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Quantum and Classical Implication

Algebras with Primitive Implications
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Join in an orthomodular lattice is obtained in the same form for

all five quantum implications. The form holds for the classical
implication in a distributive lattice as well. Even more, the defini-

tion added to an ortholattice makes it orthomodular for quantum
implications and distributive for the classical one. Based on this

result a quantum implication algebra with a single primitive—and
in this sense unique—implication is formulated. A corresponding

classical implication algebra is also formulated. The algebras are
shown to be special cases of a universal implication algebra.
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1 INTRODUCTION

It is well-known that there are five operations of implication in an ortho-

modular lattice which all reduce to the classical implication in a distributive

lattice. (Kalmbach, 1983) It was therefore believed that implication algebras

for these implications must all be different and such different algebras have

explicitly been defined in the literature. (Clark, 1973; Piziak, 1974; Abbott,

1976; Georgacarakos, 1980; Hardegree, 1981b) The systems were restrictive

and uniquely determining a particular implication in an orthomodular lattice

model.

In this paper, in Sec. 3 we show that one can formulate an implication

algebra which can be modeled by either bare orthomodular or distributive

lattice only after choosing the representation of implication by means of the

lattice operations. We arrive at such a formulation of implication algebra by

using a novel possibility, obtained in Sec. 2, of turning an ortholattice into

either an orthomodular lattice or a distributive lattice by defining the join

in the the same way by means of either quantum or classical implications,

respectively.

2 UNIFIED JOINS IN LATTICES

Definition 2.1. An ortholattice is algebra OL = 〈L◦,⊥ ,∪〉 in which the

following conditions are satisfied for any a, b, c ∈ L◦:

L1. a ≤ a⊥⊥ & a⊥⊥ ≤ a

L2. a ≤ a ∪ b & b ≤ a ∪ b

L3. a ≤ b & b ≤ a ⇒ a = b

L4. a ≤ 1

L5. a ≤ b ⇒ b⊥ ≤ a⊥

L6. a ≤ b & b ≤ c ⇒ a ≤ c

L7. a ≤ c & b ≤ c ⇒ a ∪ b ≤ c

where a ≤ b
def
=a ∪ b = b, 1

def
= a ∪ a⊥. Also

a ∩ b
def
= (a⊥ ∪ b⊥)⊥, 0

def
= a ∩ a⊥.
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An ortholattice is orthomodular (OML) if the following conditions are

satisfied for any a, b ∈ L◦.

L8. a →i b = 1 =⇒ a ≤ b (i = 1,..., 5)

and an ortholattice is distributive (DL) if the following condition is satisfied

for any a, b ∈ L◦ (Pavičić, 1987)

L9. a →0 b = 1 =⇒ a ≤ b

where the implications a →i b (i = 0, . . . , 5) are defined as follows

a →0 b
def
= a⊥ ∪ b (classical)

a →1 b
def
= a⊥ ∪ (a ∩ b) (Sasaki)

a →2 b
def
= b ∪ (a⊥ ∩ b⊥) (Dishkant)

a →3 b
def
= ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥)) ∪ (a ∩ (a⊥ ∪ b)) (Kalmbach)

a →4 b
def
= ((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥) (non-tollens)

a →5 b
def
= ((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥) (relevance)

Theorem 2.1. (i) The equation

UJ(i). a ∪ b = (a →i b) →i (((a →i b) →i (b →i a)) →i a)

is true in all orthomodular lattices for i = 1, . . . , 5 and in all distributive

lattices for i = 0; (ii) an ortholattice in which UJ(i) holds is an orthomodular

lattice for i = 1, . . . , 5 and a distributive lattice for i = 0.

Proof. (i) For i = 1, . . . , 5, the proofs are tedious but straightforward ex-

pansions of the definitions, using the Foulis-Holland theorems extensively

throughout. The following equations summarize the important intermediate

results.

