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Identity Rule for

Classical and Quantum Theories

Mladen Pavičić 1

It is shown that the identity rule—a rule of inference which has

the form of modus ponens but with the operation of identity sub-
stituted for the operation of implication—turns any ortholattice

into either an orthomodular lattice (a model of a quantum theory)
or a distributive lattice (a model of classical theory). It is also

shown that—as opposed to the implication algebras—one cannot
construct an identity algebra although the identity rule contains

the operation of identity as the only operation.
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E-mail: mpavicic@faust.irb.hr; Fax: +385–1–4828050
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1 INTRODUCTION

(Pavičić & Megill, 1998a) have shown that binary orthologic becomes either

quantum or classical logic when nothing but modus ponens rule is added to

it, depending on the kind of the operation of implication used. In lattice

notation (lattice being a model of a logic and therefore of a corresponding

theory) the result reads as follows:

Theorem 1.1. An ortholattice in which the following modus ponens rule

a ≤ b & a → b ≤ c → d ⇒ c ≤ d

holds is an orthomodular lattice for ‘→’ being one of the five quantum impli-

cations and a distributive lattice for ‘→’ being the classical implication.

An obvious disadvantage of this rule for inferring theorems in varieties of

quantum logic is that one does not know which of the five implications one

should choose. Therefore it would be interesting to find a unique operation

for a rule analogous to the one from the Theorem 1.1. To arrive at such a rule

let us examine the proof of the above theorem. We obtained it by connecting

the operation of implication and the relation of implication in the following

way.

Theorem 1.2. (Pavičić, 1987) An ortholattice in which

a → b = 1 ⇔ a ≤ b

holds is a distributive lattice for ‘→’ being the classical implication and an

orthomodular lattice for ‘→’ being one of the five quantum implications.

Since the following theorem holds

Theorem 1.3. (Pavičić, 1993) An ortholattice in which

QL a ≡ b = 1 ⇔ a = b

holds is an orthomodular lattice for the identity being defined as

Definition 1.3.1. a ≡ b
def
= (a ∩ b) ∪ (a⊥ ∩ b⊥)

Therefore we could conjecture that the identity and equality can be substi-

tuted for the implication and inequality, respectively, in the Theorem 1.1. In

the next section we prove the conjecture.
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2 THE IDENTITY RULE

Our conjecture on the existence of the identity rule meets an apparent counter

argument in the Theorem 3.2 of (Pavičić, 1993). We shall therefore first show

that the theorem is only partially correct by proving the following theorem.

Theorem 2.1. An ortholattice in which

CL a ≡c b = 1 ⇔ a = b

holds is a distributive lattice for the identity being defined as

Definition 2.1.1. a ≡c b
def
= (a⊥ ∪ b) ∩ (a ∪ b⊥)

Proof. In (Pavičić, 1993) we proved that an ortholattice to which CL is

added is orthomodular. Since we are able to prove that it also violates the

orthomodular lattice OM6 (Fig. 1) the lattice is distributive (Abbott, 1976).

To see that the orthomodular lattice OM6 (Fig. 1) is violated (Abbott, 1976)

one can easily check that a = b does not follow from (a⊥ ∪ b) ∩ (a ∪ b⊥) = 1
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Figure 1: Orthomodular lattice OM6

Our main theorems now read as follows:

Theorem 2.2. An ortholattice in which the following identity rule

a = b & a ≡ b = c ≡ d ⇒ c = d

holds is an orthomodular lattice and vice versa.

Proof. To prove the first part of the theorem we choose b which is equal to

a and obtain a ≡ b = 1. This yields

c ≡ d = 1 ⇒ c = d
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and by Theorem 1.3, the orthomodularity.

To prove the vice versa part we start with the premises a = b and a ≡

b = c ≡ d. But by Theorem 1.3 a = b gives a ≡ b = 1 therefore c ≡ d = 1.

Thus, again by Theorem 1.3, we obtain the conclusion, c = d.

Theorem 2.3. An ortholattice in which the following identity rule

a = b & a ≡c b = c ≡c d ⇒ c = d

holds is a distributive lattice and vice versa.

Proof. Using Theorem 2.1 we prove this theorem in complete analogy to the

the proof of the previous theorem.

