), i=1,...,5 (5.3
aCb & aCc = (@nbymc=an(bnc), i=1,...,5 (54
aCh & bCc = (anibpnic=anj(bnic), i=1,...,5 (5.5
aCc & bCc = (@nmbymc=an(bnc), i=1,...,5 (5.6)
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Proof. Since D'Hooghe and Pykacz (2000, p. 648) proved the dases, 2, 5
we only give sketchy proofs for these cases for the sake of completeness.
Fori =1, Eq. (5.1), given the premisaCb) and the F-H theoremaCh&
aCc= (aub)ync=(anc)uU(buc), etc] we have (since’Ca):aU;b=au
(@ Nb)=(aua)n(aub)=auUb. Thus, the conclusion from Eq. (5.1) reads

(auib)uic=aubuc=au; (buU;c).

Equations (5.2) and (5.3) follow analogously. Sirece, b =bU; a andang »
b = (a’ Uy 2 b'), we have proved the theorem foe= 1, 2.

Fori =5, (again we haveaCh= aUsb =aUDb, etc.) both sides of the
conclusion of Egs. (5.1), (5.2), and (5.3) reducato (b Us c), b U (a Us ¢), and
cU (aUs b), respectively.

Let us now consider the case= 3, Eq. (5.1). According to the first definition
of aCbfrom Definition 2.3 we have, given the premisep andaCc) and the
orthomodularity propertydU (&’ N (auU b)) = aUb]:

aUsb=(@nbju@nb)u@n@ub)=au@n(@ub)=aub
and therefore, using F—H theorem and the second premise and Definition 2.3,
(aUszb)Usc=(@aub)nc)u((aub)ync)u(@ Nnb)n@uUbuc))
= [F-H]
=(@ncudncu@ncd)ubnNnc)u(@nNb)n(@aubuc))
=[Def.23]=auU(bncu(bnc)u(@nb)n(@ubuc))
=(bncubnc)u(@au@nb))n@ubuc))
=((bncubnc)u((avua)n(@aub)n(@ubuc))
=((bnc)u(bnc)u((aub)n(@ubuc)) (5.7)
The right-hand side of the conclusion in Eq. (5.1) reads
aUs(bUsc)=(an(busc)u@n(busc))u@n (@u(busc))). (5.8)

Now buzc=(bnc)u(bnc)u( n(buc)) and since we also havaCb
and aCc and thereforeaC(b N c),aC(bnc’), andaC(b’' N (b U c)); we have
aC(b Uz c) as well. Hence, using Definition 2.3 we reduce Eq. (5.8) to

aUs(bUsc)=aua n(@uuzc)=auncubnc)ud n(buc))
=(bncubnc)u(@ub)n(@ubuc)),

which is nothing but Eq. (5.7). Hence, Eq. (5.1) is proved.
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Let us next consider Eq. (5.2). Here we haa¢jsb =auUbandb Usc =
b U c and therefore,

(@Uzb)usc=((@aub)nc)u(@ubyncd)u(@nb)n@ubuc))
= [F-H]
=(ancyu(bnc)u@anc)u(bnc)u(@nb)n(@uc))
=(ancu@nc)uncubnc)u(@nb)n(@uc)
=[bCd=(@ncu(anc)ubu(@nb)n(@uc)
= [bC(@ N b'), bC(b U c)]
=(ancyu(anc)u(@ub)n(@aubuc)). (5.9)
On the other hand, we have
aUs(bUsc)=(an(uc)u@anb nd)u@n@ubuc)
=[F-H]=(anb)u(@ancyu@anb ncyu@ n@ubuc))
=(ancyu(@anb Nnc)u(@anbyu@ Nbyu(@ N(@uc))
=[aCh=(@ncu@anb nd)ubu@n(@uc)
=[bC(anc)]
=(@ancyu(anc)ubyn® ub)u@ n(@uc))
=(ancu(anc)ubu@n(@uc))
=[bCd,bCaUuc)]=(anc)u(@anc)u(@ub)yn@ubuc))

which is nothing but Eq. (5.9) and this proves Eq. (5.2).
As for Eq. (5.3), here we again hae€(a Uz b) andbUsc=buUc. Thus
we get,

