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We provide several new results on quantum state space, on the lattice of subspaces
of an infinite-dimensional Hilbert space, and on infinite-dimensional Hilbert space
equations as well as on connections between them. In particular, we obtain
an n-variable generalized orthoarguesian equation which holds in any infinite-
dimensional Hilbert space. Then we strengthen Godowski’s result by showing
that in an ortholattice on which strong states are defined, Godowski’s equations
as well as the orthomodularity hold. We also prove that all six- and four-variable
orthoarguesian equations presented in the literature can be reduced to new four-
and three-variable ones, respectively, and that Mayet’s examples follow from
Godowski’s equations. To make a breakthrough in testing these massive equations,
we designed several novel algorithms for generating Greechie diagrams with an
arbitrary number of blocks and atoms (currently testing with up to 50) and for
automated checking of equations on them. A way of obtaining complex infinite-
dimensional Hilbert space from the Hilbert lattice equipped with several additional
conditions and without invoking the notion of state is presented. Possible
repercussions of the results on quantum computing problems are discussed.

1. INTRODUCTION

Recent theoretical and experimental developments in the field of quan-
tum computing have opened the possibility of using quantum mechanical
states, their superpositions, and operators defined on them, i.e., the Hilbert
space formalism, to exponentially speed up computation of various systems,
on the one hand, and to simulate quantum systems, on the other. Quantum
computers can be looked upon as parallel computing machines. Looking at
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the speed of computation, the difference between classical and quantum
parallel machines is that in a classical one we increase its speed by increasing
its physical space (occupied by electronic components: processors, etc.),
while in a quantum one we achieve this by exponentially increasing its state
space by means of linearly increased physical space (a register of n quantum
bits—qubits—prepares a superposition of 2n states). To make a quantum
parallel machine compute a particular problem is tricky and requires a great
deal of ingenuity, but a computed system itself need not be quantum and
need not be simulated. Actually, all algorithms designed so far are of such
a kind. For example, Shor’s algorithm [1] factors n-digit numbers, Grover’s
algorithm [2] searches huge databases, and Boghosian–Taylor’s algorithm
[3] computes the Schrödinger equation. As opposed to this, a quantum simula-
tor would simulate a quantum system (e.g., an atom, a molecule, . . .) and
give its final state directly: a quantum computer working as a quantum
simulator would not solve the Scrödinger equation, but would simulate it
and the outputs would be its solutions: by typing in a Hamiltonian at a
console, we would simulate the system.

Quantum simulation of quantum systems describable in the Hilbert
space formalism (by the Schrödinger equation) would only then be possible,
however, if we found an algebra underlying Hilbert space in the same way
in which the Boolean algebra underlies classical state space. Such an algebra
for quantum computers has recently been named quantum logic in analogy
to the classical logic of classical computers [4]. However, this name is
misleading for both types of computers because proper logics, both classical
and quantum, have at least two models each [5]. Classical logic has not only
a Boolean algebra, but also a nonorthomodular algebra as its model, and
quantum logic not only an orthomodular algebra (Hilbert space), but also
another nonorthomodular algebra: a weakly orthomodular lattice. What
resolves this ambiguity is that as soon as we require either a numerical or a
probabilistic evaluation of the propositions of classical logic we are left only
with the Boolean algebra [5] and that as soon as we impose probabilistic
evaluation (states) on quantum logic we are left only with Hilbert space.
Therefore quantum logic itself does not to play a role in the current description
of quantum systems. Its standard model—Hilbert space—does.

One can make Hilbert space operational on a quantum computer by
imposing lattice equations that hold in any Hilbert space on the computer
states using quantum gates. Unfortunately, not very much is known about
the equations: explorations of Hilbert space have so far concentrated on
operator theory, leaving the theory of the subspaces of a Hilbert space (where-
from we obtain these equations) virtually unexplored. In this paper we investi-
gate how one can arrive at such equations starting from both algebraic
and probabilistic structures of Hilbert space of quantum measurement and
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computation. We obtain several new results on these structures, give a number
of new Hilbert space equations, and systematize, significantly simplify, and
mutually reduce already known equations. In Section 2 we give several new
characterizations of orthomodularity which we make use of later on. In
Section 3 we consider ways in which states can be defined on an ortholattice
underlying Hilbert space and make it orthomodular, when quantum, and
distributive, when classical. We also analyze several kinds of equations char-
acteristic of strong states in Hilbert space (Godowski’s and Mayet’s). On the
other hand, we present a way of obtaining complex Hilbert space from
the Hilbert lattice equipped with several additional conditions, but without
invoking the notion of state. In Section 4 we give a new way of presenting
orthoarguesian equations and their consequences which must hold in any
Hilbert space and for which it is not known whether they are characteristic
of the states or not. We reduce the number of variables used in the orthoar-
guesian-like equations in the literature (from six to four for the standard
orthoarguesian equation and to three for all its consequences), we show that
all consequences that appear in the literature reduce to a single three-variable
equation, and find a new one which does not. In Section 5 we present
generalizations of orthoarguesian equations that must hold in any Hilbert
space. This previously unknown and unconjectured result is our most
important contribution to the theory of infinite-dimensional Hilbert spaces
in this paper. In Section 6 we show several distributive properties that must
hold in any Hilbert space.

2. ORTHOMODULAR LATTICE UNDERLYING HILBERT
SPACE

Closed subspaces of Hilbert space form an algebra called a Hilbert
lattice. A Hilbert lattice is a kind of orthomodular lattice which we, in this
section, introduce starting with an ortholattice which is a still simpler structure.
In any Hilbert lattice the operation meet, a ù b, corresponds to set intersection
*a ù *b of subspaces *a , *b of Hilbert space *, the ordering relation a #
b corresponds to *a # *b , the operation join, a ø b, corresponds to the
smallest closed subspace of * containing *a ø *b , and the orthocomplement
a8 corresponds to *'

a , the set of vectors orthogonal to all vectors in *a.
Within Hilbert space there is also an operation which has no parallel in the
Hilbert lattice: the sum of two subspaces *a 1 *b , which is defined as the
set of sums of vectors from *a and *b. We also have *a 1 *'

a 5 *. One
can define all the lattice operations on Hilbert space itself following the
above definitions (*a ù *b 5 *a ù *b , etc.). Thus we have *a ø *b 5
*a 1 *b 5 (*a 1 *b)'' 5 (*'

a ù *'
b )' [6, p. 175], where *c is the

closure of *c , and therefore *a 1 *b # *a ø *b. When * is finite
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dimensional or when the closed subspaces *a and *b are orthogonal to each
other, then *a 1 *b 5 *a ø *b [7, pp. 21–29; 8, pp. 66, 67; 9, pp. 8–16].

The projection associated with *a is given by Pa(x) 5 y for vector x
from * that has a unique decomposition x 5 y 1 z for y from *a and z
from *'

a . The closed subspace belonging to P is *P 5 {x P *.P(x) 5 x}.
Let Pa ù Pb denote a projection on *a ù *b , Pa ø Pb a projection on *a ø
*b , Pa 1 Pb a projection on *a 1 *b if *a ' *b , and let Pa # Pb mean
*a # *b. Then a ù b corresponds to Pa ù Pb 5 limn→`(PaPb)n [9, p. 20],
a8 to I2Pa , a ø b to Pa ø Pb 5 I 2 limn→`[(I 2 Pa)(I 2 Pb)]n [9, p. 21],
and a # b to Pa # Pb. Now, a # b also corresponds to either Pa 5 PaPb or
to Pa 5 PbPa or to Pa 2 Pb 5 Paùb8. Two projectors commute iff their
associated closed subspaces commute. This means that (see Definition 2.5)
a ù (a8 ø b) # b corresponds to PaPb 5 PbPa. In the latter case we have
Pa ù Pb 5 PaPb and Pa ø Pb 5 Pa 1 Pb 2 PaPb. We have a ' b, i.e., Pa '
Pb is characterized by PaPb 5 0 [6, pp. 173–176; 8, pp. 66, 67; 9, pp. 18–21;
10, pp. 47–50].

In this section we give several definitions of an orthomodular lattice,
two of which (given by Theorem 2.8) are new. In Section 3 we then show
that the orthomodularity of an ortholattice is a consequence of defining strong
states on the ortholattice, and in Sections 3 and 4 we show that it also a
consequence of other more restrictive lattice conditions: Godowski equations
and orthoarguesian equations.

Definition 2.1. An ortholattice (OL) is an algebra ^+o, 8, ù, ø& such
that the following conditions are satisfied for any a, b, c, d, e, f, g, h P +o:

(b ù (c ù a)) ø a 5 a (2.1)

((a ù (b ù ( f ø c))) ø d ) ø e 5 ((((g ù g8) ø (c8 ù f 8)8)

ù (a ù b)) ø e) ø ((h ø d ) ù d ) (2.2)

Lemma 2.2. The following conditions hold in any OL: a ø b 5 b ø
a, (a ø b) ø c 5 a ø (b ø c), a9 5 a, a ø (a ù b) 5 a, a ù b 5 (a8 ø
b8)8. Also, an algebra in which these conditions hold is an OL.

Proof. As given in ref. 11. n

Definition 2.3. An orthomodular lattice (OML) is an ortholattice in which
any one of the following holds:

a [i b 5 1 ⇒ a 5 b, i 5 1, . . . , 5 (2.3)

where a [i b 5
def

(a →i b) ù (b →0 a), i 5 1, . . . , 5, where a →0 b 5
def

a8 ø
b, a →1 b 5

def
a8 ø (a ù b), a →2 b 5

def
b8 →1 a8, a →3 b 5

def
(a8 ù b) ø
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(a8 ù b8) ø (a →1 b), a →4 b 5
def

b8 →3 a8, and a →5 b 5
def

(a ù b) ø (a8 ù
b) ø (a8 ù b8).

The equivalence of this definition to the other definitions in the literature
follows from Lemma 2.1 and Theorem 2.2 of ref. 5 and the fact that Eq.
(2.3) fails in lattice O6 (Fig. 1a), meaning it implies the orthomodular law
by Theorem 2 of ref. 8, p. 22.

Definition 2.4. We have

a [ b 5
def

(a ù b) ø (a8 ù b8) (2.4)

We note that a [ b 5 a [5 b holds in all OMLs, so these two identities
may be viewed as alternate definitions for the same operation in OMLs. The
equality also holds in lattice O6, so they may be used interchangeably in any
orthomodular law equivalent added to ortholattices; in particular [ may be
substituted for [5 in the i 5 5 case of Eq. (2.3). However, a [ b 5 a [5

b does not hold in all ortholattices as shown in ref. 5, so the two identities
should be considered to be different operations from an ortholattice point
of view.

Definition 2.5. We say that a and b commute in OML and write aCb
when either of the following holds [12, 13].

a 5 (a ù b) ø (a ù b8) (2.5)

a ù (a8 ø b) # b (2.6)

Lemma 2.6. An OL in which (2.5) and (2.6) follow from each other is
an OML.

Yet other forms of the orthomodularity condition are the following ones.

Lemma 2.7. An OL in which any one of the following conditions holds
is an OML and vice versa:

a b

Fig. 1. (a) Lattice O6. (b) Lattice MO2.
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a →i b 5 1 ⇔ a # b, i 5 1, . . . , 5 (2.7)

Proof. The proof of Eq. (2.7) is given in refs. 14 and 15. We stress that
the ⇐ direction holds in any OL. n

Later we use a definition based on the following “transitivity” theorem,
which does not work for [i , i 5 1, . . . , 4. Note that in any OML, a [ b 5
(a ù b) ø (a8 ù b8) 5 (a →i b) ù (b →i a) for i 5 1, . . . , 5 and that
instead of the Definition 2.3, one can use one with a [1 b 5 (a →1 b) ù
(b →4 a), etc. [5]

Theorem 2.8. An ortholattice in which

(a [ b) ù (b [ c) # a [ c (2.8)

(a [ b) ù (b [ c) 5 (a [ b) ù (a [ c) (2.9)

hold is an orthomodular lattice and vice versa.
The same statement holds for (a →i b) ù (b →i a), i 5 1, . . . , 5, being

substituted for a [ b.

Proof. Equations (2.8) and (2.9) fail in lattice O6, so they imply the
orthomodular law.

