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Summary. Unified quantum logic which is a propositional logic underlying
quantum formalism is given a new much simplified axiomatization. A statistical
basis for this propositional logical system is given so as to interpret unified quan-
tum logic as a system of deduction. The soundness and completeness of algebraic
semantics are proved. Kripkean and probabilistic semantics are discussed.
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1. INTRODUCTION

The question as to whether quantum logic can be considered a theory of deduction
underlying quantum mechanics has been given many apparently contradictory answers
to date. It has been argued that quantum logic is necessarily an empirical logic and
that, therefore, it cannot be a theory of a priori valid inferences.[18,Ch.8.6] At the same
time, many axiomatic deductive calculuses, all of which have an equational class of
orthomodular lattices as their model, have actually been formulated. [Forareviewsee29]

The two approaches are only apparently contradictory since they are actually yet
another expression of the individual versus the statistical interpretation of quantum
mechanics.[18] A difference between the two approaches formulated within the Hilbert
space frame of quantum mechanics is given in Refs. [30,32] where we investigate quantum
probability equal to unity which characterizes statistically repeatable and predictable

measurements of the first kind. In this case probability equal to unity ascribes a unique
value of a measured observable to the ensemble of individual systems measured. It does
not necessarily ascribe a unique experimental value of the measured observable to all

individual systems as it does to an ensemble of them. Whether it does or not, depends
on a particular function. The function would exhibit a jump at one end point of the
closed probability interval [0,1] if the probability equal to one ascribed the value to all

the individual systems. If not, it would stay continuous. We review the result in Sec. 2.
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While a difference in experimental values of a function defined on the semi–closed
interval [0,1) as opposed to the closed interval [0,1] cannot be expected to be mea-
surable, an important physical contribution of this result is that the assumptions of
the individual repeatability and “non–repeatability” (of statistically repeatable quan-
tum measurements) correspond to properties of a well–defined function and that the
only way to ascribe an individual system a proper value registered by a statistically
repeatable measurement is to postulate this.

Thus it seems that quantum logic is first of all an a priori calculus which is surely
weakly confirmable by quantum mechanics in the same way in which classical logic is
confirmable by classical mechanics. Classical logic has a distributive lattice as its model
which enables us to build up the phase space for classical logic, and quantum logic has
an orthomodular lattice as its model which enables us to build up the Hilbert space
for quantum mechanics. It may be that (like classical logic) quantum logic is strongly
empirically confirmable as well, since quantum formalism is in agreement with both
possibilities. However, such an additional feature of individual quantum measurements
can hardly be proved by experiments conceivable today.

Whether or not quantum logic can be considered an a priori axiomatic calculus
underlying quantum mechanics has met with scepticism for yet other reasons. First,
the objection has been raised that quantum logic does not satisfy many axioms and
rules valid in classical logic some of which have traditionally been taken to be indis-
pensable to a “proper” logic. [18] Such an objection has gradually been dropped since
many quantum logics were actually axiomatized “in a manner completely analogous to
classical propositional logic.” [14] Secondly, a problem has been raised about the fact
that quantum logics using different operations of implications can apparently not sat-
isfy a common axiomatic system.[8,13,15,35] The latter objection was met in [29] where
exactly such a system is formulated and named unified quantum logic. In Sec. 3 we
present a new and essentially simpler axiomatization of unified quantum logic.

Finally, quantum logic lacks simple non–algebraic semantics which are apparently
needed as a clue to certain important unresolved problems, e.g., as to whether quantum
logic has a finite model property or whether it is decidable.[11] Several such semantics
have been formulated (Kripkean semantics by Goldblatt [10] and Dalla Chiara [4], and
probabilistic semantics by Bodiou [2], Morgan [24] and Pavičić [27]) but none of them
have proved successful in solving these problems. Most probabilistic semantics show
that a probability function needed to prove the completeness theorem for the seman-
tics is not guaranteed existence so far as quantum logic proper is concerned. It seems,
however, that by adding particular new axioms, thus obtaining a logic between ortho-
modualar logic and modular logic, we can assure the existence of such a function.[21,22]
An analogous conclusion can be conjectured for the reflexive and symmetric Kripkean
accessibility relation used by Goldblatt [11] to prove that there are no first–order con-
ditions imposable on such a relation in order to give a proper semantics. In Sec. 4 we,
therefore, indicate a possibility of using another relation of accessiblity and discuss some
problems of Kripkean and probabilistic semantics
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2. RELATIVE–FREQUENCY APPROACH TO REPEATABLE MEASUREMENTS

