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Unified quantum logic based on unified operations o f  implication is formulated as 
an axiomatic calculus. Soundness and completeness are demonstrated using 
standard algebraic techniques. An embedding o f  quantum logic into a new modal 
system is carried out and discussed. 

1. INTRODUCTION 

Quantum mechanics provides the semantics for quantum logic, but the 
question as to whether the latter can be considered a proper logic, i.e., a 
theory of deduction underlying quantum mechanics, is still unsettled. Two 
main obstables blocking the transformation of quantum logic into proper 
logic seemed to be the lack of a suitable operation of implication and the 
absence of simple semantics. Recently we proved (1) that just such a lack of 
a suitable implication boils down to nothing but a unique characterization 
of the orthomodularity. In this paper we use the result to unify all formula- 
tions of quantum logic which could be based on a particular choice of 
implications. We also show that a semantics for quantum logic based on a 
binary relation which is not determined by orthogonality ~2) and related 
to the aforementioned characterization of orthomodularity might be 
conceived. 

The problem of implication in quantum logic is closely related to the 
fact that there are many candidates for an operation of implication in the 
logic, none of which satisfy the proper deduction theorem. This is in con- 
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trast to the situation in classical logic, where a unique operation of implica- 
tion satisfies the theorem. As a result, many formulations of quantum logic 
have been established, all of them determined, implicitly or explicitly, by 
the chosen implication, even when particular formulations of quantum 
logic have not been conceived as logical calculuses but only as implica- 
tional algebras. Among them one can distinguish the systems employing an 
operation of implication simply added to already defined quantum logic, 
and the systems which--in order to formulate quantum logic proper-- 
employ either the relation of implication or one of the five possible binary 
operations of implication expressed by means of conjunction (or disjunc- 
tion) and negation and reduced to the classical operation of implication for 
the commensurable propositions. We shall discuss only the latter systems, 
but before we embark on this, we shall briefly comment on the former ones 
just to explain why we are going to disregard them. Such systems employ 
implications derived from relevance logic, (3) strict implications, (4) normal 
implications, ~s'6) and others. (7"s) And, although these implications seem 
to induce neither distributivity nor modularity on quantum logic, the 
appropriate systems usually turn out to be nontrivial extensions of quan- 
tum logic proper, thus being too strong to serve our purpose. 

As for the axiomatizations of quantum logic by means of implications, 
those which employ essentially the relation of implication either do not 
employ any operation of implication at all, or employ an improper opera- 
tion which only simulates the relation of implication (e.g., such an "opera- 
tion" cannot be expressed by other operations). Examples for the former 
axiomatization are Goldblatt's (9) binary logic (adopted from Kotas '(1°) and 
Ackermann's (~ ~ ) logic of schemata) and Nishimura's (121 sequential logic. An 
example for the latter axiomatization is the one put forward by Dalla 
Chiara (~3) who based it on the so-called "trivial hook, ''(s) i.e., "uttrastrict 
implication."(14) 

Among the systems which employ proper operations of implication we 
can distinguish the following ones. 

Mittelstaedt's ~15~ dialogical quantum logic, which employs the 
Mittelstaedt implication (16) (taken over from modular logic (17~ by 
Mittelstaed(~8~) and is also called the quasi-implication, (19) the Sasaki 
implication, (8) conditional hook, (8"2°'2~) and conditional arrow, (22) 
(Clark (23~ and Hardegree (24) also used this implication to formulate 
their axiomatic systems), 
Dishkant's (2s) predicate quantum calculus which employs the 
Dishkant implication, (z°) also called the ortho-implication, (z6) and 
Kalmbach's (zT) orthomodular propositional logic which uses the 
Kalmbach implication. (1) 
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As for the implication algebras, Finch, (28~ Piziak, (29) Hardegree, (24~ 
and Georgacarakos (2°~ formulated four different version of them for the 
Mittetstaedt implication. Georgacarakos (2°~ formulated the implication 
algebra for the relevance implication (3°) (also called Kotas-Kalmbach 
hook(8)). And finally Abbott (3~) and Georgacarakos (3°) formulated two 
different systems for the Dishkant implication. 