For the converse with Eq. (2.8), we start with ((a ù b) ø (a8 ù b8))
ù (b8 ø (b ù c)). It is easy to show that (a8 ù b8)C(b8 ø (b ù c)) and
(a8 ù b8)C(a ø b). By applying the Foulis–Holland (FH) theorem [12] to
our starting expression, we obtain ((a ù b) ù (b8 ø (b ù c))) ø ((a8 ù b8)
ù (b8 ø (b ù c))). The first conjunction is by orthomodularity equal to a ù
b ù c. The disjunction is thus equal to or less than a8 ø (a ù c) and we
arrive at (a [ b) ù (b →1 c) # (a →1 c). By multiplying both sides by
(c →1 b) we get (a [ b) ù (b [ c) # (c →1 b) ù (a →1 c) # (a →1 c).
By symmetry we also have (a [ b) ù (b [ c) # (c →1 a). A combination
of the latter two equations proves the theorem. We draw the reader’s attention
to the fact that (a →1 b) ù (b [ c) # (a →1 c) does not hold in all OMLs
(it is violated by MO2). For the converse with Eq. (2.9) we start with Eq.
(2.8) and obtain (a [ b) ù (b [ c) # (a [ b) ù (a [ c). On the other
hand, starting with (a [ b) ù (a [ c) # (b [ c), we obtain (a [ b) ù (b [
c) # (a [ b) ù (a [ c). Therefore the conclusion.

As for the statements with (a →i b) ù (b →i a), i 5 1, . . . , 5, substituted
for a [ b, they fail in O6, so they imply the orthomodular law. For the
converse it is sufficient to note that in any OML the following holds: (a →i

b) ù (b →i a) 5 a [ b, i 5 1, . . . , 5. n

We conclude this section with an intriguing open problem whose partial
solutions we find with the help of states defined on OML in the next section.
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Theorem 2.9. In any OML the following conditions follow from each
other:

(a [ b) ù ((b [ c) ø (a [ c)) # (a [ c) (2.10)

(a [ b) →0 ((a [ c) [ (b [ c)) 5 1 (2.11)

(a [ b) ù ((b [ c) ø (a [ c)) 5 ((a [ b) ù (b [ c))

ø ((a [ b) ù (a [ c)) (2.12)

The relation (2.10) fails in O6; Eqs. (2.11) and (2.12) fail in lattices in which
weakly OML (WOML) fail [16], but do not fail in O6.

Proof. To obtain Eq. (2.11) from (2.10), we apply Lemma 2.7 (i 5 1):
1 5 (a [ b)8 ø ((b [ c)8 ù (a [ c)8) ø (((a [ c) ù (a [ b)) ù ((b [ c)
ø (a [ c))) 5 [Eq. (2.9)] 5 (a [ b)8 ø ((a [ c) ù (b [ c)) ø ((a [ c)8
ù (b [ c)8). Reversing the steps yields (2.10) from (2.11).

To get Eq. (2.12), we first note that one can easily derive (a [ b) ù
((b [ c) ø (a [ c)) 5 (a [ c) ù (a [ b) from (2.10). Then one gets (2.12)
by applying Eq. (2.9).

To arrive at (2.10) starting from Eq. (2.12), we apply Eq. (2.9) and
reduce the right-hand side of Eq. (2.12) to (a [ b) ù (a [ c), which
yields (2.10). n

An open problem is whether conditions (2.11) and (2.12) hold in any
WOML and whether these conditions together with condition (2.10) hold in
any OML. Note that Eq. (2.10) fails in O6 only because Eqs. (2.9) and (2.8),
which we used to infer it from Eq. (2.12), fail in O6. We scanned all available
orthomodular Greechie lattices3 with up to 14 blocks (without legs and with
3 atoms in a block; this makes 271,930 legless lattices), over 400,000 lattices
with up to 17 blocks, and selected lattices with up to 38 blocks, but there
was no violation of any of them by (2.10), so there is a strong indication
that these conditions might hold in any OML, but we were not able to prove
or disprove this. We think it is an intriguing problem because repeated attempts
to prove these conditions in WOML, OML, or Hilbert space always brought
us to a kind of a vicious circle and also because we were unable to prove
that an even weaker condition holds in any OML. We have, however, proved
that the latter condition holds in Hilbert space and we give the proof in the
next section [Eq. (3.30)].

3 We obtain the Greechie lattices with practically arbitrary number of atoms and blocks by
using the technique of isomorph-free exhaustive generation [17]. The reader can retrieve
many lattices with up to 38 atoms and blocks at ftp://cs.anu.edu.au/pub/people/bdm/nauty/
greechie.html and ftp://m3k.grad.hr/pavicic/greechie/diagrams (legless), and a program for
making any desired set of lattices written in C by B.D. McKay at ftp://m3k.grad.hr/pavicic/
greechie/program.
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3. STATES AND THEIR EQUATIONS

In the standard approach of reconstructing Hilbert space one starts from
an orthomodular lattice (OML) then defines a state on the OML and imposes
additional conditions on the state as well on the OML to eventually arrive
at the Hilbert space representation of such a mixed lattice–state structure.
To get an insight into the latter structure, below we first define a state on a
lattice and pinpoint a difference between classical and quantum strong states
(Definitions 3.1 and 3.1 and Theorems 3.3, 3.8, and 3.10).

Alternatively, one can reconstruct Hilbert space solely by means of the
lattice theory. We start with an ortholattice (OL), build the Hilbert lattice
(Definition 3.4 and Theorem 3.5), and with the help of three additional axioms
arrive at its complex Hilbert space representation (Theorem 3.6) without
invoking the notion of state at all. The states needed for obtaining mean
values of measured observables follow from Gleason’s theorem.

Going back to the traditional approach, we explore how far one can go
in reconstructing the Hilbert space starting with a strong state defined on OL
without invoking any further lattice or state condition. We show that strong
quantum states imposed on OL turn the latter into an OML in which the so-
called Godowski equations hold and obtain several new traits of the equations
and Greechie lattices much simpler than the original ones to characterize
them (Theorems and Lemmas 3.10–3.19 and 3.21–3.23). In the end we derive
Mayet’s equations from Godowski’s (Theorem 3.20).

Definition 3.1. A state on a lattice L is a function m: L → [0, 1] (for
real interval [0, 1]) such that m (1) 5 1 and a ' b ⇒ m (a ø b) 5 m(a) 1
m(b), where a ' b means a # b8.

This implies m(a) 1 m(a8) 5 1 and a # b ⇒ m(a) # m(b).

Definition 3.2. A nonempty set S of states on L is called a strong set
of classical states if

(∃m P S)(∀a, b P L)((m(a) 5 1 ⇒ m(b) 5 1) ⇒ a # b) (3.1)

and a strong set of quantum states if

(∀a, b P L)(∃m P S)((m(a(5 1 ⇒ m(b) 5 1) ⇒ a # b) (3.2)

We assume that L contains more than one element and that an empty set
of states is not strong. Whenever we omit the word “quantum” we mean
condition (3.2).

We have not seen the first part of Definition 3.2 in the literature, but
consider it worth defining it because of the following theorem.
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Theorem 3.3. Any ortholattice that admits a strong set of classical states
is distributive.

Proof. Condition (3.2) follows from (3.1), and by Theorem 3.10 an
ortholattice that admits a strong set of classical states is orthomodular. Let
now a and b be any two lattice elements. Assume, for state m, that m(b) 5
1. Since the lattice admits a strong set of classical states, this implies b 5
1, so m(a ù b) 5 m(a ù 1) 5 m(a). But m(a8) 1 m(a) 5 1 for any state,
so m(a →1 b) 5 m(a8) 1 m(a ù b) 5 1. Hence we have m(b) 5 1 ⇒ m(a →1

b) 5 1, which means (since the ortholattice admits a strong set of classical
states) that b # a →1 b. This is another way of saying aCb [13]. By FH, an
orthomodular lattice in which any two elements commute is distributive. n

We see that that a description of any classical measurement by a classical
logic (more precisely by its lattice model, a Boolean algebra) and by a
classical probability theory coincide because we can always find a single
state (probability measure) for all lattice elements. As opposed to this, a
description of any quantum measurement consists of two inseparable parts,
a quantum logic (i.e., its lattice model, an orthomodular lattice) and a quantum
probability theory, because we must obtain different states for different lat-
tice elements.

In order to enable an isomorphism between an orthocomplemented ortho-
modular lattice and the corresponding Hilbert space we have to add further
conditions to the lattice. These conditions correspond to the essential proper-
ties of any quantum system such as superposition and make the so-called
Hilbert lattice as follows [12, 18]:

Definition 3.4. An OML which satisfies the following conditions is a
Hilbert lattice (HL):

1. Completeness: The meet and join of any subset of an HL always
exist.

2. Atomic: Every nonzero element in an HL is greater than or equal
to an atom. (An atom a is a nonzero lattice element with 0 , b #
a only if b 5 a.)

3. Superposition Principle: (The atom c is a superposition of the atoms
a and b if c Þ a, c Þ b, and c # a ø b.) (a) Given two different
atoms a and b, there is at least one other atom c, c Þ a and c Þ
b, that is a superposition of a and b. (b) If the atom c is a superposition
of distinct atoms a and b, then atom a is a superposition of atoms
b and c.

4. Minimal length: The lattice contains at least three elements a, b, c
satisfying 0 , a , b , c , 1.
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Note that atoms correspond to pure states when defined on the lattice.
We recall that the irreducibility and the covering property follow from the
superposition principle [19, pp. 166, 167]. We also recall that any Hilbert
lattice must contain a countably infinite number of atoms [18]. The above
conditions suffice to establish isomorphism between HL and the closed sub-
spaces of any Hilbert space, #(*), through the following well-known theorem
[20, §§33, 34]:

Theorem 3.5. For every Hilbert lattice HL there exists a field _ and a
Hilbert space * over _ such that #(*) is orthoisomorphic to HL.

Conversely, let * be an infinite-dimensional Hilbert space over a field
_ and let

#(-) 5
def

{- # *.-'' 5 *} (3.3)

be the set of all biorthogonal closed subspaces of *. Then #(*) is a Hilbert
lattice relative to

a ù b 5 -a ù -b and a ø b 5 (-a 1 -b)'' (3.4)

In order to determine the field over which Hilbert space in Theorem
3.5 is defined, we use the following theorem.

Theorem 3.6. [Solèr–Mayet–Holland] Hilbert space * from Theorem
3.5 is an infinite-dimensional one defined over a complex field C if the
following conditions are met:

5. Infinite orthogonality: Any HL contains a countably infinite
sequence of orthogonal elements [21].

6. Unitary orthoautomorphism: For any two orthogonal atoms a and
b there is an automorphism 8 such that 8(a) 5 b, which satisfies
8(a8) 5 8(a)8, i.e., it is an orthoautomorphism, and whose mapping
into * is a unitary operator U, and therefore we also call it uni-
tary [12].

7. C characterization: There are pairwise orthogonal elements a, b,
c P L such that (∃d, e P L) (0 , d , a & 0 , e , b) and there
is an automorphism 9 in L such that (9(c) , c), (∀f P L: f #
a)(9( f ) 5 f ), (∀g P L: g # b)(9(g) 5 g), and (∃h P L) (0 #
h # a ø b & 9(9(h)) Þ h) [22].

Proof [12]. By Theorem 3.5, to any two orthogonal atoms a and b there
correspond orthogonal one-dimensional subspaces (vectors) e and f from *
such that a 5 _e and b 5 _f. The unitary orthoautomorphism 8 maps into
the unitary operator U so as to give U(e) 5 af for some a P _. From this
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and from the unitarity of U we get ^e, e& 5 ^U(e), U(e)& 5 ^af, af & 5
a^ f, f &a*. Hence, there is an infinite orthogonal sequence {ei: i 5 1, 2, . . .}
such that ^ei , ei& 5 ^ fj , fj & for all i, j. Then Solèr’s [21] and Mayet’s [22]
theorems prove the claim. n

We have seen that the definition of the “unitarity” of the unitary automor-
phism in the previous theorem is not given directly in HL, but through the inner
product of the corresponding Hilbert space (whose existence is guaranteed
by Theorem 3.5). A pure lattice version of the definition of the unitary
automorphism formulated by Holland [12] is not known, but it is known
that it can be replaced by Morash’s purely lattice-theoretic angle bisecting
condition in HL [21].

From the previous two theorems we see that to arrive at the basic Hilbert
space structure we do not need the notion of state, i.e., of the probability of
geting a value of a measured observable. This probability and state follow
uniquely from Hilbert space by Gleason’s theorem and we can use them to
make probabilistic (the only available ones in the quantum theory) predictions
of an observable !: Prob(!) 5 tr(r!), there tr is the trace and r is a
density matrix [6, p. 178]. Alternatively, we can start with the pure states
that correspond to one-dimensional subspaces of Hilbert space, i.e., to vectors
of Hilbert space and to atoms in the Hilbert lattice.