Our aim is to formulate an expression [given by Eq. (1)] which is a function of
the relative frequency of the measured data as well as of the corresponding theoretical
(Hilbert space) probability and which has a well–defined physical meaning.

When individual quantum systems are subjected to YES–NO measurements of a dis-
crete observable, unrestricted by any conservation law, the eigenvalue of the measured
observable (projector) corresponds to a particular property of the ensemble of the indi-
vidual systems. For repeated YES–NO measurements of a discrete observable a YES–event
occurs almost certainly, i.e. with probability equal to unity, and from a statistical point
of view such measurements are repeatable. However, in looking at individual events we
face the following dilemma.

We can take the view that a YES–event with probability one always occurs. In this
case a measurement is considered repeatable in both senses: statistical and individual.
An individual system is then considered to possess a particular property strictly.

The other possibility is to assume that a YES–event with probability one occurs
almost always. In this case the individual repeatability is not admitted. An individual
system is then considered to possess no particular property strictly.

The afore–mentioned expression [given by Eq. (1)] takes two different values for
each of the two possibilities and is therefore a “measure” for individual repeatability.

Let us consider spin preparation–detection measurements for spin–s particles.
Quantum systems are prepared, one by one, by a preparation device (a Stern–Gerlach
device) and detected, one by one, by a detection device (another Stern–Gerlach de-
vice) deflected at an angle α relative to the preparation device. In effect, we carry out
quantum YES–NO measurements. Quantum mechanics then predicts that the relative
frequency N+/N of the number N+ of detections of the prepared property (spin pro-
jection m prepared in the statistical sense of the word) on the systems among the total

number N of the prepared systems approaches probability p = p
(s)
mm(α) = [ds

mm(α)]2

(where ds
mm(α) is a diagonal element of the rotation matrix).

The first basic feature of any quantum YES–NO measurement of the first kind is
that particular individual events are completely independent. The second basic feature
of such measurements is that trials form an exchangeable sequence. Taken together,
the trials are Bernoulli trials, i.e. they form Bernoulli sequences. Thus we can estimate
ideal quantum frequencies, i.e. frequencies of an infinite number of individual YES–NO

experiments, by means of quantum theoretical probabilities as elaborated below.

A direct consequence of the law of large numbers for Bernoulli trials is

P (limN→∞

N+

N
=p) = 1, where p = 〈N+

N
〉.

Starting from this expression and the following lemmas (proved in [30]),

Lemma 2.1. limN→∞ P (N+

N =p) = 0.
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Lemma 2.2. limN→∞ P (p − η∆p ≤
N+

N ≤ p + η∆p) = 1
2π

∫ η

−η
e−x2/2dx, where

∆p =
√

p(1−p)
N , and 0 < |η(N)| < ∞.

we are able to prove (in Ref. [32]) the following theorems.

Theorem 2.1. The function

G(p)
def
= L−1 lim

N→∞

[

|α
(N+

N

)

− α(p)|N1/2
]

, (1)

where L = limN→∞ |η(N)| is a bounded random (stochastic) variable, is well–defined
and continuous on the open interval (p1, 1), where p1 = [ds

mm(α1)]
2, where α1 is such

(always existing) that p = [ds
mm(α)]2 is a continuous monotonic decreasing function

defined on [0, α1] and differentiable on (0, α1).

Theorem 2.2. If

H(p)
def
=

√

p(1 − p)
∣

∣

∣

d p

dα

∣

∣

∣

−1

=
1

2

√

1 − (ds
mm)2

∣

∣

∣

d (ds
mm)

dα

∣

∣

∣

−1

, 0 ≤ p ≤ 1,

then G(p)=H(p) on (p1, 1).