UJ(3).1a. (a →3 b)⊥ ∩ (b →3 a)⊥ = 0

UJ(i).1a. (a →i b) ∩ (b →i a) = (a ∩ b) ∪ (a⊥ ∩ b⊥), i = 4, 5

UJ(i).1b. (a →i b)⊥ ∩ (b →i a) = a ∩ b⊥, i = 3, 4, 5

UJ(i).1c′. (a →i b)⊥ ∪ (b →i a) = a ∪ b⊥, i = 3, 4

UJ(3).1c. (a →3 b)∩((a →3 b)⊥∪(b →3 a)) = (a⊥∩b⊥)∪(a∩(a⊥∪b))

UJ(4).1c. ((a →4 b)⊥∪(b →4 a))∩(b →4 a)⊥ = (a⊥∪b⊥)∩(a⊥∪b)∩a

UJ(5).1c. (a →5 b)⊥∩(b →5 a)⊥ = (a∪b)∩(a∪b⊥)∩(a⊥∪b)∩(a⊥∪b⊥)

UJ(i).1. (a →i b) →i (b →i a) = a ∪ (a⊥ ∩ b⊥), i = 1, 2, 3, 4
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UJ(5).1. (a →5 b) →5 (b →5 a) = a ∪ b⊥

UJ(i).2. (a ∪ (a⊥ ∩ b⊥)) →i a = a ∪ b, i = 1, 2, 3, 4

UJ(5).2. (a ∪ b⊥) →5 a = a ∪ (a⊥ ∩ b)

UJ(3).3a. (a →3 b)⊥ ∩ (a ∪ b)⊥ = 0

UJ(5).3a. (a →5 b) ∩ (a ∪ (a⊥ ∩ b)) = (a ∩ b) ∪ (a⊥ ∩ b)

UJ(i).3b. (a →i b)⊥ ∩ (a ∪ b) = (a →i b)⊥, i = 3, 4

UJ(5).3b. (a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b)) = a ∩ (a⊥ ∪ b⊥)

UJ(i).3c′. (a →i b)⊥ ∪ (a ∪ b) = a ∪ b, i = 3, 4

UJ(3).3c. (a →3 b)∩ ((a →3 b)⊥ ∪ (a∪ b)) = (a⊥ ∩ b)∪ (a∩ (a⊥ ∪ b))

UJ(5).3c. (a →5 b)⊥ ∩ (a ∪ (a⊥ ∩ b))⊥ = (a ∪ b) ∩ (a ∪ b⊥) ∩ a⊥

UJ(i).3. (a →i b) →i (a ∪ b) = a ∪ b, i = 1, 2, 3, 4

UJ(5).3. (a →5 b) →5 (a ∪ (a⊥ ∩ b)) = a ∪ b

For i = 3, 4: UJ(i).1c follows from UJ(i).1c′. For i = 3, 4, 5: UJ(i).1

follows from UJ(i).1a,b,c and the definition of →i. For i = 3: UJ(3).3c

follows from UJ(3).3c′. For i = 3, 5: UJ(i).3 follows from UJ(i).3a,b,c and

the definition of →i. For i = 4: UJ(4).3 follows from UJ(4).3b,c′ and the

definition of →4. For i = 1, . . . , 5: UJ(i) follows from UJ(i).1,2,3.

For i = 0: The proof follows in a trivial way from the distributivity

property and we omit it.

(ii) The non-orthomodular ortholattice O6 [Fig. 1(a)] is violated by UJ(i)

for i = 1, . . . , 5. Each UJ(i) is therefore equivalent to the orthomodular law

by Theorem 2(iii) of (Kalmbach, 1983, p. 22).

Non-distributive OM6 [Fig. 1(b)] (Abbott, 1976) is violated by UJ(0).

One easily shows that UJ(0) is equivalent to the distributive law.
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Figure 1: (a) Ortholattice O6 (b) Orthomodular lattice OM6



M. Pavičić and N. Megill, Quantum and Classical Implication Algebras 5

Theorem 2.2. The equation

UO(i). a⊥ = a →i 0

is true in all orthomodular lattices for i = 1, . . . , 5 and in all distributive

lattices for i = 0.

Proof. The proof is straightforward and we omit it.