For such a variety of the implication characterizations of quantum 
logic, two main reasons were often advanced. First, it has been presup- 
posed that one of the implications should be preferred, (14) and, secondly, 
most of the systems which employ operations of implication appeared to be 
rather complicated and impractical, (~2~ 

We shall, however, show that, as a consequence of our recent result,(1/ 
none of the implications is to be preferred, and that, by means of a unified 
operation of implication, it is possible to formulate an implication system 
that is as simple and practical as all those which use only the relation 
of implication. The system possesses a number of desirable properties, 
including the (weak) law of modus ponens, the (weak) law of transitivity, 
the property of orthomodularity derivable from the axioms of the system, 
a possibility of the implication to be nested, and a clear formal corre- 
spondence with an orthomodular lattice and the implications defined in it. 
These properties, especially the last one, suggest that such a unified opera- 
tion of implication might serve to establish a property which would charac- 
terize quantum logic in a more "tractable" way than the property of 
orthogonality that is established on the relation of implication. As a first 
step toward this aim, we have employed the obtained system to embed 
quantum logic into a new modal logic which is weaker than Dishkant's 
system and which seems suitable to establish semantics, since it does not 
contain axioms that connect modal propositions with nonmodal ones. It 
turns out that the relation of accessibility corresponding to the axioms 
from the modal system is neither symmetric nor reflexive, and therefore 
such a relation of accessibility cannot determine the orthogonality relation. 
Thus, if this accessibility relation can be shown as not collapsing into a 
symmetric and reflexive one, a possibility for orthomodularity to be deter- 
mined by a new relation of accessibility is opened. 

2. UNIFIED QUANTUM LOGIC 

The purpose of this section is to provide an axiom system 3 for quan- 
tum logic which merges all possible operations of implication of quantum 

3 The system (UQL)  is an axiomatic calculus for orthomodular-valid formulas. It cannot be 
considered a proper logic in the usual sense of" the word. 
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logic into a single one, and which dispenses with the relation of implication 
altogether. By all "possible" operations of implication we mean five opera- 
tions of implication which reduce to the classical operation of implication 
for commensurable (compatible) propositions and which can be expressed 
by means of other operations, notably disjunction and negation, or con- 
junction and negation. Four of these were mentioned in the Introduction 
and the fifth, which has not served to define any system in the literature, 
will be designated here as the "non-tollens implication," since it is the only 
one which does not satisfy the law of modus tollens. We shall state them 
all explicitly later on. 

To ease the notation while formulating the system, we shall treat the 
operations of implication, disjunction, and negation as primitive. Actually, 
by not using the relation of implication within an orthomodular lattice, as 
usual, but rather the operations of implications defined in it as the means 
of proving the lattice a model for our system, we in effect prove the 
following. Any of the five aforementioned operations of implication, as 
expressed with the help of other operations, can be substituted for any 
occurrence of the implication connective in our system. Such a substitution 
cannot  be done with the relation of implication (the one used, e.g., in 
Goldblatt's system°~). 

The propositions are based on elementary propositions P0, Pl, P2,.,., 
and the following connectives: -7 (negation; unary connective), 
(implication; binary connective), and v (disjunction; binary connective). 

The set of propositions QO is defined formally as follows: 

pj is a proposition for j = 0, 1, 2 .... 
A is a proposition iff A is a proposition. 

A ~ B is a proposition iff A and B are propositions. 
A v B is a proposition iff A and B are propositions. 
The conjunction connective is introduced by the following definition: 
A A B := ~ ( ~ A  v -riB) 

Our metalanguage consists (apart from the common parlance) of 
axiom schemata from the object language as elementary metapropositions 
and of compound metapropositions built up by means of the following 
metaconnectives: & ("and"), ~z ("or"), ~ ("not"), =~ ("if,... then"), and ,~ 
("iff"), with the usual "classical" meaning. 

We define unified quantum logic UQL as the axiom system given 
below. The sign ~ may be interpreted as "it is asserted in UQL." Connec- 
tive -1 binds stronger and ~ binds weaker than v and A, and we shall 
occasionally omit brackets under the usual convention. To avoid a clumsy 
statement of the rule of substitution, we use axiom schemata instead of 
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axioms. (From now on, whenever we mention axioms, we actually mean 
axiom schemata.) 

Axiom Schemata. 