Theorem 2.3.

lim
p→1

G(p) = lim
p→1

H(p) = lim
α→0

H
[

p(α)
]

= [2(s2 + s − m)]−1/2, (2)

where m = −s,..., +s.

Turning our attention to the probability equal to one we see from the definition
of H(p) given in Theorem 2 that H is not defined for the probability equal to one:
H(1) = 0

0 . However, its limit exists and is given by expression (2). Thus a continuous

extension of H to (p1,1] exists and is given by H̃(p) for p ∈ (p1, 1) and H̃(1) is equal to
the right–hand side of Eq. (2).

The function G, on the other hand, cannot be approached in the same way because
we do not know whether G(1) is defined at all and if it is we do not know which values
it should be ascribed.

We do not know whether G(1) is defined or not because the strong law of large
numbers, which alone establishes the link between the probability and the relative fre-
quency in question, is simply not valid for the end points of the closed interval [0,1]. It
is valid only on the open interval 0 < p < 1.

And we do not know which values it should be ascribed if it is defined because the
quantum formalism does not say anything on the relative frequency corresponding to
p=1 either.

Thus we are left with the following three possibilities.
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1. G(p) is continuous at 1. A necessary and sufficient condition for this is G(1) =
limp→1 G(p). In this case we cannot strictly have N+=N since then G(1) = 0 6=
limp→1 G(p) obtains a contradiction.

2. G(1) is undefined. In this case we also cannot have N+=N since the latter equation
makes G(1) defined, i.e. equal to zero.

3. G(1) = 0. In this case we must have N+=N . And vice versa: if the latter equation
holds we get G(1) = 0.

Hence, a measurement of a discrete spin observable s can be considered repeatable

with respect to individual measured systems if and only if G
(

p
(s)
mm

)

exhibits a jump–

discontinuity for p
(s)
mm=1 in the sense of point 3 above.

The interpretative differences between the points are as follows.

1 & 2 admit only the statistical interpretation of the quantum formalism and banish
the repeatable measurements on individual systems from quantum mechanics
altogether. Possibility 1 seems to be more plausible than possibility 2 because
the assumed continuity of G makes it approach its classical value for large
spins. Notably, for a classical probability we have limp→1 Gcl(p) = 0 and from
the expression (2) we get lims→∞ limp→1 G(p) = 0.

Point 3 admits the individual interpretation of quantum formalism and assumes that
the repeatability in the statistical sense implies the repeatability in the in-
dividual sense. By adopting this interpretation we cannot but assume that
nature differentiate open intervals from closed ones, i.e. distinguishes between
two infinitely close points.

The result obtained supports the view that the logic underlying quantum formalism
is based on the statistics of individual quantum measurements and not on the individual
quantum measurements themselves.

3. THE NEW AXIOMATIZATION OF UNIFIED QUANTUM LOGIC

Quantum logic is usually not considered a proper logical system because of the lack
of a proper operation of implication and because of the lack of a proper Kripkean seman-
tics. Thus quantum logics which have an orthomodular lattice as their Lindenbaum–
Tarski algebra, i.e. as their model, either use a relation of implication [7,10,25] or one of
the five possible operations of implication.[1,5,8,16,19,34] It has been conjectured that
no common axiomatization exists for the latter systems. In Ref. [30] this conjecture is
disproved by constructing a common system named unified quantum logic which merges
all five operations of implication. In this section we present a much simplified axiom-
atization of unified quantum logic. (See Theorem 1 given below when comparing the
axiomatization with the one presented in Ref. [30].)

The propositions are based on elementary propositions p0, p1, p2, ... and the follow-
ing connectives: ¬ (negation), → (implication), and ∨ (disjunction).

The set of propositions Q0 is defined formally as follows:
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pj is a proposition for j = 0, 1, 2, ...
¬A is a proposition iff A is a proposition.
A → B is a proposition iff A and B are propositions.
A ∨ B is a proposition iff A and B are propositions.

The conjuction is introduced by the following definition: A ∧ B
def
= ¬(¬A ∨ ¬B).