Definition 3.7. A state m is called pure if, for all states m1, m2 and all
reals 0 , l , 1, the equality m 5 lm1 1 (1 2 l)m2 implies m 5 m1 5 m2.

According to Gleason’s theorem [23], for every vector Cm P *, |Cm| 5
1 and for every Pa , where Pa is a projector on the subspace *a , there exists
a unique inner product ^PaCm , Cm& which is a pure state m(a) on #(*). By the
spectral theorem, to each subspace there corresponds a self-adjoint operator !,
and we write Pa 5 P!. The mean value of ! in the state m is ^!& 5 Exp m(!)
5 * ad ^P!,{a}Cm , Cm& 5 ^!Cm , Cm& [24].

So, Conditions 1–4 of Definition 3.4 and 5–7 from Definition 3.6 enable
a one-to-one correspondence between the lattice elements and the closed
subspaces of the infinite-dimensional Hilbert space of a quantum system and
Gleason’s theorem enables a one-to-one correspondence between states and
mean values of the operators measured on the system provided the above
strong states (probability measures) are defined on them. The usage of strong
states here is somewhat unusual because most authors use full states instead
[12, 24, 8]. To prove that the correspondence (isomorphism) holds for the
strong states as well, we only have to prove that Hilbert space admits strong
states because the other direction follows from the fact that any strong set
of states is full. The result is not new (it appears, e.g., in ref. 19, p. 144),
but we give here a proof communicated to us by René Mayet, for the sake
of completeness.



2348 Megill and Pavičić

Theorem 3.8. Any Hilbert lattice admits a strong set of states.

Proof. We need only to use pure states defined by unit vectors: If a and
b are closed subspaces of a Hilbert space * such that a is not contained in
b, there is a unit vector u of * belonging to a 2 b. If for each c in the lattice
of all closed subspaces of *, #(*), we define m(c) as the square of the
norm of the projection of u onto c, then m is a state on * such that m(a) 5
1 and m(b) , 1. This proves that #(*) admits a strong set of states, and
this proof works in each of the three cases where the underlying field is the
field of real numbers, of complex numbers, or of quaternions.

We can formalize the proof as follows:

(∀a, b P L)((,a # b) ⇒ (∃m P S)(m(a) 5 1 & , m(b) 5 1))

⇒ (∀a, b P L)(∃m P S)((m(a) 5 1 ⇒ m(b) 5 1) ⇒ a # b) n

So, any Hilbert space admits strong states and we need them to predict
outcomes of measurements. But there is more to it: states, when defined on
an ortholattice, impose very strong conditions on it. In particular, they impose
a class of orthomodular equations which hold in #(*) and do not hold in
all OMLs: Godowski’s [25] and Mayet’s [26] equations. In the rest of this
section we first give some alternative formulations of Godowski’s equations
and present a new class of lattices in which the equations fail. Then we show
that Mayet’s Examples 2–4, which were meant to illustrate a generalization
of Godowski’s equations, are nothing but special cases of the latter equations.

Definition 3.9. Let us call the following expression the Godowski identity:

a1 [
g

an 5
def

(a1 →1 a2) ù (a2 →1 a3)

??? ù(an21 →1 an) ù (an →1 a1), n 5 3, 4, 5, . . . (3.5)

We define an [
g

a1 in the same way with variables ai and an2i11 swapped;
in general ai [

g
aj will be an expression with . j 2 i. 1 1 $ 3 variables ai ,

. . . , aj first appearing in that order. For completeness and later use (Theorem
3.22) we define ai [

g
ai 5

def
(ai →1 ai) 5 1 and ai [

g
ai11 5

def
(ai →1 ai11) ù

(ai11 →1 ai) 5 ai [ ai11, the last equality holding in any OML. We also
define a1 [

d
an, etc., with the substitution of →2 for →1 in a1 [

g
an, etc.

Theorem 3.10. Godowski’s equations [25]

a1 [
g

a3 5 a3 [
g

a1 (3.6)

a1 [
g

a4 5 a4 [
g

a1 (3.7)
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a1 [
g

a5 5 a5 [
g

a1 (3.8)

???

hold in all ortholattices (OLs) with strong sets of states. An OL to which
these equations are added is a variety smaller than OML.

We shall call these equations n-Go (3-Go, 4-Go, etc.). We also denote
by nGO (3GO, 4GO, etc.) the OL variety determined by n-Go (which we
also call the nGO law).

Proof. The proof is similar to that in ref. 25. By Definition 3.1 we have
m(a1 →1 a2) 5 m(a81) 1 m(a1 ù a2), etc., because a81 # (a81 ø a82), i.e.,
a81 ' (a1 ù a2) in any ortholattice. Assuming m(a1 [

g
an) 5 1, we get m(a1 →1

a2) 5 ??? 5 m(an21 →1 an) 5 m(an →1 a1) 5 1. Hence, n 5 m(a1 →1 a2)
??? 1 m(an21 →1 an) 1 m(an →1 a1) 5 m(an →1 an21) ??? 1 m(a2 →1 a1) 1
m(a1 →1 an). Therefore, m(an →1 an21) 5 ??? 5 m(a2 →1 a1) 5 m(a1 →1

an) 5 1. Thus, by Definition 3.2 for strong quantum states, we obtain
(a1 [

g
an) # (an →1 an21), . . . , (a1 [

g
an) # (a2 →1 a1), and (a1 [

g
an) #

(a1 →1 an), wherefrom we get (a1 [
g

an) # (an [
g

a1). By symmetry, we get
(an [

g
a1) # (a1 [

g
an). Thus (a1 [

g
an) 5 (an [

g
a1).

nGO is orthomodular because 3-Go fails in O6, and n-Go implies
(n 2 1)-Go in any OL (Lemma 3.17). It is a variety smaller than OML
because 3-Go fails in the Greechie lattice, from Fig. 2a n

The following lemma provides a result we will need.

Lemma 3.11. The following equation holds in all OMLs:

(a1 [ a2) ??? ù (an21 [ an) 5 (a1 ??? ù an) ø (a81 ??? ù a8n), n $ 2

(3.9)

a b

Fig. 2. Greechie diagrams for (a) OML G3 and (b) OML G4.
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Proof. We use induction on n. The basis is simply the definition of [.
Suppose (a1 [ a2) ??? ù (an22 [ an21) 5 (a1 ??? ù an21) ø (a81 ??? ù a8n21).
Multiplying both sides by an21 [ an 5 (an21 →1 an) ù (an →2 an21), we have

(a1 [ a2) ??? ù (an21 [ an)

5 [((a1 ??? ù an21) ø (a81 ??? ù a8n21))

ù (an21 →1 an)] ù (an →2 an21)

5 [(a1 ??? ù an) ø (a81 ??? ù a8n21)] ù (an →2 an21)

5 (a1 ??? ùan) ø (a81 ??? ùa8n)

FH was used in the last two steps, whose details we leave to the reader. n

Theorem 3.12. An OL in which any of the following equations holds is
an nGO and vice versa:

a1 [
d

an 5 an [
d

a1 (3.10)

a1 [
g

an 5 (a1 [ a2) ù (a2 [ a3)

??? ù (an21 [ an) (3.11)

a1 [
d

an 5 (a1 [ a2) ù (a2 [ a3)

??? ù (an21 [ an) (3.12)

a1 [
g

an # a1 →i an , i 5 1, 2, 3, 5 (3.13)

a1 [
d

an # a1 →i an , i 5 1, 2, 4, 5 (3.14)

(a1 [
g

an) ù (a1 ø a2 ??? ø an) 5 a1 ù a2 ??? ù an (3.15)

(a1 [
d

an) ù (a81 ø a82 ??? ø a8n) 5 a81 ù a82 ??? ù a8n (3.16)

Proof. Lattice O6 violates all of the above equations as well as n-Go.
Thus for the proof we can presuppose that any OL in which they hold is
an OML.

Equation (3.10) follows from definitions, replacing variables with their
orthocomplements in n-Go.

Assuming (3.11), we use a [ b 5 (a →1 b) ù (b →1 a) to obtain the
equivalent equation a1 [

g
an 5 a1 [

g
an ù an [

g
a1, so a1 [

g
an # an [

g
a1. By
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renaming variables, the other direction of the inequality also holds, establish-
ing n-Go. Conversely, n-Go immediately implies a1 [

g
an 5 a1 [

g

an ù an [
g

a1. The proof for (3.12) is similar.
For (3.13) and (3.14), we demonstrate only (3.13), i 5 3. From (3.13),

by rearranging factors on the left-hand-side we have a1 [
g

an # a2 →3 a1,
so a1 [

g
an # (a2 →3 a1) ù (a1 →1 a2) 5 a1 [ a2 (from Table 1 in ref. 5),

etc.; in this way we build up (3.11). For the converse, (3.13) and (3.14)
obviously follow from (3.11) and (3.12).

For (3.15), using (3.9), we can write (3.11) as a1 [
g

an 5 (a1 ??? ù an)
ø (a81 ??? ù a8n). Multiplying both sides by a1 ??? ø an and using FH, we
obtain (3.15). Conversely, disjoining both sides of (3.15) with a81 ??? ù a8n
and using FH and (3.9), we obtain (3.11). The proof for (3.16) is similar. n

Theorem 3.13. In any nGO, n 5 3, 4, 5, . . . , all of the following
relations hold:

a1 [
g

an # aj →i ak , 0 # i # 5, 1 # j # n, 1 # k # n (3.17)

a1 [
d

an # aj →i ak , 0 # i # 5, 1 # j # n, 1 # k # n (3.18)

a1 [
g

an 5 a1 [
d

an (3.19)

Proof. These obviously follow from (3.11) and (3.12) and (for i 5 0)
the fact that a →m b # a →0 b, 0 # m # 5. n

Some of the equations of Theorem 3.13 (in addition to those mentioned
in Theorem 3.12) also imply the nGO laws. In Theorem 3.15 below we show
them for n 5 3. First we prove the following preliminary results.

Lemma 3.14. The following equations hold in all OMLs:

(a →2 b) ù (b →1 c) 5 (a8 ù b8) ø (b ù c) (3.20)

(a1 →5 a2) ù (a2 →5 a3) ù (a3 →5 a1) 5 (a1 [ a2) ù (a2 [ a3) (3.21)

Proof. For (3.20), (a →2 b) ù (b →1 c) 5 ((b ø (a8 ù b8)) ù (b8 ø
(b ù c)) 5 ((b ø (a8 ù b8)) ù b8) ø ((b ø (a8 ù b8)) ù b ù c) 5 (a8 ù
b8) ø (b ù c).

For (3.21), we have

(a1 →5 a2) ù (a2 →5 a3) ù (a3 →5 a1)

5 [(a1 [ a2) ø (a81 ù a2)] ù [(a2 →1 a3) ù (a2 →2 a3)]

ù [(a3 →1 a1) ù (a3 →2 a1)]

# ((a1 [ a2) ø (a81 ù a2)) ù (a2 →2 a3) ù (a3 →1 a1)
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5 ((a1 [ a2) ø (a81 ù a2)) ù ((a82 ù a83) ø (a3 ù a1))

5 ((a1 [ a2) ù ((a82 ù a83) ø (a3 ù a1)))

ø ((a81 ù a2) ù ((a82 ù a83) ø (a3 ù a1)))

5 ((a1 [ a2) ù ((a82 ù a83) ø (a3 ù a1))) ø 0

# a1 [ a2

In the third step, we used (3.20); in the fourth, a1 [ a2Ca81 ù a2 and
a81 ù a2C(a82 ù a83) ø (a3 ù a1); in the fifth, a81 ù a2 Ca82 ù a83 and
a81 ù a2 Ca3 ù a1. Rearranging the left-hand side, this proof also gives us
(a1 →5 a2) ù (a2 →5 a3) ù (a3 →5 a1) # a2 [ a3 and thus # (a1 [ a2) ù
(a2 [ a3). The other direction of the inequality follows from a [ b # a
→5 b. n

Theorem 3.15. When n 5 3, an OML in which any of the following
holds is an nGO and vice versa:

a1 [
g

an # an →i a1, i 5 2, 3, 4, 5 (3.22)

a1 [
d

an # an →i a1, i 5 1, 3, 4, 5 (3.23)

a1 [
g

an 5 a1 [
d

an (3.24)

Proof. We have already proved the converses in Theorem 3.13.
From (3.22), we have a1 [

g
a3 # (a3 →i a1) ù (a3 →1 a1) 5 a3 →5 a1

since (a →j b) ù (a →k b) 5 a →5 b when j Þ k for j, k 5 1, . . . , 5. By
rearranging the left-hand side we also have a1 [

g
a3 # a1 →5 a2 and # a2 →5

a3. Thus a1 [
g

a3 # (a1 →5 a2) ù (a2 →5 a3) ù (a3 →5 a1) # a1 [ a2 #
a2 →1 a1, which is the 3GO law by (3.13). In the penultimate step we
used (3.21).