(aUsb)Usc = ((@aUsb)nc)U((@ausb) Nc) U ((auUsb) N((aUsb)uc))

=(@Usb)U((@usb)' Nn((@usb)uc)
= [OM property]= (aUz b)Uc
=(anb)u@nb)u@n(@ub)uc
=(@anbyu@nb)u(@uc)n(@aubuc)) (5.10)

For the right-hand side we have,

aUs(bUsc)=(an(ucg)u@anb nd)u@n@ubuc))
=(@anbju@ancu@nbndu@n(@ubuc))
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=(@anb)u@anbndu@uU@nc)n(ancyuaubuc))
=(@nbu@nbnNncd)u@uc)n(aubuc))
=(@nbu@nbnd)u@n@ubuc)uUc
=(anb)u(@anb)uc)n(cuc)u@n(@ubuc))
=(anb)u(anb)ucu@n(@ubuc))
=(@nbyu@nb)u(@uc)n(@aubuc))

which is nothing but Eg. (5.10), which proves Eg. (5.3).

SinceaUs b =bUzaandanssb = (a' U 4b’), we have proved the theo-
remfori =3,4. O

We conjecture that the theorem holds in any weakly orthomodular lattice,
WOML (Pavii¢ and Megill, 1998a) as well.

6. CONDITIONAL DISTRIBUTIVITY OF QUANTUM OPERATIONS

The F—H theorem for conditional distributivity does not in general hold for
the quantum disjunctions and conjunctions. D’Hooghe and Pykacz show this for
Us, N5 [2000, p. 646] and state (in our notation igr‘the same can be checked
fori =1, 2, 3, 4” (p. 647). While this is true fdr= 3, 4, distributivity in the
forms given by Theorems 6.1 and 6.2 does holdifer 1, 2. Also, parts of the
Foulis—Holland theorem, presented in Theorem 6.3 hold for amyg therefore for
the unified quantum disjunction and conjunctiehghdm) from section 4.

Theorem 6.1. In any orthomodular lattice any tripl¢a, b, ¢ in which one of
the elements commutes with the other two is distributive with respegtandn;
in the following sense:

aCb & aCc = auUy(bmc)=(auib)n;(auv;c) (6.1)
aCb & bCc = auUi;(bnic)=(auib)yni(auvic) (6.2)
aCc & bCc = auj(bmc)=(@uib)n;(@auv;c) (6.3)

Proof. In this and all other proofs of this section, we will implicitly make use
of the rulesaCh=auU;b=aU;b,aCbh=an b=an;b,aCh & aCc=
aChy;, nic,andaCb=a,b,aU; b,an; bCau; b,anjb,0<i, j <5.Also,
aCalg,1,3,5 No,1,3,9, b C aJg 24,5 No2,440,aUp1b CadUgic,ang1b Cd
No,1C, alUp1b C cUp,a, andang1b C cnga’. We will use F—H implicitly.
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Recall thatug = U.

For(6l),au(bnic)=auU(bn({® uc) =(@ubn(@nb)uauc)
=(aub)ni(@auc).

For(62),aU; (bnc)=au@nbnc)=au((bna nNnc)
=(aub)n(@u(@nc)=(@ub)n(au;c).