3 QUANTUM AND CLASSICAL

IMPLICATION ALGEBRAS

Many authors have given various systems of implication algebras so far. For

example, systems for the Sasaki implication were formulated by (Clark, 1973;

Piziak, 1974; Hardegree, 1981b, 1981a), for Dishkant’s by (Abbott, 1976;

Georgacarakos, 1980), for relevance implication by (Georgacarakos, 1980).

In this section we give a system which is formulated by means of a primitive

implication as the only operation. In doing so, while formulating definitions

and theorems, we shall mostly follow (Piziak, 1974), (Abbott, 1976), and

(Georgacarakos, 1980).

Definition 3.1. Let P be a nonempty set. We designate an element in P and

call it 0. Let →: P ×P 7→ P . Let 1
def
=0 → 0. Then the triple UA = 〈P, 0,→〉

is called universal implication algebra provided the following axioms and rules

of inference R1–R4 are satisfied for all a, b, c ∈ P . The triple QA = 〈P, 0,→〉

is called quantum implication algebra provided the following axioms and rules

of inference R1–R5q are satisfied for all a, b, c ∈ P and classical implication

algebra CA = 〈P, 0,→〉 provided A1–A4, R1–R4, and R5c are satisfied for

all a, b, c ∈ P .

Axioms.

A1. a → ((a → 0) → 0) = 1 & ((a → 0) → 0) → a = 1

A2. a → ((a → b) → (((a → b) → (b → a)) → a)) = 1

A3. b → ((a → b) → (((a → b) → (b → a)) → a)) = 1

A4. a → 1 = 1 &

(a → (a → 0)) → (((a → (a → 0)) → ((a → 0) → a)) → a) = 1
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Rules of Inference.

R1. a → b = 1 ⇒ (b → 0) → (a → 0) = 1

R2. a → b = 1 & b → c = 1 ⇒ a → c = 1

R3. a → c = 1 & b → c = 1

⇒ ((a → b) → (((a → b) → (b → a)) → a)) → c = 1

R4. a → b = 1 & b → a = 1 ⇔ a = b

R5q. (a → (b → 0)) → (((a → (b → 0)) → ((b → 0) → a)) → a) = 1

& a → b = 1 ⇒ b → a = 1

R5c. (a → (b → 0)) → (((a → (b → 0)) → ((b → 0) → a)) → a) = 1

⇒ b → a = 1

Theorem 3.1. Let L = 〈P,⊥ ,∪〉 be an orthomodular lattice OML. Define

in L the following operations:

D1. 1
def
=a ∪ a⊥

D2. 0
def
=1⊥

D3. a → b
def
=a →i b where i = either 1 or 2 . . . or 5.

Then the system LQA = 〈P, 0,→〉 is a quantum implication algebra QA. The

same is valid for a universal implication algebra UA.

Proof. The proof follows straightforwardly from Definition 2.1 and Theorem

2.1 and the following property of an orthomodular lattice: (Pavičić, 1987)

L10. a ∪ b⊥ = 1 & a ≤ b ⇒ b ≤ a.

Theorem 3.2. Let L = 〈P,⊥ ,∪〉 be a distributive lattice. Define in L the

following operations:

D1. 1
def
=a ∪ a⊥

D2. 0
def
=1⊥

D3. a → b
def
=a →0 b.

Then the system L
CA = 〈P, 0,→〉 is a classical implication algebra CA. The

same is valid for a universal implication algebra UA.



M. Pavičić and N. Megill, Quantum and Classical Implication Algebras 7

Proof. The proof again follows straightforwardly from Definition 2.1 and

Theorem 2.1 and the following well-known property of a distributive lattice:

L11. a ∪ b⊥ = 1 ⇒ b ≤ a.

Theorem 3.3. If L = 〈P, 0,→〉 is a quantum implication algebra QA, then

L
QA

∗

= 〈P,⊥ ,∪〉

is an orthomodular lattice OML, where ⊥,∪ are defined in L as follows

D1. a⊥def
=a → 0

D2. a ∪ b
def
=(a → b) → (((a → b) → (b → a)) → a).