A1. t-A ~ A  
A2. ~A +-+ -1-7 A 
A3. F - A ~ A  v B  
A4. t - B  ~ A v B 

A5. }--B--+ A v - q A  

Rules of  Inference. 

R1. ~ A  ~ B & ~-B ~ C ~ F-A --+ C 

R2. F-A-'+ B ~ ~ - - q B " + - q A  

R3. ~ A - - + C  & F - B ~ C  ~ ~ A  v B ~ C  

R4. }--A~-+B ~ ~ - ( C ' - + A ) ~ - - ~ ( C ~ B )  

R5. }-A,--,B ~ F-(A -'+ C) ~ (B -~ C) 
R6. }--(A v - q A ) + - r B  ~ }--B 

where }-A ~ B means }-A ~ B & }-B ~ A. 
The operation of implication A ~ B can be any one of the following 

ones and no one but them4: 

A--+~ B : = - T A  v (A  /x B)  

A --+ e B : = -q B --~ 1 "~ A 

A--+3 B : =  ( ~ A / x  ~ B )  v ( ~ A  /x B) 
v ((-qA v B) A A) 

A -+ 4 B : = -q B -+ 3 -q A 
A--+s B : =  (A/x B) v ( T A  A B) v (-qA v -qB) 

(Mittelsteadt) 
(Dishkant) 

(Kalmbach) 
(non-tollens) 
(relevance) 

We prove that U Q L  is really quantum logic by constructing the 
Lindenbaum-Tarski  algebra for it and show that the latter is an 
or thomodular  lattice. 

By an or thomodular  lattice we mean an algebra L =  <L °, ±,  u ,  c~ > 
such that the following conditions are fulfilled for any a, b, c e L ° and 
j =  1, 2,..., 5. 

L1. a c ~ b = b c ~ a  

L2. ( a c ~ b ) m c = a m ( b ~ c )  

L3. a ±± = a 
L4. a ~ a - L = O  ( a w a =  l )  

4Correspondingly, A v B can be (-IA ~I,5 7 B ) ~ l , s A ,  (A-%.sB)-+z, sB, ~ A - - +  3 

(~A ~3B), or - q ( A ~ 4 - q B ) ~ 4 B .  
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L5. a n ( a u b ) = a  

L6. a ~ b = ( a ± u b ± )  -~ 

L7(j). a D j b = l  ~ a<~b 

where a <<. b : = a c~ b = a c:~ a u b = b and 

a = l  b : = a  ± ~ (ac~b)  

a ~ z b  : = b ± ~ l  a ± 
a = 3 b  : = ( a ~  n b i ) u ( a ~  n b ) u ( ( a ~ L ~ b ) c ~ a )  

a ~ 4  b := b ± ~3 a i  
a ~ s b  : = ( a c ~ b ) u ( a i  c~b)u (a l~  n b  ~) 

The above presentation of an orthomodular lattice differs from the 
usual presentation, which employs 

L7'. a u b = ( ( a u b ) c ~ b - ) u b  

or, equivalently, (1) 

L7". a<<.b & a u b : = l  ~ b~<,a 
f 

instead of L7(j). However, following Ref. 1, it is easy to show that the two 
presentations coincide. 

That  L7(j) holds in an orthomodular lattice that satisfies L1-L6 and 
L" is well known. 

To prove the opposite, let us assume a ~<b and a ~  b ± =  1. The first 
assumption means a n b = a, or, equivalently, a x c~ b ± = b ±. Upon 
introducing these expressions in the second assumption, we obtain 
1 = ( a n b ) u b  I = b ~  1 a and 1 = a w  (a ± n b  1) = b ~ 2 c t  for which L7(t)  
and L7(2) give b ~< a. Hence, L7" holds. Proceeding in a similar manner, we 
prove the same using L7(3)-L7(5). (1) 

In order to prove that UQL is quantum logic, i.e., to prove that UQL 
has an orthomodular lattice as its model, we introduce two definitions: 

Definition 1. We call ~ = (L,  h )  a model of the set of formulas QO 
if L is an orthomodular lattice and if h: UQL  ~-~ L is a morphism in L 
preserving the operations -7, v ,  and ~ while turning them into _1_, w, and 
= j  ( j =  l,..., 5), and satisfying h ( A ) = l  for any A E Q  ° for which 
FA := F-UQL A holds. 