For(63),aU; (bnc)=au@nbnc =@u@nhb)n(@nc
=(auib)n(@uc). o

BecauseJ;, Ny are not commutative, the “reverse” distributivity; b) Uy

¢ = (aUqg ¢) Ny (bU; ) does not hold for all F—H hypotheses. However, it does
hold forU,, Ny:

Theorem 6.2. In any orthomodular lattice any tripl¢a, b, ¢ in which one of
the elements commutes with the other two is distributive with respegtand N,
in the following sense:

aChb & aCc = (anzb)u,c=(auzc)ny(buUzc) (6.4)
aCb & bCc = (amzb)U,c=(@uUzc)ny(bUsc) (6.5)
aCc & bCc = (amb)u,c=(auzc)ny(buUszc) (6.6)

Proof. Theorem 6.1 and the factthat/,b=bU;a,amnb=bMNa. O

For certain F—H hypotheses, distributive laws hold foria# 1, ..., 5.1n
addition, a couple of other cases hold fot 1, 2.

Theorem 6.3. In any orthomodular lattice the following laws hold:

aCh & aCc = ay(bnmo=@ubn@uc), i=1...,5 (6.7)
aCc & bCc = ((@nib)yc=@Uc)N (byic), i=1,...,5 (6.8
aCb & aCc = (anibyu;c=(ausc)ni(bu;c) (6.9)
aCc & bCc = aux(bmxc)=(aUzb)ny(@auzc) (6.10)

Proof. For Eq. (6.7), usinaCb=au;b=auUb andaCbh & aCc= aC
(b U; c) and F—H we can write the conclusion as

au(bnic)=(@aub)n (auc), i=1,...,5 (6.11)
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To prove that the right-hand side boils down to the left-hand one is straightforward
and can be done in a complete analogy to the casé already done previously —
Eq. (6.1). For example, far= 4 we have,

(@ub)yns(@uc)=(@nNnc)u((@aubyn@uc)))nN@ubuc)
N{@nb)uauc)
=(@nc)uau(bnc)n(@ubuc)n(aub nc)
=auU((bngc).

For Eqg. (6.8), the proof follows from Eq. (6.11) by symmetry.
The proof of (6.9) seems a little tricky, so we show it in some detail. First,
we show that (under the hypotheses)

(anbju@nc)=(@uc)n(bua). (6.12)

Fromb>anb=an(bua’)andc>cn(bua’) we havebuc> (an(bu
a)) uU(cn(bua)) = (@auc)n (bua). Thereforegduc) N (bua)=(bu
a)n@uc)n(uc)=(@anbyua)n((@anb)uc)=(anb)u (@ Nnc), estab-
lishing (6.12). The left-hand side of (6.9) reducesto(b) Uy c = (anb) U ((an
bync)=(@nbyu(@ub)nc)=(@nb)u @ nc)u b’ Nc). The right-hand
side reduces toaUc)Ni(busc)=(auc)n((@aucyubu nc))=(@u
ogn(@nc)ubu®ne)y=@uc)Nnbu@Nc)UMBNC)=(@u
ognNn((bua)ynbuc) u®ne) =(@Uc)N({(L Nc)U; (bua)) =
@ucn(bua)u@nec) = (auc)n(bua)) U ((@aucynbnc)=
((auc)n(bua))u (b Nnc). Using (6.12), we see they are the same.

For (6.10) we use (6.9) armlU,b=bU;a,anb=bnNa. O

Similar results can be stated for the dual operatioagfdn; interchanged).
In all other cases not shown in the three theorems above, the distributive law does
not hold: all of them fail in orthomodular lattice MO2 (Fig. 1).

If we allow a mixture of the different disjunctions and conjunctions, we can
obtain a distributive law that holds unconditionally.

Theorem 6.4. In any orthomodular lattice the following law holds:
auUy(bngc)=(auib)ng(auvic) (6.13)

Proof. Expandingdefinitionsandusing F-&lJ; (bNgc) =au @ NbnNc) =
au@nbnanc=@u@nNb)nNn(@u(@ Nnc)) =(aub)ng(au;c).
O

It is interesting that if we consider all equations of the fa; (bN; ¢) =
(a Uk b) Ny (a U ) for all possible assignments9i, j, k,|,m<5(6° = 7776
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0

Fig. 1. Lattice MO2.

possibilities), the equation holds in all OMLs for exactly the one case of (6.13):
i=1j=0k=1,1 =0,m= 1 All other 7775 cases falil in lattice MO2.