The proof for (3.23) is similar, and from (3.24) we obtain (3.22). n

Whether Theorem 3.15 holds for n . 3 is not known.
The equations obtained by substituting →2 for one or more →1 ’s in

Godowski’s equations also hold in some nGO, although to show such an
equation with j variables may require the use of an n-Go equation with n . j.

Theorem 3.16. The following equation with i variables holds in some
nGO with n $ i, where each →jk (1 # k # i) is either →1 or →2 in any
combination:
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(a1 →j1 a2) ù (a2 →j2 a3) ??? ù (ai21 →ji21 ai)

ù (ai →ji a1) 5 a1 [
g

ai (3.25)

Proof. We illustrate the proof by showing that the three-variable equation

(a1 →2 a2) ù (a2 →1 a3) ù (a3 →1 a1) 5 a1 [
g

a3 (3.26)

holds in any 4GO. The essential identities we use are

(a →1 (a ø b)) ù ((a ø b) →1 b) 5 a →2 b (3.27)

(a →2 (a ù b)) ù ((a ù b) →2 b) 5 a →1 b (3.28)

which hold in any OML. Starting with (3.17), we have

(a1 →1 b) ù (b →1 a2) ù (a2 →1 a3) ù (a3 →1 a1)

# (a1 →1 a3) ù (a3 →1 a1) ù (a3 →1 a2) ù (a2 →1 a3)

5 (a1 [ a3) ù (a3 [ a2)

5 (a1 [ a2) ù (a2 [ a3)

5 a1 [
g

a3

where in the penultimate step we used (2.9) [or more generally (3.9)] and
in the last step (3.11). Substituting a1 ø a2 for b and using (3.27), we obtain

(a1 →2 a2) ù (a2 →1 a3) ù (a3 →1 a1) # a1 [
g

a3

Using (3.17) for the other direction of the inequality, we obtain (3.26). The
reader should be able to construct the general proof. n

A consequence of (3.25) that holds in any 4GO is

(a →1 b) ù (b →2 c) ù (c →1 a) # (a [ c) (3.29)

which, using (3.20) and weakening the leftmost factor, implies

(a [ b) ù ((b8 ù c8) ø (a ù c)) # (a [ c) (3.30)

Equation (3.30) is also a consequence of (2.10), as can be seen if we write
(2.10) as follows:

(a [ b) ù ((b ù c) ø (b8 ù c8) ø (a ù c) ø (a8 ù c8)) # (a [ c)

As with (2.10), we were unable to prove that even the weaker looking (3.30)
holds in all OMLs. It is also unknown if (3.30) even holds in all 3GOs.
Finally, we do not know if there is an n such that (2.10) holds in all nGOs.
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The relations obtained by substituting →i for →1 in the Godowski
equations do not in general result in equivalents for i 5 3, 4, 5, nor even
hold in an nGO. For example, for n 5 3, the conditions (a1 →3 a2) ù (a2 →3

a3) ù (a3 →3 a1) # (a2 →3 a1) and (a1 →4 a2) ù (a2 →4 a3) ù (a3 →4 a1)
# (a2 →4 a1) fail in lattice MO2 (Chinese lantern, Fig. 1b), and (a1 →5 a2)
ù (a2 →5 a3) ù (a3 →5 a1) # (a2 →5 a1) holds in all OMLs by (3.21).

Lemma 3.17. Any nGO is an (n 2 1)GO, n 5 4, 5, 6, . . . .

Proof. Substitute a1 for a2 in equation n-Go. n
The converse of Lemma 3.17 does not hold. Indeed, the wagon wheel

OMLs Gn, n 5 3, 4, 5, . . . , are related to the n-Go equations in the sense
that Gn violates n-Go, but (for n $ 4) not (n 2 1)-Go. In Fig. 2 we show
examples G3 and G4; for larger n we construct Gn by adding more “spokes”
in the obvious way (according to the general scheme described in ref. 25).

For any particular n there may exist lattices smaller than Gn for which
this property holds. These can be more efficient, computationally, for proving
that an equation derived in nGO is weaker than n-Go or independent of
(n 2 1)-Go. Based on a computer scan of all (legless) OMLs with 3-atom
blocks (see footnote at the end of Section 2), up to and including a block
count of 12 along with selected lattices with block counts up to 17, we
obtained the following results. Lattice G3, with 34 nodes, is the smallest that
violates 3-Go. (In OMLs with 3-atom blocks, the number of nodes is twice
the number of atoms, plus 2.) The Peterson OML, with 32 nodes (vs. 44
nodes in G4), is the smallest that violates 4-Go, but not 3-Go (Fig. 3). Lattice
G5s, with 42 nodes (vs. 54 nodes in G5), is the smallest that violates 5-Go,
but not 4-Go (also Fig. 3). Lattices G6s1 and G6s2, each with 44 nodes (vs.
64 nodes in G6), are two of three smallest that violate 6-Go, but not 5-Go
(Fig. 4), Of these three, G6sl is one of two with 14 blocks, whereas G6s2
has 15 blocks. Lattices G7sl and G7s2 (Fig. 5) are two of several smallest

a b

Fig. 3. (a) Peterson OML. (b) Greechie diagram for OML G5s.
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a b

Fig. 4. Greechie diagrams for (a) OML G6s1 and (b) OML G6s2.

we obtained to violate 7-Go, but not 6-Go. They both have 50 nodes and 16
and 17 blocks, respectively (vs. 74 nodes and 21 blocks in G7). Actually,
we used dynamic programming to obtain a program for checking on n-Go
which is so fast that no reasonable n is a problem. For example, to find G7sl
among 207,767 Greechie diagrams with 24 atoms and 16 blocks took an 800
MHz PC less than 2 hr.

The next lemma provides some technical results for subsequent use.
Note that a ' b ' c means a ' b and b ' c (but not necessarily a ' c).

Lemma 3.18. In any OML we have

a ' b ' c ⇒ (a ø b) ù (a →2 c) # b ø c (3.31)

a ' b ' c ⇒ a ø b # c →2 a (3.32)

a ' b ' c & (c →2 a) ù d # a →2 c ⇒ (a ø b) ù d # b ø c (3.33)

Proof. For (3.31), (a ø b) ù (a →2 c) 5 (a ø b) ù (c ø (a8 ù c8)).
From hypotheses, b commutes with a and c ø (a8 ù c8). Using FH twice,
(a ø b) ù (c ø (a8 ù c8)) 5 (b ù (c ø (a8 ù c8))) ø (a ù c) ø (a ù a8 ù

a b

Fig. 5. Greechie diagrams for (a) OML G7s1 and (b) OML G7s2.
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c8) # b ø c. For (3.32), from hypotheses, a ø b # a ø (c8 ù a8) 5 c →2

a. For (3.33), from (3.32), (a ø b) ù d # (c →2 a) ù d # [from hypothesis]
a →2 c. Thus(a ø b) ù d # (a ø b) ù (a →2 c), which by (3.31) is # b ø c. n

The n-Go equations can be equivalently expressed as inferences involv-
ing 2n variables, as the following theorem shows. In this form they can be
useful for certain kinds of proofs, as we illustrate in Theorem 3.20.

Theorem 3.19. Any OML in which

a1 ' b1 ' a2 ' b2 ' . . . an ' bn ' a1

⇒ (a1 ø b1) ù (a2 ø b2) ù ??? (an ø bn) # b1 ø a2 (3.34)

holds is an nGO and vice versa.

Proof. Substituting c1 for a1, . . . , cn for an; c81 ù c82 for b1, . . . ,
c8n21 ù c8n for bn21; and c8n ù c81 for bn; we satisfy the hypotheses of (3.34)
and obtain (3.14).

Conversely, suppose the hypotheses of (3.34) hold. From the hypotheses
and (3.32), we obtain (a2 ø b2) ??? ù (an21 ø bn21) ù (an ø bn) # (a3 →2

a2) ??? ù (an →2 an21) ù (a1 →2 an). Thus (a2 →2 a1) ù [(a2 ø b2) ??? ù
(an21 ø bn21) ù (an ø bn)] # (a2 →2 a1) ù [(a3 →2 a2) ??? ù (an →2 an21)
ù (a1 →2 an)] 5 (a2 →2 a1) ù (a1 →2 an) ù (an →2 an21) ??? ù (a3 →2 a2).
Applying (3.14) to the right-hand side, we obtain (a2 →2 a1) ù [(a2 ø b2)
??? ù (an21 ø bn21) ù (an ø bn)] # a1 →2 a2. Then (3.33) gives us (3.34). n

Mayet [26] presents a method for obtaining equations that hold in all
lattices with a strong or full set of states. However, it turns out that the
examples of those equations he shows are implied by the n-Go equations
and thus do not provide us with additional information about lattices with
strong states or #(*) in particular. To the authors’ knowledge, there is no
known example of such an equation that cannot be derived from the n-Go
equations. It apparently remains an open problem whether Mayet’s method
gives equations that hold in all OMLs with a strong set of states, but that
cannot be derived from equations n-Go.

Theorem 3.20. The following conditions (derived as Examples 2–4 in
ref. 26) hold in 3GO, 6GO, and 4GO, respectively:

(a →1 b) ù (b →1 c) ù (c →1 a) # b →1 a (3.35)

a ' b ' c ' d ' e ' f ' a

⇒ (a ø b) ù (d ø e)8 ù ((((a ø b) →1 (d ø e)8) →1 ((e ø f )

→1 (b ø c)8)8)8 →1 (c ø d )) # b ø c ø (e ø f )8 (3.36)
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a ' b ' c ' d ' e ' f ' g ' h ' a

⇒ (a ø b) ù (c ø d ) ù (e ø f ) ù (g ø h)

ù ((a ø h) →1 (d ø e)8) 5 0 (3.37)

Proof. For (3.35), this is the same as (3.13) for n 5 3.
For (3.36), using (3.34), we express the 6GO law as

a1 ' b1 ' a2 ' b2 ' a3 ' b3 ' a4 ' b4 ' a5 ' b5 ' a6 ' b6 ' a1

⇒ (a1 ø b1) ù (a2 ø b2) ù (a3 ø b3) ù (a4 ø b4) ù (a5 ø b5)

ù (a6 ø b6) # b1 ø a2 (3.38)

We define p 5 ((a ø b) →1 (d ø e)8)8, q 5 ((e ø f ) →1 (b ø c)8)8, and
r 5 ( p8 →1 q)8 ù (c ø d ). In (3.38) we substitute a for a1, b for b1, c for
a2, (c ø d )8 for b2, r for a3, p8 →1 q for b3, ( p8 →1 q)8 for a4, p8 ù q for
b4, q8 for a5, q for b5, (e ø f )8 for a6, and f for b6. With these substitutions,
all hypotheses of (3.38) are satisfied by the hypotheses of (3.36). The conclu-
sion becomes

(a ø b) ù (c ø (c ø d )8) ù (r ø ( p8 →1 q))

ù (( p8 →1 q)8 ø ( p8 ù q)) ù (q8 ø q) ù ((e ø f )8 ø f )

# b ø c (3.39)

We simplify (3.39) using c ø (c ø d )8 5 [since c and d commute by
hypothesis] (c ø c8) ù (c ø d8) 5 1 ù (c ø d8) 5 [since c # d8] d8; (e ø
f )8 ø f 5 e8 similarly; ( p8 →1 q)8 ø ( p8 ù q) 5 p8; and q8 ø q 5 1. This
gives us

(a ø b) ù d8 ù (r ø ( p8 →1 q)) ù p8 ù e8 # b ø c (3.40)

Now, in any OML we have p8 5 (a ø b) →1 (d ø e)8 5 (a ø b)8 ø ((a ø
b) ù (d ø e)8) $ (a ø b) ù (d ø e)8 $ (a ø b) ù (d ø e)8 ù (( p8 →1 q)
ø r). Thus the left-hand side of (3.40) absorbs p8, so

(a ø b) ù d8 ù (r ø ( p8 →1 q)) ù e8 # b ø c

# b ø c ø (e ø f )8 (3.41)

which after rearranging is exactly (3.36).
For (3.37), using (3.34), we obtain from the 4GO law

a ' b ' c ' d ' e ' f ' g ' h ' a

⇒ (a ø b) ù (c ø d ) ù (e ø f ) ù (g ø h) # (a ø h) ù (d ø e)

Therefore,
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a ' b ' c ' d ' e ' f ' g ' h ' a

⇒ (a ø b) ù (c ø d ) ù (e ø f ) ù (g ø h) ù ((a → h) →1 (d ø e)8)

# (a ø h) ù (d ø e) ù ((a ø h) →1 (d ø e)8)

In any OML we have x ù y ù (x →1 y8) 5 0; applying this to the right-
hand side, we obtain (3.37). n

To the authors’ knowledge all 3-variable conditions published so far
that hold in all OMLs with a strong set of states are derivable in 3GO. Below
we show an equation with 3 variables that is derivable in 6GO, but is
independent of the 3GO law. It shows that it is possible to express with only
3 variables a property that holds only in nGOs smaller than 3GO.