Definition 2. We call a proposition A ~ QO true in the model ~ if for 
any morphism h: UQL ~ L, h ( A ) =  1 holds. 

We can prove the consistency of UQL for valid formulas from L. 

Theorem 1. If k-A, then A is true in any model of QO. 
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P r o o f  By the analogy with the binary formulation of quantum 
logic, (% it is obvious that A1-A5 hold true in any LP, and that the state- 
ment is preserved by applications of R1-R3. Let us verify the remaining 
rules. 

AdR4.  a D j b = l  & b D j a = l  ~ ( c D j a ) ~ j ( c ~ j b ) = ( c D j b ) ~ j  

(c= j  a ) =  1. By L7(j) we transform the statement into the following one: 

a = b  ~ c = j a = c = j b  

We have to carry out the proof for each j separately. 

j = l .  a = b  ~ c ± u ( c c ~ a ) = c ± u ( c u ( c n b ) . I t i s o b v i o u s .  
j = 2 .  Obvious. 
j = 3 .  Let us a s s u m e a = b .  T h e r e f o r e a ± = b  ~ a n d c ± ~ a  l = c L c ~ b  L. 

We also obtain c ± c~ a = c ± c~ b, as well as c ± u a = c ~c u b ~ (c -I u a) c~ c = 
(c ± u b) c~ c. Combining all the three obtained expressions, we get 

(c-L c'~a ± ) u (c±cha) w ( ( c ~ w a )  n c) = (cZc~b 2-) w (c±c'~b) u ( ( c l u b )  ~ c). 

Hence, the statement. 
j = 4 and j = 5. These are obtained in an analogous way. 

Ad R5. Starting from a = b =~ a =j  c = b Dj c and copying the proce- 
dure for the previous rule, we easily prove the statement. 

Ad R6. By applying L7(j) twice we obtain a u a  ± = b ~ b =  1. Hence, 
R6 holds. 

And finally we should prove that the definitions of implications, i.e., 
~-(A ~ B) ~ (A --+i B), i = 1,..., 5 turn into the corresponding definitions of 
a = j b ,  j =  1,..., 5 given above. However, it is obvious and we omit the 
proof. I 

To prove the opposite, i.e., the completeness of UQL for the class of 
valid formulas of L, we first define relation = and prove some related 
lemmas. 

Definit ion 3. A --=- B := p-A ~-~ B. 

Lemma 1. The relation _= is a congruence relation on the algebra of 
propositions s J = ( Q  °, 7 ,  ~ ,  v ), that is, for all A, B, C, D s Q  ° the 
following hold: (1) A-=A; (2) A = - B ~ B = - A ;  (3) A - B &  B =  C ~ A  = C; 

(4) A ~ B ~  ~ A  = -aB; (5) A - B ~ C  v A - C  v B; (6) A = - B ~ A  v C = - 
B v  C; (7) A - B & C = _ D ~ A  v C = _ B v D ;  (8) A = - B ~ C - ~ A = C - + B ;  
(9) A ~ B ~  A- - .  C : - B ~  C; (10) D = - A  & B = C ~  D ~ B = - A  ~ C. 
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Proof Obvious. | 

Lemma 2. The Lindenbaum-Tarski algebra ~/--- is an ortho- 
modular lattice, i.e., L1-L7(j) are true for - 1 / - ,  v / = ,  and - , / =  turning 
into ", w, and Dj by means of natural morphism k: d ~ d / =  which is 
induced by the congruence relation = and which satisfies k(-nA)= 
[-k(A)], k(A v B)=k(A) v k(B), and k(A ~B)=k(A)=jk(B) .  For any 
asserted A, i.e. for ~-A, the equality k(A)= 1 holds. 

Proof On account of formal analogy with the binary formulation of 
quantum logic, O) we consider the proofs of L1-L6 to be well known, and 
therefore we omit them. To prove L7(j), let us assume ]-A --* B. By A1 and 
R3 we obtain ~A v B ~ B  and A6 gives [ - B ~ A  v B. Therefore 
~-A v B +~ B. On the other hand, the assumption can, with the help of R6, 
be expressed as ~-(A ~ B ) ~  (A v ~A). Taken together, we obtain the 
following meta-implication: ~- (A ~ B) ~ (A v -1 A) ~ [-A v B ~ B. Thus 
we get k(A) Dj k(B) = 1 ~ k(A) w k(B) = k(B). Hence, L7(j) holds since the 
other direction easily follows from L1-L6. 