The “reverse” form of (6.13) holds witb, substituted fotJ;. Dual results
with U; andn; interchanged can also be stated.

7. AN OPEN PROBLEM

In Megill and Pawic (2000) we opened an interesting problem on whether
the “distributivity of symmetric identity,” expressed by Eg. (7.7), holds in all or-
thomodular lattices or not and if a particular equation derivable from it in any
orthomodaular lattice characterizes the latter lattices. An indication that they might
do so is that they pass all Greechie diagrams we let them run on — with up to
38 atoms and 38 blocks (more that 50 million lattices). We used our program
greechie to obtain the diagrams and our prograatticeg to check the equa-
tions on them (Mckat al,, 2000). On the other hand Eq. (7.7) does not imply the
orthomodularity property — it does not fail in the diagram 06, which characterizes
all orthomodular lattices.

In Megill and Pawgic (2000) we proved several partial results for the above
distributivity. In this section we prove that it holds in Hilbert space and in the
Godowski lattices of the second lowest order (4GO). We recall from Megill and
Pavric (2000) that a 4GO is any OML (actually any OL) in which the following
equation, which we call 4-Go, holds:

@—1b)nkb—-1c)Nn(c—>1d)N(d—;a)<a—;d. (7.1)

We definea = b &' (anb)u (@ Nb’)and note thah = b = a =5 b holds in all

OMLs.



1404 Megill and Pavtic

Lemma7.1. Inany OML we have,

@=cUb=c)=(a—=20U®—=20)N(C—=1a)U(c—1b) (7.2)

(@a=cub=c)<((@anb)—2c)n(c—1(aub)) (7.3)
(@ub)y=cn(a=b)=(a=c)n(a=bh). (7.4)

In any 4GO we have,
(a=bn(b=cu(a=c)<a=c. (7.5)

Proof. For (7.2), we have,

(@=c)U(b=c)=(bnNncou@nNc)ud nc)u@nc)
=((bncu@nc)u(b—2c)N(c—1a)
=(bnou((@nc)ub—z2c)n(@nc)u(c—1a)
=(bncu((@nc)u(b—2c)n(c—1a)
=(bnou@nc)Ub—sc)n((bnc)U(c—1a)
=(@nc)ub—zc)Nn(bNncyu(c—1a)
=({((@nd)yucgucu®d Nc)))N(((bncyuc)

U(c'u(cna)))

=(@—20U(b—20)N((c—>1b)U(c—1a).

In the second step, we use Eq. (3.20) from Megill and &&y¢2000). In the third
and fifth steps we apply the F—H theorem, and in the fourth and sixth steps we
apply absorption laws.

For(7.3),&a —2c)U(b—2c)<(anb) »,candgc —1a)uU(c—1b) <
c—1(@ub) in any OL, so é=c)U(b=c)=[from (7.2)](@—2c)U
(b—2c))N((c—>1a)U(c—1b)) =(@Nb)—2c)N(c—1(@Ub)).

For (7.4), we have,

(aub)=c)n(a=b)=(@aub)ncu@nNb Nc))N(@nb)u(@ Nb))
=(((@ubync)n(@anbyu@nNb)))u((@ Nb Nc)
N((anb)u @ NhbY))
=(((@ub)nc)n@Nb)U(((aub)nc)n (@ Nb))
u(@nbnd)n@nb)u(@nb nc)n@ nNb))
=(@nbncuouou@nb Nc))
=(a=cn(a=bh)
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where in the second and third steps we apply F-H and in the last step we apply
Lemma 3.11 of Megill and Pagi€ (2000).

Finally, (7.5) is proved as follows. Equation (3.30) of Megill and #&vi”
(2000), which we repeat below as (7.6), was shown to hold in all 4GOs.