Our metalanguage consists of axiom schemata from the object language as ele-
mentary metapropositions and of compound metapropositions built up by means of the
following metaconnectives: & (and), ∼ (not), ⇒ (if..., then), and ⇔ (iff), with the usual
classical meaning.

We define unified quantum logic UQL as the axiom system given below. The sign
` may be interpreted as “it is asserted in UQL.” Connective ¬ binds stronger and
→ weaker than ∨ and ∧, and we shall occasionally omit brackets under the usual
convention. To avoid a clumsy statement of the rule of substitution, we use axiom
schemata instead of axioms and from now on whenever we mention axioms we mean
axiom schemata.

Axiom Schemata.

A1. ` A → A

A2. ` A ↔ ¬¬A

A3. ` A → A ∨ B

A4. ` B → A ∨ B

A5. ` B → A ∨ ¬A

Rules of Inference.

R1. ` A → B & ` B → C ⇒ ` A → C

R2. ` A → B ⇒ ` ¬B → ¬A

R3. ` A → C & ` B → C ⇒ ` A ∨ B → C

R4. ` (B ∨ ¬B) → A ⇔ ` A

The operation of implication A → B is one of the following:

A →1 B
def
= ¬A ∨ (A ∧ B) (Mittelstaedt)

A →2 B
def
= ¬B →1 ¬A (Dishkant)

A →3 B
def
= (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨

(

(¬A ∨ B) ∧ A
)

(Kalmbach)

A →4 B
def
= ¬B →3 ¬A (non–tollens)

A →5 B
def
= (A ∧ B) ∨ (¬A ∧ B) ∨ (¬A ∧ ¬B) (relevance)

We prove that UQL is really quantum logic by proving that UQL has an ortho-
modular lattice as a model.
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Definition 3.1. We call L = < L, h > a model of the set Q0 if L is an orthomodular
lattice and if h: UQL 7→ L is a morphism in L preserving the operations ¬, ∨, and →
while turning them into ⊥, ∪, and ⊃i (i = 1,..., 5),† and satisfying h(A) = 1 for any
A ∈ Q0 for which `A holds.

Definition 3.2. We call a proposition A ∈ Q0 true in the the model L if for any
morphism h: UQL 7→L, h(A)=1 holds.

We prove the soundness of UQL for valid formulas from L by means of the following
theorem.

Theorem 3.1. ` A =⇒ A is true in any orthomodular model of UQL.

Proof. By analogy with the binary formulation of quantum logic, [10,28] it is obvious
that A1–A5 hold true in any L, and that the statement is preserved by applications of
R1–R3. Verification of R4 is also straightforward and we omit it.

Let us now prove some simple theorems for subsequent usage and for the sake of
completeness.

Theorem 3.2.

T1. ` A → B =⇒ ` A ∧ C → B ∧ C

R5. ` A ↔ B =⇒ ` (C → A) ↔ (C → A)

R6. ` A ↔ B =⇒ ` (A → C) ↔ (B → C)

Proof. T1 is trivially satisfied in any ortholattice.
The derivation of R5 and R6 is straightforward but tedious since it involves an

explicit handling of all five afore–given implications in turn. Therefore we shall only
illustrate it by deriving R6 for →1 and leave the rest to the reader.

Let us first consider A → B.

` A → B ⇒ [T1, A4, & R1] ⇒ ` A ∧ C → ¬B ∨ (B ∧ C). (3)

On the other hand,

` B → A ⇒ [R2, A3, & R1] ⇒ ` ¬A → ¬B ∨ (B ∧ C) (4)

Combining (3) and (4) and using R3 we obtain

` A ↔ B ⇒ ` ¬A ∨ (A ∧ C) → ¬B ∨ (B ∧ C) ⇐⇒ ` (A →1 C) → (B →1 C).

Similarly we obtain

` A ↔ B ⇒ ` (B →1 C) → (A →1 C).

Hence R6 for →1.

In an analogous way we prove R5 as well as R6 for the other implications.