Let us now prove the last statement of the theorem. On account of R6, 
for an asserted A, i.e., for ~-A, we have k(A)= k(B)w [k(B)]. Hence, the 
statement holds. | 

Corollary. <,~/=,  k )  is a model of theses of UQL. 

L e m m a 3 .  k(  A ) = l ~ ~- A.  

Proof Since k ( B v - n B ) = I ,  we have k(Bv--nB)=k(A), i.e., 
(B v -7 B)-= A. From it we obtain the statement by R6. I 

Thus we have proved the completeness of UQL for valid formulas of 
L, that is, the following theorem. 

Theorem 2. If A is true in any model of UQL, then ~-A. 

Two essential properties of UQL that do not appear as axioms or 
basic rules of inference are the (weak) law of modus ponens and the 
property of orthomodularity. And we shall close this section by showing 
their validity in UQL. 

The weak law of modus ponens, 

~-A & ~-A--.B ~ }-B (1) 

follows easily from R6 and R1. 
That UQL possesses the property of orthomodutarity is evident on 
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account of Lemma 2 and our presentation of an orthomodular lattice. 
However, we consider it illustrative to give a direct proof in UQL, using 
the definitions of the operations of implications by means of two other 
operations. 

We want to prove 

F-A-~B & F - - T B v A  ~ F-B~A (2) 

In what follows, we shall not indicate all the steps and all the axioms 
and rules involved, since the proof is rather simple and straightforward. 

Let us assume 

and 

~-A ~ B (3) 

~--TB v A (4) 

(a) From (3), by R2, we get ~ - I B ~ - T A ,  and from this, A1, R3, 
and R2, we obtain }-A ~-1(-7A v -7B). Using A1, A4, and R1 for the 
first expression, and R1 for the second, we obtain 

~--TB-~ T B  v (A A B) & ~-A ~ - q B  v (A A B) 

Using R3, (4), and (1), we get 

~--nB v (A A B) (5) 

(b) ( 3 ) ~ } - A v  B - - , B ~ B - ~  7 ( A v  B ) ~  
F-TB v A ~ A  v 7(A v B)=~ (4)& ( 1 ) ~  
~A v (mA A -TB) (6) 

(c) ( 3 ) ~  ~- -7B~-7B A 7A & [-r-A ~ A  A B ~ ( 4 )  & (1) 
F-(A A B) v ( ~ B  A A) v (~A A ~B)  (7) 

(d) ( 3 ) ~ [ - - A ~ A  A B & ~ - ~ B - , - 7 A & ~ - - T B ~ - T B v  A ~  
F-(A A B) v (-TB A A) v ((-nB v A) A -TA) (8) 

(e) ( 3 ) ~ F - - 7 B ~ - n A  A - T B & F - A ~ ( - 7 B v A )  A B ~  
~-(~A A ~B)  v (-7B A A) v ((-7B v A) A B) (9) 

Since the expressions (5)-(9) are the Mittelstaedt, Dishkant, relevance, 
non-tollens, and Kalmbach implications, respectively, by R6, R1, and once 
again R6, we obtain }- B -~ A, i.e., the conclusion of (1). Of course, if it had 
not been for the illustration, it would have been enough to use but one of 
the definitions. (Note that, if we allow A ~ B to be interpreted as classical 
implication --7A v B, then UQL becomes classical logic. (1)) 
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3. A M O D A L  E M B E D D I N G  

The property of orthomodutarity is characterized by the relation of 
orthogonality, which is in turn determined by the relation of implication. 
The relation of orthogonality can be shown to strongly determine minimal 
quantum logic (9'12'1~ and in a particular way quantum logic itself. (~'9'12) 
On the other hand, the property of orthomodularity has been shown to be 
nonelementary and "intractable ''(2) provided it is characterized by the 
relation of orthogonality. 