(a=byn(®nciu(anc) <a=c. (7.6)

Using Eq. (3.20) of Megill and Pagii€ (2000) and renaming variables, we see that
this is the same as

(d=ene—-20c)N(c—>1d)y<d=c.
Substitutinga U b for d anda N b for e,
(a@uby=(@nNb)Nn((@anb) —2c)n(c—>1(aub)) <(@aub)=c.
Since AU b) = (anb) = a = bholds in any OML, we have
(a=b)yn((anb)—»2c)Nn(c—1(@Ub) <(aub)y=c
(@=b)n(@nb)—zc)n(c—>1(aub)) <(@ub)=c)n(a=h)
(@a=b)n(@nb)—»zc)n(c—i(aub)) <(@a=c)n(a=bh)
(a=b)n(@anb) -,c)N(c—;(@aub) <a=c
(a=b)n(a=cju(b=c) <a=c.
where in the third step we use (7.4) and in the last step we use (71.8).
Theorem 7.2. The following equation, which we call distributivity of symmetric

identity, holds in all 4GOgand therefore all nGO, = 4) and thus in the lattice
of all closed subspaces of finite- or infinite-dimensional Hilbert space:

@@=b)n(b=c)U@=c)=(a=bNb=c)u(@=h)n(a=od).
(7.7)

Proof. The result follows immediately from (7.5) and Theorem 2.9 of Megill
and Pawic (2000). O

Whether or not (7.7) holds in all OMLs or even in all WOMLSs (since it does
not fail in O6) is still an open question. However, the most important question
from the point of view of quantum mechanics, which is whether or not it holds in
Hilbert space, is answered by Theorem 7.2.

Since (7.6) also follows from (7.7), as shown in Megill and &v{2000),
the OML variety in which (7.6) holds is the same as the OML variety in which
(7.7) holds. Thus if one of these holds in any OML (our open question), so does
the other.
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Another open question is whether the stronger-looking Eq. (3.29) of Megill
and Pawiit (2000), from which (7.6) follows and which we repeat here as (7.8),

@a—1b)n(b—2c)Nn(c—1a)<(a=c) (7.8)
can be derived (in an OML) from (7.6).

8. ALGORITHMS FOR THE PROGRAMS

In an OML, any expression with two variables is equal to 1 of 96 canoni-
cal forms, corresponding to the 96 elements of the free OMLVWe fix the 96
expressions of Beran (1985, Table 1, p. 82) as our canonical standard.

The progranberan takes, as its input, an arbitrary two-variable expression
and outputs the equivalent canonical form. The program can be used to prove or
disprove any two-variable conjecture expressed as an equation, simply by verifying
that both sides of the equation reduce (or do notreduce) to the same canonical form.

Each element of OML fcan be separated into a “Boolean part” and an “MO2
part” (Navara, 1997). Each of them has relatively simple rules of calculation, and
we use this method in the prograsmaran.® This is implemented in the program
by checking for either Boolean or MO2 lattice violation of the 96 equations formed
by setting the input expression equal to each of the 96 canonical expressions, and
the unique equation that violates neither lattice gives us the answer.

The progranberan is contained in a single fil&eran. c, and compiles on
any platform with anwsi c compiler such agcc. The use of the program is sim-
ple. The operations, N, and’ are represented by the charactefs and-. (Other
operations are also defined and can be seen with the prograliesp-eption). As
an example, to see the canonical expression correspondang {a’ N (a U b)),
we type

beran "(av(-a“(avb)))"

and the program responds wiavb).

A second progranhercomb, was used to find the minimal expressions shown
in section 3. This program is contained in the singleddecomb. c. Its input pa-
rameters include the number of variable occurrences and the number of negations
(orthocomplementations), and it exhaustively constructs all possible expressions
containing a single binary operation with these parameters fixed. For each expres-
sion it uses the algorithm froeran. c to determine the expression’s canonical
form which it prints out. When a set of operations is specified, sueh athrough
— 5, it prints out the canonical form only when all operations simultaneously result
in that canonical form.