Theorem. 3.21. The 3-variable condition

((a →2 b) ù (a →2 c)8) ù ((((a →2 b) →1 (a →2 c)8)

→1 ((b →2 c) →1 (b →2 a)8)8)8

→1 (c →2 a)) # b →2 a (3.42)

holds in a 6GO, but cannot be derived (in an OML) from the 3GO law nor
vice versa.

Proof. To show this equation holds in 6GO, we start with (3.41), which
occurs in the proof of Mayet’s Example 3, rewriting it as

d ' e ' f ' g ' h ' j ' d

⇒ (d ø e) ù (g ø h)8 ù ((((d ø e) →1 (g ø h)8) →1 ((h ø j )

→1 (e ø f )8)8)8 →1 ( f ø g)) # e ø f (3.43)

We substitute b for d, a8 ù b8 for e, a for f, a8 ù c8 for g, c for h, and c8 ù
b8 for j. With these substitutions, the hypotheses of (3.43) are satisfied. This
results in (3.42), showing that (3.42) holds in 6GO.

We show independence as follows. On the one hand, (3.42) fails in the
Peterson OML (Fig. 3a), but holds in OML G3 (Fig. 2a). On the other hand,
the 3GO law (3.6) holds in the Peterson OML, but fails in G3. n

It is not known whether (3.42) holds in 4GO or 5GO.
Using our results so far, we can show that ai [

g
aj 5 1 is similar to a

relation of equivalence (although strictly speaking it is not one, since
ai [

g
aj involves not 2, but . j 2 i. 1 1 variables). Reflexivity ai [

g
ai 5 1

follows by definition, symmetry ai [
g

aj 5 1 ⇒ aj [
g

ai 5 1 from the
Godowski equations, and transitivity ai [

g
aj 5 1 & aj [

g
ak 5 1 ⇒ ai [

g

ak 5 1 from the following theorem. Analogous results can be stated for [
d

.
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An open problem is whether there exists an equation corresponding to
ai [

g
aj 5 1 and ai [

d
aj 5 1 as in (2.3) and (4.4)–(4.6).

Theorem 3.22. The following holds in nGO, where i, j $ 1 and n 5
max (i, j, 3):

(a1 [
g

ai) ù (ai [
g

aj) # a1 [
g

aj (3.44)

Proof. If [
g

has 3 or more variables, we replace it with a chained identity
per (3.11), otherwise we replace it with the extended definition we mention
after Definition 3.9. The proof is then obvious. (In many cases the equation
may also hold for smaller n or even in OML or OL, e.g., when j 5 1.) n

The next lemma shows an interesting “variable-swapping” property of
the Godowski identity that we shall use in a later proof [of Theorem 6.6].

Lemma 3.23. In any OML we have

(a1 [
g

an) ù a8i 5 a81 ù a82 ??? ù a8n, i 5 1, . . . , n (3.45)

In particular,

(a1 [
g

an) ù a8i 5 (a1 [
g

an) ù a8j , i 5 1, . . . , n, j 5 1, . . . , n

(3.46)

Proof. We illustrate the case i 5 1. In any OML we have a8 ù (b →1

a) 5 a8 ù b8. Thus (a1 →1 a2) ???ù (an22 →1 an21) ù (an21 →1 an) ù (an →1

a1) ù a81 5 (a1 →1 a2) ??? ù (an22 →1 an21) ù (an21 →1 an) ù a8n ù a81 5
??? 5 a81 ù a82 ??? ù a8n21 ù a8n ù a81. n

4. ORTHOARGUESIAN EQUATIONS

In this section we show that all orthoarguesian-based equalities (which
must hold in any Hilbert lattice) that have appeared in the literature as
equations with 4 and 6 variables can be reduced to just two equations with
3 and 4 variables. The latter two equations we call the 3OA and 4OA laws,
respectively, and introduce them by Definition 4.4. Their equivalence to the
afore mentioned 4- and 6-variable equations is shown in Theorems 4.8 and
4.9 and in Theorem 4.7, respectively. A new 3-variable consequence of the
4OA law which is not equivalent to the 3OA law is given by Theorem 4.11.
Possibly equivalent inference forms of the 3OA law and the 4OA law are
given by Theorems 4.2, 4.3, and 4.10.
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Definition 4.1. We have

a [
c

i b 5
def

((a →i c) ù (b →i c)) ø ((a8 →i c) ù (b8 →i c)),

i 5 1, 3 (4.1)

a [
c

i b 5
def

((c →i a) ù (c →i b)) ø ((c →i a8) ù (c →i b8)),

i 5 2, 4 (4.2)

a [
c,d

i b 5
def

(a [
d

i b) ø ((a [
d

i c) ù (b [
d

i c))

i 5 1, . . . , 4 (4.3)

We call a [
c

i b a 3-variable orthoarguesian identity and a [
c,d

i b a 4-variable
orthoarguesian identity and denote them as 3-oa and 4-oa, respectively.

Theorem 4.2. An ortholattice to which any of

a [
c

i b 5 1 ⇔ a →i c 5 b →i c, i 5 1, 3 (4.4)

a [
c

i b 5 1 ⇔ c →i a 5 c →i b, i 5 2, 4 (4.5)

is added is a variety smaller than OML that fails in lattice L28 (Fig. 6a).

The corresponding expressions for i 5 5 do not hold in a Hilbert lattice
(right to left implications fail in MO2).

Theorem 4.3. An ortholattice to which any of

a [
c,d

i b 5 1 ⇔ a →i d 5 b →i d, i 5 1, 3 (4.6)

is added is a variety smaller than OML that fails in lattice L36 (Fig. 6b) for
i 5 1, 3.

a b

Fig. 6. Greechie diagrams for (a) OML L28 and (b) OML L36.
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The new identities [
c

1 and [
c,d

1 being equal to one, are relations of
equivalence. It is obvious that they are reflexive (a [

c
1 a 5 1, a [

c,d
1 a 5 1)

and symmetric (a [
c

1 b 5 1 ⇒ b [
c

1 a 5 1, a [
c,d

1 b 5 1 ⇒ b [
c,d

1 a 5 1),
and the transitivity follows from Theorem 4.10 below. They are, however,
not relations of congruence because a [

c
1 b 5 1 ⇒ (a ø d ) [

c
1 (b ø d ) 5

1 does not hold: it fails in the Chinese lantern MO2 (Fig. 1b). Conditions
(4.4)–(4.6) must hold in any Hilbert space (and therefore by any quantum
simulator) for i 5 1 as we show below. Expressions corresponding to (4.6)
for i 5 2, 4, 5 do not hold in a Hilbert lattice and it is an open problem
whether there exist equivalent relations of equivalence for i 5 2, 4, 5. In
what follows we keep to i 5 1 (and not i 5 3) because i 5 1 enables us to
switch to the Sasaki projection wab 5 (a →1 b8)8 of b on a later. The Sasaki
projection plays an important role in the definition of the covering property,
which is a consequence of the superposition principle [19].

Definition 4.4. Let a [
c

b 5
def

a [
c

1 b and a [
c,d

b 5
def

a [
c,d

1 b.
A 3OA is an OL in which the following additional condition is satisfied:

(a →1 c) ù (a [
c

b) # b →1 c (4.7)

A 4OA is an OL in which the following additional condition is satisfied:

(a →1 d ) ù (a [
c,d

b) # b →1 d (4.8)

Note that the 3OA and 4OA laws (4.7) and (4.8) have three and four
variables, respectively. Both 3OA and 4OA laws, fail in O6, so they are
OMLs, but there exist OMLs that are neither 3OAs nor 4OAs: conditions
(4.7) and (4.8) both fail in the orthomodular lattice L28 (Fig. 6a).

Theorem 4.5. Every 4OA is a 3OA, but there exist 3OAs that are
not 4OAs.

Proof. In (a →1 d ) ù (a [
c,d

b) # (b →1 d ), set c 5 b. On the other
hand, lattice L36 (Fig. 6b) is a 3OA because it is an OML in which (4.7)
holds, but it is not a 4OA because it violates (4.8). n

The next lemma provides some technical results for use in subsequent
proofs.

Lemma 4.6. In any OML we have

(a →1 b) ù a 5 a ù b (4.9)

(a →1 b) ù (a8 →1 b) 5 (a →1 b) ù b 5 (a ù b) ø (a8 ù b) (4.10)
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(a8 →1 b)8 # a8 # a →1 b (4.11)

(a →1 b) →1 b 5 a8 →1 b (4.12)

(a →1 b)8 →1 b 5 a →1 b (4.13)

(a →i b) ø (a →j b) 5 a →0 b, i, j 5 0, . . . , 4, i Þ j (4.14)

a8 # b ⇒ b # a →1 b (4.15)

a ù ((a →1 c) ø b) # c ⇔ b # a →1 c (4.16)

Proof. For (4.9)–(4.15), we omit the easy proofs.
For (4.16), if a ù ((a →1 c) ø b) # c, then a ù ((a →1 c) ø b) #

a ù c 5 (a →1 c) ù a using (4.9), so b # 1 ù ((a →1 c) ø b) 5 ((a →1 c)
ø a) ù ((a →1 c) ø ((a →1 c) ø b)) 5 (via FH) (a →1 c) ø (a ù ((a →1

c) ø b)) # (a →1 c) ø ((a →1 c) ù a) 5 a →1 c. Conversely, if b # a →1

c, then, using (4.9), a ù ((a →1 c) ø b) 5 a ù (a →1 c) 5 a ù c # c. n

In the next theorem we show that the 4OA law (4.8) is equivalent to
the orthoarguesian law (4.17) discovered by Day [27, 28], which holds in
#(*). Thus the 4OA law also holds in #(*).

Theorem 4.7. An OML in which

a ' b & c ' d & e ' f

⇒ (a ø b) ù (c ø d ) ù (e ø f )

# b ø (a ù (c ø (((a ø c) ù (b ø d )) ù (((a ø e) ù (b ø f ))

ø ((c ø e) ù (d ø f )))))) (4.17)

(where a ' b 5
def

a # b8) holds is a 4OA and vice versa.

Proof. We will work with the dual of (4.17),

a8 # b & c8 # d & e8 # f

⇒ b ù (a ø (c ù (((a ù c) ø (b ù d )) ø (((a ù e) ø (b ù f ))

ù ((c ù e) ø (d ù f ))))))

# (a ù b) ø (c ù d ) ø (e ù f ) (4.18)

First we show that the 4OA law implies (4.18). In any OL we have

b # g →1 k & d # h →1 k & f # j →1 k

⇒ b ù (a ø (h ù (((g ù h) ø (b ù d )) ø (((g ù j ) ø (b ù f ))

ù ((h ù j ) ø (d ù f ))))))
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# (g →1 k) ù (g ø (h ù (((g ù h) ø ((g →1 k) ù h →1 k)))

ø (((g ù j ) ø ((g →1 k) ù ( j →1 k))) ù ((h ù j )

ø ((h →1 k) ù j →1 k))))))) (4.19)

Substituting a8 →1 k for g, c8 →1 k for h, and e8 →1 k for j, simplifying with
(4.12), and applying (4.11) to the left-hand side of the conclusion, we obtain

b # a →1 k & d # c →1 k & f # e →1 k

⇒ b ù (a ø (c ù (((a ù c) ø (b ù d )) ø (((a ù e) ø (b ù f ))

ù ((c ù e) ø (d ù f ))))))

# (a →1 k) ù (((a8 →1 k) ø ((c8 →1 k) ù (c [
e,k

a)))) (4.20)

We convert the 4OA law (c8 →1 k) ù (c8 [
e,k

m8) # (m8 →1 k) to (c8 →1 k)
ù (c [

e,k
m) # (m8 → 1 k) to m8 ù ((m8 →1 k) ø ((c8 →1 k) ù (c [

e,k
m))) #

k using (4.16). We substitute (a →1 k)8 for m and simplify with (4.12) and
(4.13) to obtain (a →1 k) ù ((a8 →1 k) ø ((c8 →1 k) ù (c [

e,k
a))) # k.