Is there any other way to characterize the property of orthomodularity 
and therefore quantum logic itself?. To answer this question, we first have 
to find a relation of accessibility that characterizes quantum logic and that 
differs from the existing one, i.e., from the proximity relation. °) One way 
to do this is to embed quantum logic into a modal logic characterized by 
such a relation. And in this section we carry out an embedding in a modal 
logic which is characterized by a relation of accessibility that includes the 
proximity relation 5 only as a special case. If one does not show the relation 
to collapse into a proximity relation within quantum logic proper, it might 
serve as an alternative relation of accessibility for quantum logic. This, of 
course, does not amount to two nogequivalent semantics for quantum logic 
but only to two different approaches which should eventually meet. 

In doing the embedding, we shall closely follow the procedure and 
particular results obtained by Dishkant in Ref. 32. Dishkant carried out an 
embedding of quantum logic in the Brouwerian modal system (strongly 
determined by a proximity relation), extended so as to include the property 
of orthomodularity "translated ''(~6) in a modal axiom (or an equivalent rule 
of inference). Dichkant named the system Br +. 

We are going to show that it is possible to embed quantum logic in 
system Br -  which is weaker than Br +. Besides, starting from L7(j), 
we have reduced the modal orthomodular rule of inference to a simpler 
equivalent rule. 

We define Br-  as classical logic, i.e., the system A1-A5 & Rt-R6 with 
A ~ B := ~ A  v B, to which the following axiom schemata and rules of 
inference are added. The sign ~ may be interpreted as "it is asserted in 
Br- ."  The set of all proposition in Br -  is denoted as M °. In Br , 

~ A ~ -7 [] -7 A holds. 

Axiom schemata. 

MA1. ~ ( A ~ B ) ~ ( ~ A ~ B )  
MA2. ~ [ ] ~ A - ~ < S A  
MA3. ~ [] A ~ [] <5 [] A 

5 A proximity relation is one which is symmetric and reflexive. 
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Rules of inference. 

MR1. ~ A  ~ ~ D A  
MR2. ~ [ ~ © A ~ O ~ ( O A / x  ©B) ~ ~ I O A ~ 2 2 O B  

Thus any appearance of A ~ B in an expression preceded by the sign 
~- should be rendered as A ~ B, i =  1,..., 5 and any appearance of it in an 
expression preceded by ~ means -hA v B. (Our notation, which is of 
assertional type, differs slightly from Dihkant's (32) in the following way. 
Whenever Dishkant writes F ~-A or F ~ A, i.e., "A is derivable from F," 
we write }-A or ~A,  i.e.,, "it is asserted," and vice versa. This will have no 
impact on our adoption of particular results from Ref. 32.) 

The rule MR2 can be replaced by any of the four other possibilities 
corresponding to the remaining four operations of implications. We omit 
these, since they add nothing new to the formulation of the system. 

In the following we shall use the subsequent theorems and derived 
rules of inference, which are either easy to prove or well known. 

Theorems. MA4. ~ D A ~ © D A ;  MA5. ~©E~I]OA~OA: ,  MA6. 
~ © A  ~ ~ © A ;  MA7. ~ [ ] ( A  /x B) ,-, [2A /x DB; MA8. 
~ ( Q A  v U B ) - , ~ ( A  vB) ;  MA9. ~ O ( A  A B ) - ~ ( O A / ~  ~B);  MAI0. 

Derived Rules of Inference. MR3. ~ A - ~ B ~  ~ A  ~ ~]B; MR4. 

We define the embedding of UQL in Br-- by means of the following 
translation. 

Definition 4. 

P~- := [] ©qk (k = 1, 2,...) 

(-hA) + := [2~A + 

(A /x B) + :=Z~O(A + /x B +) 

(A v B) + := [ ]O(A + v B~), 

where Pk and qk are elementary propositions from UQL and Br- ,  respec- 
tively, A in A + /x B + is the conjunction connective from Br- ,  and A in 
(A/x B) + is from UQL, etc. 