† Defined in a lattice by analogy with the definitions given above. See [28,29] for details.
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Theorem 3.3. Let UQLi denotes UQL with → = →i, i = 1,..., 5. Then in any UQLi

we can infer A1–A5 and R1–R4 for any →j , j = 1,..., 5.

Proof. Straightforward.

Theorem 3.4. UQL with A → B = A ⇀ B
def
= ¬A ∨ B is classical logic.

Proof. Straightforward.

To prove the completeness of UQL for the class of valid formulas of L, we first
define relation ≡ and prove some related lemmas.

Definition 3.3. A ≡ B
def
= ` A ↔ B.

where ` A ↔ B means ` A → B & ` B → A.

Lemma 3.1. The relation ≡ is a congruence relation on the algebra of propositions
A = < Q0,¬,∨,→>.

Proof. The proof for ¬ and ∨ is obvious. The proof for → is (with the help of R5 and
R6 from Th. 2) straightforward and we omit it.

Lemma 3.2. The Lindenbaum–Tarski algebra A/≡ is an orthomodular lattice, i. e.,
the conditions defining the lattice are true for ¬/≡, ∨/≡, and → /≡ turning into
⊥, ∪, and ⊃i by means of natural isomorphism k :A 7→A/≡ which is induced by the
congruence relation ≡ and which satisfies k(¬A) = [k(A)]⊥, k(A ∨ B) = k(A) ∪ k(B),
and k(A → B) = k(A) ⊃i k(B).

Proof. On account of formal analogy with the binary formulation of quantum logic, we
consider the proofs of the conditions for an ortholattice to be well–known and we omit
them. As for the orthomodularity we shall prove

a ⊃i b = 1, i = 1,..., 5 ⇐⇒ a ∪ b = b (5)

which is yet another way to express it as shown in [29].
Let us assume ` A → B. By A1 and R3 we obtain ` A ∨ B → B and A6 gives

` B → A ∨ B. Therefore ` A ∨ B ↔ B.
On the other hand, the assumption can, with the help of R4 and A5, be expressed

as ` (A → B) ↔ (C ∨ ¬C).
Taken together, we obtain the following metaequivalence:

` (A → B) ↔ (C ∨ ¬C) ⇔ ` (A ∨ B) ↔ B.

Thus we get k(A) ⊃i k(B) = 1 ⇔ k(A) ∪ k(B) = k(B) . Hence (5) holds.

Corrolary. A/≡ is a model of theses of UQL.
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Lemma 3.3. k(A) = 1 =⇒ ` A.

Proof. Since k(B ∨ ¬B) = 1, we have k(B ∨ ¬B) = k(A), i.e., (B ∨ ¬B) ≡ A, and we
obtain the statement by R4.

Thus we have proved the completeness of UQL for valid formulas of L, that is, the
following theorem.

Theorem 3.5. If A is true in any model of UQL, then ` A.

Taken together, UQL is a proper quantum–logical deductive system so far as its
algebraic semantics is concerned.

4. KRIPKEAN AND PROBABILISTIC SEMANTICS FOR QUANTUM LOGIC

Instead of a conclusion, in this section we shall review some results and open prob-
lems of the semantical approach to quantum logic.

Another sense in which an axiomatic system can be considered a proper logic is
given by the possibility of finding a particular relation of accessibility which characterizes
the system, thus equipping it with a modal, i.e. Kripkean semantics.

Once found, the relation of accessibility may offer a canonical model which would
falsify all non–theorems, i.e., establish decidability and possibly even the finite model
property. For quantum logic such a relation has not been found as yet. What has
been achieved is a way of imposing a particular restriction on a frame characteriz-
ing a weaker, so called orthologic or minimal quantum logic thus obtaining a Kripkean
“quasi–semantics” for quantum logic.[10,25] The relation of accessibility used for this
purpose is a reflexive and symmetric one. It determines the orthoframe which charac-
terizes minimal quantum logic. Whether a class of orthoframes characterizes quantum
logic proper is not known. What is known is that even if it does the frames cannot be
defined by first–order conditions on a reflexive and symmetric relation of accessibility
as proved by Goldblatt.[11] He proved this using a correspondence with the Hilbert
space where a negation of the orthogonality relation can play the role of a reflexive and
symmetric relation of accessibility.