Combining with (4.20) yields

b # a →1 k & d # c →1 k & f # e →1 k

⇒ b ù (a ø (c ù (((a ù c) ø (b ù d )) ø (((a ù e) ø (b ù f ))

ù ((c ù e) ø (d ù f )))))) # k (4.21)

Letting k 5 (a ù b) ø (c ù d ) ø (e ù f ), we have

a8 # b ⇒ b # a →1 k (4.22)

c8 # d ⇒ d # c →1 k (4.23)

e8 # f ⇒ f # e →1 k (4.24)

[e.g. for (4.22), using (4.15), we have b # a →1 b 5 a8 ø (a ù (a ù b))
# a8 ø (a ù k) 5 a →1 k] from which we obtain (4.18).

Conversely, assume (4.18) holds. Let a 5 g →1 k, b 5 g8 →1 k, c 5
h →1 k, d 5 h8 →1 k, e 5 j →1 k, f 5 j 8 →1 k. The hypotheses of (4.18)
are satisfied using (4.11). Noticing [with the help of (4.10)] that the right-
hand side of the resulting inequality is # k, we have (g8 →1 k) ù ((g →1 k)
ø ((h →1 k) ù (h [

j,k
g))) # k, so g ù ((g →1 k) ø ((h →1 k) ù (h [

j,k
g)))

# k. Applying (4.16), we have the 4OA law (h →1 k) ù (h [
j,k

g) # g →1 k. n

Thus we have demonstrated that the orthoarguesian law (4.17) can be
expressed by an equation with only four variables instead of six. This is in
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contrast to the stronger Arguesian law that has been shown by Haiman to
necessarily involve at least six variables [29].

The 3OA law (4.7) expresses an orthoarguesian property that does not
hold in all OMLs, but as demonstrated by the fact that it holds in OML L36,
it is strictly weaker than the proper orthoarguesian law expressed by (4.8)
or (4.17). The 3OA law is equivalent to the following three-variable equation
[27, Equation (III)] obtained by Godowski and Greechie and thus to the other
three-variable variants of that equation mentioned in ref. 27. Godowski and
Greechie were apparently the first to observe that (4.25) fails in OML L28
and also in OML L̂ of Fig. 8a below.

Theorem 4.8. An OML in which

wb8a ø a(a, b, c) 5 wc8a ø a(a, b, c) (4.25)

[where w is the Sasaki projection and a(a, b, c) 5
def

(b ø c) ù (wb8a ø wc8a)]
holds is a 3OA and vice versa.

Proof. Using the definitions, (4.25) can be written in the dual form
(a →1 c) ù ((a ù b) ø ((a →1 c) ù (b →1 c))) 5 (b →1 c) ù ((a ù b) ø
((a →1 c) ù (b →1 c))). We substitute a8 →1 c for a and b8 →1 c for b
throughout; simplifying with (4.12), we obtain (a →1 c) ù (a [

c
b) 5 (b →1

c) ù (a [
c

b). This is easily shown to be equivalent to (4.7). n

Equation (4.25) was derived by Godowski and Greechie from Eq. (4.26)
below, which is a four-variable substitution instance of (4.17). Godowski and
Greechie state that (4.25) is “more restrictive” than (4.26). While it is not
clear to us what is meant by this remark, it turns out that the two equations
are equivalent in an OML. This equivalence also means that the 4OA law
cannot be derived from (4.26) [which can also be verified independently by
noticing that (4.26) does not fail in OML L36].

Theorem 4.9. An OML in which

a ' b & c ' d

⇒ (a ø b) ù (c ø d ) # b ø (a ù (c ø ((a ø c) ù (b ø d )))) (4.26)

holds is a 3OA and vice versa.

Proof. The proof is analogous to that for Theorem 4.7. n

With the help of the following theorem, we show that the relation of
equivalence introduced in Theorems 4.2 and 4.3 is transitive.
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Theorem 4.10. (a) In any 3OA we have

a [
c

b 5 1 ⇔ a →1 c 5 b →1 c (4.27)

(b) In any 40A we have

a [
c,d

b 5 1 ⇔ a →1 d 5 b →1 d (4.28)

Proof. For (4.27), assuming a [
c

b 5 1, we have (a →1 c) ù (a [
c

b)
5 (a →1 c) ù 1 # (b →1 c) by (4.7). Conversely, from (4.11), (a →1 c)8
# a8 →1 c and (b →1 c)8 # b8 →1 c, and from the hypothesis, (a →1 c) [
(b →1 c) 5 1, so 1 5 ((a →1 c) ù (b →1 c)) ø ((a →1 c)8 ù (b →1 c)8)
# ((a →1 c) ù (b →1 c)) ø ((a8 →1 c) ù (b8 →1 c)) 5 a [

c
b. For (4.28),

the proof is similar, noticing that, for the converse, a [
d

b # a [
c,b

b. n

The inference rules (4.27) and (4.28) fail in lattices L28 and L36,
respectively, suggesting the possibility that they imply (in an OML) the 3OA
and 4OA laws. However, we were unable to find a proof.

The transitive laws that are a consequence of (4.27) and (4.28),

a [
d

b 5 1 & b [
d

c 5 1 ⇒ a [
d

c 5 1 (4.29)

a [
d,e

b 5 1 & b [
d,e

c 5 1 ⇒ a [
d,e

c 5 1 (4.30)

are weaker than the 3OA and 4OA laws since both hold in lattice L̂ of Fig.
8a (which violates both laws). However, they have a weak orthoarguesian
property: both fail in lattice L38m4 (Fig. 7a) and thus cannot be derived in
an OML.

The 3OA law and its equivalents have been so far (to the authors’
knowledge) the only published three-variable equations derived from the
4OA law that do not hold in all OMLs. Below we show another three-variable
consequence of the 4OA law that is independent of the 3OA law.

Theorem 4.11. In any OML, the three-variable condition

(a →1 d ) ù (a [
c,d

a8) # a8 →1 d (4.31)

holds in a 4OA, but cannot be derived from the 3OA law nor vice versa.

4 OML L38m is neither a 3OA nor a 3GO, and in addition violates all equations we have tested
that are known not to hold in all OMLs. It has been useful as a counterexample for disproving
equations conjectured to hold in all OMLs. OML L42 is a 4OA, a 5OA (Section 5), and an
nGO (for n # 9, the upper limit we have tested) but violates all equations we have tested
that are known to hold in neither 5OA nor 9GO. It has been useful for disproving equations
conjectured to hold in at least one of these varieties.
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a b

Fig. 7. Greechie diagrams for (a) OML L38m and (b) OML L42.

Proof. This condition is obviously a substitution instance of the 4OA
law (4.8). On the one hand, it fails in lattice L36, but holds in lattice L̂ (Fig.
8a). On the other hand, the 3OA law (4.7) holds in lattice L36, but fails in
lattice L̂. n

An interesting OML is L38 (Fig. 8b), which violates the 4OA law, but
does not violate any three-variable consequence of the 4OA law known
to the authors. One possibility that came to mind was that perhaps L38
“characterizes” 4OA in an essential way, in the sense that a failure in L38
of an equation derived in a 4OA implies its equivalence to the 4OA law
(analogous to the fact that a failure in O6 of an equation derived in an OML
implies its equivalence to the orthomodular law). This turns out not to be
the case—there is a four-variable consequence of 4OA that is strictly weaker
than 4OA, but fails in L38. Whether there exists a three-variable consequence
of 4OA that fails in L38 remains an open problem.

a
b

Fig. 8. Greechie diagrams for (a) L̂ from ref. 27, Fig. II, and (b) L38.
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Theorem 4.12. A failure of a 4OA consequence in lattice L38 does not
imply its equivalence to the 4OA law.

Proof. Writing the 4OA law as (a8 →1 d ) ù (a8 [
c,d

b8) # b8 →1 d, we
weaken the left-hand side of the inequality with a # (a8 →1 d ), etc. to obtain

a ù ((a ù b) ø (((a ù c) ø (a8 ù (c →1 d )))

ù ((b ù c) ø ((b →1 d ) ù c8)))) # b8 →1 d (4.32)

This condition fails in OML L38, but holds in L28. n

L38 has a peculiar history. We found it “by hand” before we had our
present program for generating Greechie diagrams [17]. Later we found
out that Beuttenmüller’s program [8, pp. 319–328] for generating Greechie
diagrams does not give L38 (and a number of other lattices). Looking for a
correct algorithm, we came across McKay’s isomorph-free generation of
graphs. Applied to Greechie diagrams, it gave not only a correct algorithm
for their generation, but also enabled writing a program which is several
orders of magnitude faster than Beuttenmüller’s program transcribed into the
C language (originally it was written in Algol).

5. GENERALIZED ORTHOARGUESIAN EQUATIONS THAT
HOLD IN #(*)

Using the 3OA law as a starting point, we can construct an infinite
sequence of equations E1, E2, . . . that are valid in all Hilbert lattices #(*).
The second member E2 of this sequence is the 4OA law and the remaining
members are equations with more variables that imply the 4OA law.

Definition 5.1. We define an operation [
(n)

on n variables a1, . . . , an (n $
3) follows5:

a1 [
(3)

a2 5
def

a1 [
a3

a2 5 ((a1 →1 a3) ù (a2 →1 a3))

ø ((a81 →1 a3) ù (a82 →1 a3)) (5.1)

a1 [
(4)

a2 5
def

a1 [
a4,a3

a2 5 (a1 [
(3)

a2) ø ((a1 [
(3)

a4) ù (a2 [
(3)

a4)) (5.2)

5 To obtain [
(n)

we substitute in each [
(n21)

subexpression only the two explicit variables, leaving
other variables the same. For example, (a2 [

(4)
a5) in (5.3) means (a2 [

(3)
a5) ø ((a2 [

(3)
a4) ù

(a5 [
(3)

a4)), which means (((a2 →1 a3) ù (a5 →1 a3)) ø ((a82 →1 a3) ù (a85 →1 a3))) ø ((((a2 →1
a3) ù (a4 →1 a3)) ø ((a82 →1 a3) ù (a84 →1 a3))) ù (((a5 →1 a3) ù (a4 →1 a3)) ø ((a85 →1
a3) ù (a84 →1 a3)))).
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a1 [
(5)

a2 5
def

(a1 [
(4)

a2 ø ((a1 [
(4)

a5) ù (a2 [
(4)

a5)) (5.3)

a1 [
(n)

a2 5
def

(a1 [
(n21)

a2) ø ((a1 [
(n21)

an) ù (a2 [
(n21)

an)) n $ 4. (5.4)

Then we have the nOA laws

(a1 →1 a3) ù ((a1 [
(n)

a2) # a2 →1 a3 (5.5)

Each nOA law can be shown to be equivalent, in an OML, to equation
En22 of Theorem 5.2 below by a proof analogous to that for Theorem 4.7.
Thus they all hold in #(*) and for n $ 4 imply (in an OML) the 4OA law.
Also, as we shall show, 5OA is strictly smaller than 4OA, providing us with
a new equational variety valid in #(*) that apparently has not been previously
known. It remains an open problem whether in general nOA is strictly smaller
than (n 2 1)OA.

For the following theorem we will refer to the 3OA and 4OA laws in
their four- and six-variable forms (4.26) and (4.17). Starting with the 3OA
law, we construct a sequence of conditions as follows.