3 IDENTITY ALGEBRA CANNOT BE FORMU-

LATED

(Pavičić & Megill, 1998b) have shown that join and negation in an orthomod-

ular lattice can be obtained in the same for the classical and all five quantum

implications. Starting from this result, they formulated a quantum implica-

tion algebra with a single primitive—and in this sense unique—implication.

A natural question which in the light of these results springs from the above

theorems is whether one can express join and negation by means of the

two above-defined operation of identity—which are by definition unique, i.e.,

whether an “identity algebra” can be formulated. By the following theorem

we are going to answer to this question in the negative.

Theorem 3.1. Orthocomplementation in an orthomodular lattice can be ex-

pressed as a⊥ = a ≡ 1 = a ≡c 1. Join, meet, and implications in

an orthomodular lattice cannot be expressed by means of either quantum or

classical identity.

Proof. Free orthomodular lattices with two generators (expressions with two

elements) can be represented by the direct product OM6 × 24 (Beran, 1985).

Denoting the elements of the Bollean algebra 24 by b1 = (0, 0, 0, 0), b1 =

(1, 0, 0, 0),. . . ,b16 = (1, 1, 1, 1), we can write down all 96 elements of the lattice

in the form (ai, bj), i = 1, . . . , 6, j = 1, . . . , 16, where ai are the elements of
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the orthomodular lattice OM6 (Fig. 1). We can easily check that (ai, b12)

through (ai, b15), i = 1, . . . , 6, are exactly all six implications (five quantum

ones and the classical one) and join, while (ai, b2) through (ai, b5) are their

negations (which include meet).

We prove the theorem by checking that bk ≡ = (bk ∩ bl) ∪ (b⊥k ∩ b⊥l ), k =

1, 6,. . . ,11, 16; l = 1, 6,. . . ,11, 16, cannot yield any one of b2,. . . ,b5, b12,. . . ,b15.

For, we should start with either a ≡ b = (0, b8) = (0, 1, 0, 0, 1) or

a⊥ ≡ b = (0, b9) = (0, 0, 1, 1, 0), etc., and arrive at either a ∪ b =

(0, b12) = (1, 1, 1, 1, 0) or a ∩ b = (0, b2) = (0, 1, 0, 0, 0), etc. However,

that would mean that starting with b’s containing two unities we should—

applying (bk ∩ bl) ∪ (b⊥k ∩ b⊥l ) on them—arrive at a b containing either one

or three units, which is clearly impossible. (For example, the first meet can

give one unity and then the second meet of the orthocomplemented elements

also gives one unity and the final join yields two units. Looking at all other

combinations, we always arrive at an even number of unities and zeros.)

4 CONCLUSION

It is well known that quantum logic lacks a suitable rule of inference mainly

because it does not have a unique operation of implication. In Section 2,

we therefore considered unique operations of identity and found that one can

formulate identity rules which are analogues to the lattice to lattice-theoretic

modus ponens rules given by Theorem1.1. The rules turn an ortholattice into

either an orthomodular or a distributive lattice as shown by Theorems 2.2

and 2.3.

It is interesting that two such rules which at first sight might be taken

for ortholattice theorems can be substituted for the orthomodularity and the

distributivity axioms. Therefore, in Section 3, we investigated whether it

would be possible to arrive at an “identity algebra” which would use the

identity as the only primitive operation and answered this question in the

negative.

The main contribution of our recent (Pavičić & Megill, 1998a, 1998b)

and present results to understanding of principles of modeling quantum and

classical theories by means of lattices and other algebraic structures and



M. Pavičić, Quantum and Classical Identity Rule 6

logics is that the latter are recognized as systems handling operations and

relations between the propositions and primarily the propositions themselves.

In (Pavičić & Megill, 1998a, 1998b) we have shown that one can model

both quantum and classical theories by practically nothing but operations

and relation of implication and without dealing directly with elementary

propositions and attaching values to them. For quantum theories and their

logics, which cannot ascribe values to all propositions, the appropriateness

of such an approach is obvious. For classical theories and their logics this is

an interesting alternative to the standard approach. In the present paper we

have shown that even higher axioms (orthomodularity and distributivity) in

such models do not require implication and ordering: identifying propositions

which can be considered equal suffices for the axiomatization.
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