However, if it were possible to find a relation of accessibility for quantum logic which
is not reflexive and symmetric, then the possibility of imposing first–order conditions
on such a relation in order to characterize the logic would still be open. For, although
the irreflexive† and symmetric orthogonality relation obviously plays a crucial role in an
algebraico–logical representation of the Hilbert space quantum formalism such a relation
does not necessarily characterize the propositional logic underlying the formalism.

† The orthogonality relation cannot be used directly to characterize an axiom in modal

quantum logic since the irreflexiveness corresponds to no axiom. Thus the negation of the

orthogonality relation has been used to give the accessibility relation.
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Besides, even if the orthomodularity itself is not characterized by any first–order
conditions such investigations might help to find a possible characterization of propo-
sitional logic underlying Hilbertian quantum formalism which may be characterized by
first–order conditions despite the fact that it contains the orthomodualrity axiom.

What we have in mind is a possible parallel with the following results in modal
logic.

The system KM,† where

M: ♦A ⇀ ♦ A,

is not first–order definable while KT4M (S4+M) as well as K4M are. [17]

In quantum formalism the propositional logic underlying the Hilbert space is not a
bare quantum logic since it possesses other properties, such as the Desarguesian one, as
well.[9] Thus proper quantum propositional logic is stronger than quantum logic proper.
Whether this logic is characterized by a reflexive and symmetric relation of accessibility
is an open question and therefore it makes sense to investigate other possibilities.

One way to find a relation of accessibility for quantum logic is to embed it in a
modal system characterized by the relation.

Originally Goldblatt [10] and Dalla Chiara [6] embedded minimal quantum logic
into the Brouwerian KTB system‡ and Dishkant [6] embedded quantum logic into an
extension of KTB.

As of a relation which is neither reflexive nor symmetric in Ref. [29] we carried
out an embedding into modal system Br− characterized by the following conditions
(containing reflexivity and symmetry as a special case) on the relation of accessibility R:

∀w1∃w2

[

w1Rw2 & ∀w3(w2Rw3 ⇒ w1Rw3)
]

,

∀w1∀w2

{

w1Rw2 ⇒ ∃w3

[

w2Rw3 & ∀w4(w3Rw4 ⇒ w1Rw4)
]}

.

The embedding is carried out by a translation which differs from the one used in
[10] and [4].

In Ref. [31] we carried out an embedding into a modal system which is Br− extended
by an axiom using the same translation as in [10] and [4].

Yet another semantical approach to quantum logic can be achieved by means of
probabilistic semantics.

Probabilistic semantics lacks possible worlds and frames but it proves useful when
the relation of accessibility cannot be characterized by first–order conditions. E.g., it
has been proved that there is a probabilistic semantics for every extension of classical
sentence logic. [23]

† To designate modal systems we mostly adopt the classification from [3].

‡ T: A ⇀ A is characterized by a reflexive and B: A ⇀ ♦A by a symmetric relation

of accessibility.
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Probabilistic semantics have been formulated for quantum logic but they are still
far from being satisfactory. Most probabilistic semantics use probability functions which
are actually states , i.e., have the strong orthogonality property and/or the Jauch–Piron
property.[2,20,24,27] And it is well–known that there are Lindenbaum–Tarski algebras
for quantum logic, i.e., orthomodular lattices, which do not admit a state on them. [12]
Thus a probability function needed to prove the completeness theorem for the semantics
is not guaranteed existence so far as quantum logic proper is concerned. Our conjecture
is (in the same way as for Kripkean semantics and the relation of accessibility problem)
that by adding particular new axioms, thus obtaining a logic between quantum logic
and a modular logic, we can assure the existence of such a function. [21,22] There is,
however, an alternative probabilistic semantics formulated by Morgan [24] whose prob-
ability function has its existence assured. It would be interesting to know whether there
is a parallel between such alternative probabilistic semantics and the afore–mentioned
alternative relations of accessibility.
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