Theorem 5.2. Let E1, E2, . . . be the sequence of conditions constructed
as follows. The first E1 is the 3OA law expressed as

a0 ' b0 & a1 ' b1

⇒ (a0 ø b0) ù (a1 ø b1) # b0 ø (a0 ù (a1

ø ((a0 ø a1) ù (b0 ø b1)))) (5.6)

Given condition En21

a0 ' b0 & a1 ' b1 . . . an21 ' bn21

⇒ (a0 ø b0) ù (a1 ø b1) ??? ù (an21 ø bn21)

# b0 ø (a0 ù (a1 ø (??? (ai ø aj) ù (bi ø bj) ???))) (5.7)

we add new variables an and bn to the hypotheses and left-hand side of the
conclusion. For each subexpression appearing in the right-hand side of the
conclusion that is of the form (ai ø aj) ù (bi ø bj), i, j , n, we replace it
with (ai ø aj) ù (bi ø bj) ù (((ai ø an) ù (bi ø bn)) ø ((aj ø an) ù (bj ø
bn))) to result in condition En:

a0 ' b0 & a1 ' b1 . . . & an ' bn

⇒ (a0 ø b0) ù (a1 ù b1) ??? ù (an ø bn)

# b0 ø (a0 ù (a1 ø (??? (ai ø aj) ù (bi ø bj))
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ù (((ai ø an) ù (bi ø bn)) ø ((aj ø an) ù (bj ø bn))) ???))) (5.8)

Then E2 is the 4OA law, and En (n $ 3) is a condition that implies the 4OA
law, holds in #(*), and cannot be inferred from 4OA.

Proof. It is obvious by definition that E2 is the 4OA law (4.17). It is
also obvious that En (n $ 3) implies En21 and thus the 4OA law: each
subexpression of En2l is greater than or equal to the subexpression of En that
replaces it.

To show that En holds in #(*), we closely follow the proof of the
orthoarguesian condition in ref. 28. We recall that in lattice #(*), the meet
corresponds to set intersection and # to #. We replace the join with subspace
sum 1 throughout: the orthogonality hypotheses permit us to do this on the
left-hand side of the conclusion [8, Lemma 3, p. 67] and on the right-hand
side we use a 1 b# a ø b.

Suppose x is a vector belonging to the left-hand side of (5.7). Then
there exist vectors x0 P a0, y0 P b0, . . . , xn21 P an21, yn21 P bn21 such that
x 5 x0 1 y0 5 ? ? ? 5 xn21 1 yn21. Hence xk 2 xl 5 yl 2 yk for 0 # k, l #
n 2 1. In (5.7) we assume, for our induction hypothesis, that the components
of vector x 5 x0 1 y0 can be distributed over the leftmost terms on theright-
hand side of the conclusion as follows:

??? # b0 1 (a0 ù (a1 1 ((a0 1 a1) ù (b0 1 b1) ù ??? ù ???\ \ \ \ \ \ \
y0 x0 x1 x0 2 x1 2y0 1 y1 5 x0 2 x1 x0 2 x1 x0 2 x1             

x0 2 x1                  

x1 1 (x0 2 x1) 5 x0                      
y0 1 x0 5 x

In particular if we eliminate the right-hand ellipses we obtain a #(*) proof
of the starting condition E1, which is the 3OA law; this is the basis for
our induction.

Let us first extend (5.7) by adding variables an and bn to the hypothesis
and left-hand side of the conclusion. The extended (5.7) so obtained obviously
continues to hold in #(*). Suppose x is a vector belonging to the left-hand
side of this extended (5.7). Then there exist vectors x0 P a0, y0 P b0, . . . ,
xn P an , yn P bn such that x 5 x0 1 y0 5 ??? 5 xn 1 yn. Hence xk 2 xl 5
yl 2 yk for 0 # k, l # n. On the right-hand side of the extended (5.7), for
any arbitrary subexpression of the form (ai ø aj) ù (bi ø bj), where i, j ,
n, the vector components will be distributed (possibly with signs reversed)
as xi 2 xj P ai 1 aj and xi 2 xj 5 2yi 1 yj P bi 1 bj. If we replace (ai ø
aj) ù (bi ø bj) with (ai ø aj) ù (bi ø bj) ù (((ai ø an) ù (bi ø bn)) ø
((aj ø an) ù (bj ø bn))), components xi and xj can be distributed as
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(ai 1 aj) ù (bi 1 bj) ù (( (ai 1 an) ù (bi 1 bn) ) 1 ( (aj 1 an) ù (bj 1 bn) ))\ \ \ \ \ \
xi 2 xj 5 2yi 1 yj xi 2 xn 5 2yi 1 yn 2xj 1 xn 5 yj 2 yn                 

(xi 2 xn) 1 (2xj 1 xn) 5 xi 2 xj

so that xi 2 xj remains an element of the replacement subexpression. We
continue to replace all subexpressions of the form (ai ø aj) ù (bi ø bj),
where i, j , n, as above until they are exhausted, obtaining (5.8).

That En (n $ 3) cannot be inferred from the 4OA law follows from the
fact that the 4OA law holds in L46-7 (Fig. 9), whereas (a1 →1 a3) ù
(a1 [

(5)
a2) # a2 →1 a3 fails in it. L46-9, Fig. 9, is the only other lattice with

this property among all Greechie 3-atoms-in-a-block lattices with 22 atoms
and 13 blocks. L46-7 and L46-9 are most probably the smallest Greechie 3-
atoms-in-a-block lattices with that property: we scanned some 80% of smaller
lattices and did not find any other. n

Theorem 5.3. In any nOA we have

a1 [
(n)

a2 5 1 ⇔ a1 →1 a3 5 a2 →1 a3 (5.9)

This also means that a1 [
(n)

a2 being equal to one is a relation of equivalence.

Proof. The proof is analogous to the proof of Theorem 4.10. n

As with Theorem 4.10, there is an open problem whether (a1 →1 a3) ù
(a1 [

(n)
a2) # a2 →1 a3 follows from (5.9). The fact that (5.9) fails in L46-7

and L46-9 for n 5 5 indicates that it might.

6. DISTRIBUTIVE PROPERTIES THAT HOLD IN # (*)

The distributive law does not hold in either orthomodular or Hilbert
lattices, as it would make them become Boolean algebras; indeed, the failure

a b

Fig. 9. Greechie diagrams for (a) L46-7 and (b) L46-9.
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of this law is the essential difference between these lattices and Boolean
algebras. But by using the Godowski and orthoarguesian equations that extend
the orthomodular ones, we can also extend the distributive properties of
OMLs such as those provided by FH. These can give us additional insight
into the nature of the distributive properties of Hilbert lattices as well as
provide us with additional methods for further study of these lattices. In this
section we show several distributive properties that imply the Godowski and
orthoarguesian equations they are derived from, meaning that they are the
strongest possible in their particular form.

Definition 6.1. Let us call the following expression a chained identity:

a1 [
???

an 5
def

(a1 [ a2) ??? ù (an21 [ an), n 5 2, 3, 4, . . . (6.1)

Lemma 6.2. In any OML, the chained identity a1 [
???

an commutes with
every term (polynomial) constructed from variables a1, . . . , an.

Proof. In any OML, from (2.8) we have (a [ b) ù (b [ c) 5 (a [ b)
ù (a [ c). Using this, we rewrite a1 [

???
an as (a1 [ a2) ??? ù (a1 [ an). In

any OML we also have aCa [ b. Repeatedly applying the commutation law
aCb & aCc ⇒ aCb ù c, we prove a1Ca1 [

???
an. Similarly, for any 1 # i #

n we have ai Ca1 [
???

an. Repeatedly applying the commutation laws aCc &
bCc ⇒ a ø bCc and aCb ⇒ a8Cb, we can build up tCa1 [

???
an for any

expression t constructed from variables a1, . . . , an.
As an exercise, the reader is invited to show an alternate proof using

(3.9). n

Theorem 6.3. In any OML in which the Godowski equation n-Go holds,
the Godowski identity a1 [

g
an commutes with any term constructed from

variables a1, . . . , an.

Proof. Lemma 6.2 and (3.11). n

We can use this commutation relationship in conjunction with FH to
obtain immediately simple distributive laws that hold for any nGO, such as
(a1 [

g
an) ù (s ø t) 5 ((a1 [

g
an) ù s) ø ((a1 [

g
an) ù t), where s and t are

any terms constructed from variables a1, . . . , an. More general laws are also
possible, as Theorem 6.6 below shows.

Lemma 6.4. In any OML the following inferences hold:

aCd & bCd & b ù d # c # d ⇒ a ù (b ø c) 5 (a ù b) ø (a ù c) (6.2)

aCd & bCd & b ù d # c # d ⇒ b ù (a ø c) 5 (b ù a) ø (b ù c) (6.3)

aCd & c # d # b8 ⇒ c ù (a ø b) 5 (c ù a) ø (c ù b) (6.4)
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Proof. For (6.2), a ù (b ø c) 5 a ù (b ø (c ù d )) 5 [using bCd,
cCd] a ù ((b ø c) ù (b ø d )) 5 (b ø c) ù (a ù (b ø d )) 5 [using aCd,
bCd] (b ø c) ù ((a ù b) ø (a ù d )) 5 [using b ø cCa ù b, a ù bCa ù
d] ((b ø c) ù (a ù b)) ø ((b ø c) ù (a ù d )) 5 (a ù b) ø (a ù (d ù
(b ø c))) 5 [using dCb, dCc] (a ù b) ø (a ù ((d ù b) ø (d ù c)) 5 [since
d ù b 5 b ù c and c # d] (a ù b) ø (a ù ((b ù c) ø c)) 5 (a ù b) ø
(a ù c).

For (6.3), b ù (a ø c) # (b ù (a ø d ) 5 [using bCd, aCd] (b ù a)
ø (b ù d ) 5 [using b ù d 5 b ù c] (b ù a) ø (b ù c). The other direction
of the inequality is obvious.

For (6.4), c ù (a ø b) 5 c ù d ù (a ø b) 5 [using dCa, dCb] c ù
((d ù a) ø (d ù b)) 5 c ù ((d ù a) ø 0) 5 (c ù a) ø 0 5 (c ù a) ø
(c ù b). n

In passing, we note that (6.2)–(6.4) are examples of OML distributive
properties that cannot be obtained directly from FH because a does not
necessarily commute with either b or c (lattice MO2 would violate these
conclusions). Also, the conclusion of (6.4) does not hold under the weaker
hypotheses of (6.2) since the inference would fail in OML L42 (Fig. 7b).
We also mention that (6.2)–(6.4) all fail in lattice O6 and thus are equivalent
to the orthomodular law.

The next theorem shows examples of more general distributive laws
equivalent to n-Go, where the variables a, b, and c are not necessarily equal
to any other specific term and may be different from variables a1, . . . , an.
The hypotheses of (6.6) and (6.7) can also be replaced by those of (6.8) to
obtain simpler, though somewhat less general laws.

Definition 6.5. Let us call the following expression a chained implication:

a1 →??? an 5
def

(a1 →1 a2) ??? ù (an21 →1 an), n 5 2, 3, 4, . . . (6.5)

Theorem 6.6. Let t be any term constructed from variables a1, . . . , an.
Then in any nGO (n $ 3), we have the following distributive laws for any
variables a, b, c not necessarily in the list a1, . . . , an:

a1 [
???

an # a # a1 →??? an & bCt & b ù t # c # t & b ø c # an →1 a1

⇒ a ù (b ø c) 5 (a ù b) ø (a ù c) (6.6)

a1 [
???

an # a # a1 →??? an & bCt & b ù t # c # t & b ø c # an →1 a1

⇒ b ù (a ø c) 5 (b ù a) ø (b ù c) (6.7)

a1 [
???

an # a # a1 →??? an & c # t # b8 & b ø c # an →1 a1
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⇒ c ù (a ø b) 5 (c ù a) ø (c ù b) (6.8)

In particular, when t is a1 ù an [for (6.6) and (6.7)] or a8n [for (6.8)], an OML
in which any one of these inferences holds is an nGO and vice versa.

Proof. For (6.6), let s abbreviate a ù (an →1 a1). By (3.11) we have
(a1 →??? an) ù (an →1 a1) 5 a1 [

g
an 5 a1 [

???
an. Hence from the first hypothesis

a1 [
???

an 5 (a1 [
???

an) ù (an →1 a1) # a ù (an →1 a1) # (a1 →??? an) ù (an →1

a1) 5 a1 [
???

an, so s 5 a ù (an →1 a1) 5 a1 [
???

an and by Lemma 6.2, sCt.
Using (6.2), we obtain

a1 [
???

an # a # a1 →??? an & bCt & b ù t # c # t

⇒ s ù (b ø c) 5 (s ù b) ø (s ù c)

Since b ø c # an →1 a1, it follows that s ù (b ø c) 5 a ù (b ø c), s ù
b 5 a ù b, and s ù c 5 a ù c.

In a similar way we obtain (6.7) and (6.8) from (6.3) and (6.4),
respectively.