6 The authors wish to thank Prof. Navara for suggesting this method. The reader can download this or any
other afore-mentioned program from our ftp sites: ftp://m3k.grad.hr/pavicic/quantum-logic/programs/
and ftp://users.shore.net/members/n/d/ndm/quantum-logic/
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If v > 2 is the number of variable occurrences ang >0 and<(2v — 1)
the number of negations, the number of possible expressions containing one or
two different variables is as follows. The number of ways of parenthesizing a
binary operation in an expression withvariables is the Catalan numb&y_;,
whereC; = (zi‘ )/(i + 1). There are 2possible ways to assign two variables to an
expression. If we display an expression with no negations in Polish notation, it is
easy to see that there are 2 1 symbols and therefor@’g 1y ways to distribute
n negations (disallowing double negations). Thus for fixednd n, there are
2'(*-"1)C,_1 possible expressions.

For example, if we type

bercomb 70 in

then all 2_’(2'7(;1)C7,1 = 16896 expressions with 7 variable occurrences and
0 negations are scanned, and the output includes the four smallest implicational
expressions resulting mU b that we mentioned before Lemma 3.1. We refer the
reader to the program’s kelp option for the meaning and usage of the other
bercomb parameters. In this exampieneans—; through—s andn means don't

suppress duplicate canonical expressions.

9. CONCLUDING REMARKS

In Pavicic and Megill (1999) we stressed that all the operations in an or-
thomodular lattice are fivefold defined and we illustrated this on the identity op-
erations. The claim was based on R#&vidand Megill (1998b) where we proved
that “guantum” as well as “classical” operations can serve for a formulation of an
orthomodular lattice underlying Hilbert space. In 1998, we also put on the web
the computer prograrheran, which reduces any two-variable expression in an
orthomodular lattice to one of the 96 possible ones as given in Beran (1985).

In effect, in the standard orthomodular lattice formulation (where the “classi-
cal” operations are inherited from the Hilbert space formalism) there are 80 quan-
tum expressions that for compatible variables reduce to 16 classical expressions.
In general all quantum expressions (including “quantum 0” and “quantum 1”) are
fivefold defined. (Detailed presentation of them all we give in section 2.) In our
guantum algebraic approach the situation reverses and we have classical operations
fivefold defined in a quantum algebra formulation.

Still, recently several papers on “some new operations on orthomodular
lattices” appeared in press as, for example, the one by D’Hooghe and Pykacz
(2000) in which they picked out Beran expressions 12, 18, 28, 34, 44, 50, 60,
and 76 and looked at some of their properties. So, for example, in D’Hooghe
and Pykacz (2000, p. 649, bottom) one reads (in our notation): “Theorem 7 al-
lows one to express in many ways any of the studied operations by (any of)
the other(s) orthocomplementation. However, the following example in which we



1408 Megill and Pavtic

expressJ; by Us and shows that the obtained formulas might be rather lengthy:
aU; b= (aUs ((aUsb) Usa)) Us a. Itis an open question which of such formu-

las (if any) could be written in a more economical way.” Our approach immediately
closes this open question: all the formulas could be written in a more economical
way and one gets all alternatives in seconds; for example, in the afore-cited ex-
ample, there are over 100 shorter expressions—one of 3 shortest ones is given by
Eq. (3.16)—and there are over 500 of them with the same (5) variable occurrences.
On the other hand, Theorem 6 from D’Hooghe and Pykacz (2000, p. 648) is just a
special case of our Theorem 2.5 from Riawi(1993, p. 1487). Also all the results
from D’Hooghe and Pykacz (2000, section 3.2, p. 646—648), can be trivially ob-
tained using our computer programatticeg (McKay et al., 2000). In addition,

their two conjectures (p. 648) following from their Theorem 5 (p. 647) one can
support by our programatticeg with millions of lattices. Hence, it appears
necessary to present our results in detail, give explicit proofs of all our previous
claims, present the most important and relevant outputs of our programs in some
detail, and provide the reader with instructions on how to use our programs that
give answers to virtually all questions one can have on algebraic properties of
two-variable orthomodular formulas in seconds.