Moreover a → b is determined as one of a →i b, i = 1, . . . , 5.

Proof. We first write all expressions of the form a → 0 as a⊥. Then we

recognize all the a∪b expressions. Next, write down all a → b = 1 expressions

as a ≤ b (which easily follows from R4). We are left with L1–L7 and L10,

i.e., we obtain an orthomodular lattice. Hence, a → b from R4 must be one

of a →i b, i = 1, . . . , 5 as given by L8.

Theorem 3.4. If L = 〈P, 0,→〉 is a classical implication algebra CA, then

L
CA

∗

= 〈P,⊥ ,∪〉

is a distributive lattice DL, where ⊥,∪ are defined in L as in Theorem 3.3.

Moreover a → b is determined as a →0 b.

Proof. We first write all expressions of the form a → 0 as a⊥. Then we

recognize all the a ∪ b expressions. Next, we use R4 to write down all a →

b = 1 expressions as a ≤ b. We are left with L1–L7 and L11, i.e., we obtain

a distributive lattice. Hence, a → b from R4 must be a →0 b as given by

L9.

Theorem 3.5. If L = 〈P, 0,→〉 is a universal implication algebra UA, then

L
UA

∗

= 〈P,⊥ ,∪〉

is a(n) distributive (orthomodular) lattice, where ⊥,∪ are defined in L as

follows
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D1. a⊥def
=a → 0

D2. a ∪ b
def
=(a → b) → (((a → b) → (b → a)) → a).

and where → maps into →i in the following way:

a →i b = a → b ; i = 0—distributive (i = 1, . . . , 5—orthomodular).

Proof. We first write all expressions of the form a → 0 as a⊥. Then we

recognize all the a ∪ b expressions. Next, we use R4 to write down all a →

b = 1 expressions as a ≤ b. We are left with L1–L7, i.e., we obtain an

ortholattice. Then, depending on whether we choose a → b from R4 to be

either a →0 b or a →i b; i = 1, . . . , 5 we obtain either a distributive or an

orthomodular lattice.

4 CONCLUSION

In Sec. 2 we show that an ortholattice, when the axiom UJ(i) defined in The-

orem 2.1 is added to it, turns into an orthomodular lattice for i = 1, . . . , 5—

i.e., for the so-called quantum implications—and into a distributive one for

i = 0—i.e., for the classical implication. The axiom UJ expresses join by

means of all these implications in a formally identical way.

In Sec. 3, in Definition 3.1 we employ the so expressed join to formulate

quantum and classical implication algebras, QA and CA, respectively. We

have chosen the axiomatization from (Pavičić, 1987)—because each expres-

sion of its axioms and rules of inference contains ∪ and ⊥ at most once—

and introduced join ∪ and orthocomplementation ⊥ expressed by means of

a primitive implication following UJ and UO, from Theorems 2.1 and 2.2,

respectively. In that way we obtain a quantum implication algebra which

uses a single primitive implication. Hence, the main difference between our

and all previous quantum implication algebras is that each of the latter ones

corresponds to a particular quantum implication (one of five) while our does

not. Besides, to our knowledge, only for three of five implications, implica-

tion algebras have been formulated so far.) As soon as we define the lattice

operations on the algebra—by means of D1–D3 from Theorem 3.3—we open

the orthomodular lattice possibility to express the primitive implication on

the algebra by means of any of the five quantum implications but this is

exactly the sense in which the obtained quantum implication algebra QA
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generalizes not only orthomodular lattices but also all previously obtained

quantum implication algebras.

As also shown in Sec. 3, the two generalized quantum and classical impli-

cation algebras can themselves be generalized by dropping the rules R5 from

Definition 3.1. So obtained universal implication algebra UA—see Theorem

3.5—contains algebras QA and CA, depending on how we choose to represent

the implication. It would be interesting to investigate what other systems

the algebra UA can give under different definitions of the lattice operations.

NOTE ADDED IN PROOFS

A step by step proof of Theorem 2.1 the reader can find at the following

address: www1.shore.net/˜ndm/java/auql/mmexplorer.html
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