To obtain the nGO law from (6.6), we substitute a1 [
g

an for a, a1 ù an

for t and c, and a8n for b. The hypotheses of (6.6) are satisfied in any OML,
and the conclusion becomes (a1 [

g
an) ù (an →1 a1) 5 ((a1 [

g
an) ù

a8n) ø ((a1 [
g

an) ù (a1 ù an)) 5 [using (3.46)] ((a1 [
g

an) ù a81) ø ((a1 [
g

an) ù (a1 ù an)) # a81 ø (a1 ù an), which is (3.13).
To obtain the nGO law from (6.7), we make the same substitutions as

above. The conclusion becomes a8n ù ((a1 [
g

an) ø (an ù a1)) 5 (a8n ù
(a1 [

g
an)) ø (a8n ù an ù a1) 5 a8n ù (a1 [

g
an) 5 [using (3.46)] a81 ù

(a1 [
g

an) # a81. Therefore (a1 ù an) ø (a8n ù ((a1 [
g

an) ø (an ù a1))) #
(a1 ù an) ø a81 5 a1 → an. The left-hand side evaluates as (a1 ù an) ø
(a8n ù ((a1 [

g
an) ø (an ù a1))) 5 ((a1 ù an) ø a8n) ù ((a1 [

g
an) ø (an ù

a1)) $ ((a1 ù an) ø a8n) ù (a1 [
g

an) 5 a1 [
g

an, establishing (3.13).
To obtain the nGO law from (6.8), we substitute a1 [

g
an for a, a8n for

t and c, and a1 ù an for b. After that the proof is the same as for (6.7). n

In a 3OA or 4OA we can also derive distributive properties that are
stronger than those that hold in OML. In fact the laws we show in Theorems
6.8 and 6.9 below are strong enough to determine a 3OA or 4OA. First we
prove a technical lemma.

Lemma 6.7. In any OML we have

(a →1 c) ù ((a →1 c) ù (b→1 c))8 ù (a8 →1 c) ù (b8 →1 c) 5 0 (6.9)

(a →1 c) ù (((a →1 c) ù (b →1 c))8 →i ((a8 →1 c) ù (b8 →1 c)))
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# b →1 c, i 5 1, 2 (6.10)

Proof. For (6.9), by FH we have d ù e ù c ù ((d →1 c)8 ø (e →1 c)8)
5 (d ù e ù c ù (d →1 c)8) ø (d ù e ù c ù (e →1 c)8) 5 0 ø 0 5 0.
From (4.9) we have d ù e ù (d →1 c) 5 d ù e ù c. Combining these, we
have d ù e ù (d →1 c) ù ((d →1 c)8 ø (e →1 c)8) 5 0. Substituting a8 →
c for d and b8 → c for e and simplifying with (4.12) gives the result.

For (6.10), i 5 1: Expanding the definition of →i (i 5 1) and applying
FH, we have (a →1 c) ù (((a →1 c) ù (b →1 c))8 →i ((a8 →1 c) ù (b8 →1

c))) 5 ((a →1 c) ù ((a →1 c) ù (b →1 c))) ø ((a →1 c) ù ((a →1 c) ù
(b →1 c))8 ù (a8 →1 c) ù (b8 →1 c)) 5 [using (6.9)] ((a →1 c) ù (b →1

c)) ø 0 # (b →1 c).
For (6.10), i 5 2: Expanding the definition of →2 and applying FH, we

have (d →1 c) ù (((d →1 c) ù (e →1 c))8 →2 (d ù e)) 5 ((d →1 c) ù d ù
e) ø ((d →1 c) ù (e →1 c) ù (d ù e)8) 5 [using (4.9)] (d ù e ù c) ø
((d →1 c) ù (e →1 c) ù (d ù e)8) # (e8 ø (e ù c)) ø (e →1 c) 5 e →1 c.
Substituting a8 → c for d and b8 → c for e and simplifying with (4.12) gives
the result. n

Theorem 6.8. An OML in which

d # a →1 c & d ù (b →1 c) # e & e ø f # a [
c

b

⇒ d ù (e ø f ) 5 (d ù e) ø (d ù f ) (6.11)

holds is a 3OA and vice versa.

Proof. Assume that (6.11) holds. Substitute a →1 c for d, ((a →1 c) ù
(b →1 c))8 →1 ((a8 →1 c) ù (b8 →1 c)) for e, and ((a →1 c) ù (b →1 c))8
→2 ((a8 →1 c) ù (b8 →1 c)) for f. It is easy to see the hypotheses of (6.11)
are satisfied [use (4.14) to establish the third hypothesis]. Using (4.14), the
left-hand side of the conclusion evaluates to (a →1 c) ù (a [

c
b). The right-

hand side is ((a →1 c) ù (((a →1 c) ù (b →1 c))8 →1 ((a8 →1 c) ù (b8 →1

c)))) ø ((a →1 c) ù (((a →1 c) ù (b →1 c))8 →2 ((a8 →1 c) ù (b8 →1 c)))),
which by (6.10) is #(b →1 c) ø (b →1 c) 5 b →1 c, establishing the 3OA
law (4.7).

Conversely, we show the 3OA law implies (6.11). In any OML we have
from the third hypothesis d ù (e ø f ) # d ù (a [

c
b). From the first hypoth-

esis and the 3OA law (4.7) we obtain d ù a [
c

b # d ù (b →1 c). From the
second hypothesis we have d ù (b →1 c) # d ù e # (d ù e) ø (d ù f ).
Thus d ù (e ø f ) # (d ù e) ø (d ù f ). Since d ù (e ø f ) $ (d ù e) ø
(d ù f ) holds in any ortholattice, we conclude d ù (e ø f ) 5 (d ù e) ø
(d ù f ). n
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The proof of the 4OA version of this theorem shows an application of
the 3OA distributive law (6.11), where we use it to construct the inner terms
of the 4OA equation.

Theorem 6.9. An OML in which

e # a →1 d & e ù (b →1 d ) # f & f ø g # a [
c,d

b

⇒ e ù ( f ø g) 5 (e ù f ) ø (e ù g) (6.12)

holds is a 4OA and vice versa.

Proof. Assume that (6.12) holds. Since a [
d

b # a [
c,d

b, we also have
that (6.11) holds. So by Theorem 6.8 we have

(a →1 d ) ù (a [
d

b) # b →1 d (6.13)

By Theorem 6.8 we also have (a →1 d ) ù (a [
d

c) # c →1 d, so (a →1 d )
ù (a [

d
c) ù (b [

d
c) # (c →1 d ) ù (b [

d
c); applying Theorem 6.8 again

to the right-hand side, we obtain

(a →1 d ) ù (a [
d

c) ù (b [
d

c) # b →1 d (6.14)

In (6.12) we substitute a →1 d for e, a [
d

b for f, and (a [
d

c) ù (b [
d

c) for
g. It is easy to see the hypotheses of (6.12) are satisfied, and the conclusion
gives us

(a →1 d ) ù (a [
c,d

b)

5 ((a →1 d ) ù (a [
d

b)) ø ((a →1 d ) ù (a [
d

c) ù (b [
d

c)) (6.15)

From (6.13)–(6.15) we conclude the 4OA law (4.8).
For the converse, the proof that the 4OA law implies (6.12) is essentially

identical to that for Theorem 6.8. n

7. CONCLUSION

Our investigation in the field of Hilbert lattices and therefore in the field
of Hilbert space and its subspaces in previous sections resulted in several
novel results and many decisive simplifications and unifications of the pre-
viously known results mostly due to our new algorithms for generation of
Greechie lattices and automated checking of Hilbert space equations and
lattice equations in general. So the results have their own merit in the theory
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of Hilbert space, quantum measurements, and the general lattice theory, but,
as we stressed in the Introduction, we were prompted to attack the problem
of generating Hilbert lattice equations and their possible connections with
the quantum states (probability measures) by recent developments in the field
of quantum computing. In particular, we are interested in the problem of
making a quantum computer work as a quantum simulator. In order to enable
this, we were looking for a way to feed a quantum computer with an algebra
underlying a Hilbert space description of quantum systems. Boolean algebra
underlies any classical theory or model computed on a classical computer
and it imposes conditions (equations) on classical bits {0,1} with the help
of classical logic gates. For quantum theory such an algebra is still not known.
Quantum computation at its present stage manipulates quantum bits {.0&,
.1&} by means of quantum logic gates (unitary operators) following algorithms
for computing particular problems. A general quantum algebra underlying
Hilbert space does exist, though. It is the Hilbert lattice we elaborated in
Section 3. However, its present axiomatic definition by means of universal
and existential quantifiers and infinite dimensionality does not allow us to
feed a quantum computer with it. What we would need is an equational
formulation of the Hilbert lattice. This would again contribute in turn to the
theory of Hilbert-space subspaces, which is poorly developed. It is significant
that there are two ways of reconstructing Hilbert space starting from an
ortholattice. One is a pure lattice one and is presented in Section 3. The other
is a pure state one [12]. The equational approach unites them.

There were only two classes of such equations known hitherto:
Godowski’s and Mayet’s equations determined by the states defined on a
lattice and four- and six-variable orthoarguesian equations determined by the
projective geometry defined on it. To these we add our newly discovered
(Theorem 5.2) generalized orthoarguesian equations with n variables. In order
to interconnect and simplify the already known results on the former equations
and to obtain new results we analyze the interconnections between an ortholat-
tice and states defined on it and obtain the following results.

• By Theorems 3.10 and 3.3 the difference between classical and quan-
tum states is that there is a single classical state for all lattice elements,
while quantum states for different lattice elements are different.

• By Theorem 3.3 a classical state defined on an ortholattice turns it
into the Boolean algebra.

• By Theorem 3.10 a strong state defined on an ortholattice turns it
into a variety smaller than OML in which Godowski’s equations hold.

On the other hand, we have:

• By Theorem 3.6 there is a way of obtaining complex, infinite-dimen-
sional Hilbert space from the Hilbert lattice equipped with several
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additional conditions and without invoking the notion of state at all.
States then follow by Gleason’s theorem.

As for Godowski’s and Mayet’s equations, we obtain the following results:

• Theorems 3.12, 3.13, 3.15, and 3.16 present several new results on
and simplifications of Godowski’s equations based on the operation
of identity given by Definition 2.4, which is also used to give a new
formulation of orthomodularity by Theorem 2.8.

• New Greechie diagrams in which Godowski’s equations with up to
seven variables fail are presented in Figs. 3–5. They were obtained
by a new algorithm for generating Greechie diagrams and a new
algorithm for automated checking of passage of lattice equations
through them [17] (see footnote at the end of Section 2 and the
comment at the end of Section 4) and they are smaller by several atoms
and blocks than the previously known ones. This makes preliminary
checking of any conjecture related to Godowski’s equations a lot
faster.

• In Theorem 3.20 Mayet’s examples, which were apparently supposed
to differ from Godowski’s equations, are derived from Godowski’s
equations.

As for the orthoarguesian equations, their consequences, and generaliza-
tions, the clue for their unification was given by three- and four-variable
orthoarguesian identities (3-oa and 4-oa, defined in Definition 4.1) which
enabled us to obtain the following results:

• A four-variable Eq. (4.8), the 4OA law, is equivalent to the original
six-variable orthoarguesian equation as given by Day, as we showed
in Theorem 4.7.

• All lower than six-variable consequences of the original orthoar-
guesian equation that one can find in the literature can be reduced
to the three-variable Eq. (4.7), the 3OA law, as illustrated by Theo-
rems 4.8 and 4.9.

• There is a three-variable consequence of the 4OA law which is not
equivalent to the 3OA law as proved in Theorem 4.11.

• There is an n-variable generalization of the orthoarguesian equations,
the nOA law, which holds in any Hilbert lattice, as proved in Theorem
5.2, and which cannot be derived from the 4OA law, as proved in
Theorem 5.3.

• The nOA law added to an ortholattice turns it into a variety smaller
than OML, as shown by Theorems 4.10, 4.2, and 4.3.



2378 Megill and Pavičić

• Each nOA determines a relation of equivalence, as proved by Theo-
rem 5.3.

In the end, different distributive properties that hold in the lattice of
closed subspaces of any Hilbert space are given in Section 6 and several
intriguing open problems are formulated following Theorems 2.9, 3.15, 3.16,
3.21, 4.3, 4.10, 4.11, and 5.3, as well as preceding Theorems 3.20 and 3.22.
Open problems are also to attach a geometric interpretation to nOA and
rigorously to prove that infinite-dimensional Hilbert space contains an infinite
sequence of relations of equivalence. The latter claim would immediately
follow from condition 5 of Theorem 3.6 if we could prove that for no n can
the nOA law be inferred from the (n 2 1)OA law starting with the n 5 5
case proved in Theorem 5.2 [28, p. 379].
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