Thus, in section 3 we prove several lemmas in which we show how one can
express operations in any standardly defined (in section 2) orthomodular lattice by
each other. Lemma 3.2 gives expressions of classical disjunctjdny(means of
all five quantum implications>;,i = 1, ..., 5and without negations in a shortest
possible single equation—meaning that the equation preserves its formifer all
and that there are no simpler equations with such a property. Expressians of
by means of quantum disjunctions;(i = 1,...,5) and conjunctions(j,i =
1,...,5) follow from Definition 2.4. Lemma 3.2 gives the shortest expressions of
U = Ug andnN = Ng by means of—;, U;j, andn;,i =1,..., 5, with negation.
Lemma 3.4 gives the shortest expressionsJgfn;, and=;,i =0,...,5, by
means ofJ; andn;,i = 1,..., 5, with negation.

In section 4 we start with the possibility—opened by Lemma 3.2—of ex-
pressingJ by means ofJ;,i = 1,..., 5, in five equations of the same form and
define—in Definition 4.1—the orthomodular lattice by means of one unique quan-
tum operation. We have chosen quantum disjunctidsut the same, of course, can
be done with quantum conjunctianor implication (the latter being just another
way of writing disjunction) — quantum identity is the only quantum operation that
cannot serve the purpose, as we proved in&@ay¥l998). In such a formulation
of orthomodular lattice everything reverses and now classical operations can be
expressed in five different ways as shown by Theorem 4.3.

We stress that the quantum algebra QA (Definition 4.1) is actually completely
defined by its Substitution Rule, and that “axioms” A1-A7 are merely some con-
sequences of that rule. A1-A7 are important in that they show that standard OML
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can be embedded in QA and are included for this reason. However there are many
other nonobvious consequences of QA such as those exemplified in Lemma 4.2.
That lemma only touches the surface of the kind of conditions one can obtain from
QA, and it is possible that QA provides a rich algebraic structure that has yet to
be explored. It also remains an interesting open problem if QA can be finitely
axiomatized.

Lemma 3.3 shows the surprising result that classical disjunction can be
expressed in a single equation that holds in any OML dlbr6 disjunctions
Ui,i =0,...,5. This opens the possibility of an even more general quantum
algebra, with Eq. (3.7) used in place Eq. (3.4) as the basis for A1-A7. In this case
we would replacei=0,...,5"for“i =1,..., 5" in the Substitution Rule. The
same kinds of open questions we brought up for QA would also apply to this more
general algebra.

As for D'Hooghe and Pykacz’'s conjecture on a possible conditional associa-
tivity of U3 4 andns 4 (Hooghe and Pykacz, 2000), we decided that its passage
through millions of Greechie diagrams makes it worth proving and we did so in
section 5. In that way we obtained the conditional associativity for the unified
operationsy andm from section 5.

In section 6 we prove several Foulis—Holland-type conditional distributivities,
some of which are valid for all standard quantum disjunctions and conjunctions
and therefore for the unified quantum disjunction and conjunctican@dm) from
section 4.

As for properties taken over from Hilbert space in section 7 we present two,
given by Egs. (7.5) and (7.7), which proved to hold in a variety of orthomodular
lattice 4GO (and therefore iInGO, n > 4), but which do not fail in any of over
50 million Greechie diagrams we tested the properties on. Thus it remains an open
problem whether the properties hold in any orthomodular lattice and even more
whether Eq. (7.7) holds in an even weaker ortholattice called weakly orthomodular
lattice, WOML.

In section 8 we give algorithms we used to obtain and check all our equations
and proofs for properties involving two variables.

To conclude, the only genuine target that apparently remains for scientific
investigation in algebraic properties of orthomodular lattices in the future are
properties with three and more variables.
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