Lemma4.  Any A + e M  °, where A s Q ° ,  can be shown to be of the 
form ~ O A  °, where A ° E M  °. 
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Proof The proof is carried out by induction on the construction of 
A. For p£-, pO= qk; for (-hA) +, from the induction hypothesis it follows 
that ( ~ A ) + =  [ Z - I ~ A  ° and therefore (-1A) ° =  -nOA°;  for (A /x B) +, 
(A/x B ) ° = A  + /x B+; for (A v B) +, (A v B ) ° = A  + v B +. II 

By QO+ (from B r - )  we denote all the propositions that are translated 
in B r -  from UQL,  and by @ -  we denote the set of all propositions that 
contain elementary propositions only in the form [] Oq, q e M °. For  them 
Q0+ ~ ~ -  holds. 

Theorem3.  ~-A ~ ~ A  + 

Proof Closely following the proof  from Ref. 32, we only have to 
prove the subsequent lemma, which corresponds to Lemma 2 from Ref. 32. 
This lemma uses an equivalence relation on Q0, which is defined as follows. 

Definition 5. A - B  := ~ A  + *-~B +. 

It can be easily proved that it is really a relation of equivalence, i.e., 
that it is reflexive and transitive. Also, on account of MR3 (for negation) 
and MA7 (for conjunction), it follows that it is a relation of congruence. 
Thus we can consider a natural homomorphism e: s4 ~-, sO/_=. 

Lemma 5. The algebra ~ / ~  is an orthomodular  lattice. 

Proof Let a=e(A) ,  b=e(B) ,  and c=e(C) .  We have to 
LI-L7(j) .  

check 

Ad LI  &L2. Obvious. 

Ad L3. ~ A  + ~ A  + can be written, according to Lemma4 ,  as 
~[]OA°~--~A + and on account of MA6 we obtain ~ []-n [~-nA + ~--,A +, 
i.e., ~(--n-nA) + ~--~A +. Hence, a ~± =a. 

Ad L4. From MA2 we get ~ - I C I O A  + v -n[3"nA +. By Lemma4 ,  
MA5, and AI we obtain ~ ( - n A  + v - ~ 2 7 A + ) * - - , ( - 1 B  + v --a[~nB+). 
Hence, a c~ a ± = b c~ b ±, by MR5 and MR3. 

AdL5 .  ~ A  + /~ D O ( A  + v B + ) ~ A  + is obvious, as well as ~ A  + 
[ ] O A  + v [ZOB + ~ (MA8) ~ ~ A  + -~ D O ( A  + v B +) ~ ~ A  + 

A + A ~ O ( A  + v B + ) .  Thus ~ A  + A D O ( A  + v B  +) ~ A + ~ (MR3, 
MR5) => ~ D O ( A + A ( A v B )  +) ~ © O A  + ~ (Lemma4,  MA6) => 
~ ( A  A (A v B)) + ~-~ A + ~ a c ~ ( a w b ) = a .  

Ad L6. Starting with ~ -7 © ( ~ -7 A + v D -q B + )*-~ D ( O A + A O B + ) 
and applying MA7, Lemma 4, MR5, and MR3, we arrive at L6. 
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Ad L7(j). It suffices to prove it for but one j, e.g,, j = 1. 
Let us start with the premise: 

~ D © ( O A  + -~ ~ © ( A  + A B+)).--~ f 3 © ( D - T A  + v A +) 

The direction from left to right is a tautology, since ~ ~ ( [ ]  ~ A  + v A +) 
is a tautology (MA2 by MAI0). Since the expression with which we started 
is the antecedent of the recta-implication we have to prove, we only need 
to consider the opposite direction. Taking into account that 
~ E 3 © ( ~ - ~ A  + v A  +) is a tautology, by modus ponens, MR4, M10, 
Lemma4,  ~ O ~ O D A ~ O Y 3 A ,  MA6, MR2, once again Lemma4,  
and MA6, we get ~ A  + ~ B  +. Therefore ~ A + v  B++-~B +. By MR5, 
MR3, Lemma4,  and MA6, we obtain the needed consequent: 
~ D O ( A  + v B+)~--~ B +. Hence, a J w  ( a c ~ b ) = a ~ l  b =  1 ~ a<.b. 

This completes the proof of the lemma. | 

The rest of the proof of the theorem remains the same as in Ref. 32, 
and we refer the reader to it. | 

To prove the completeness, we shall also often refer to the unaffected 
parts of an analogous proof in Ref. 32. 

Let us first introduce a definition and prove some lemmas. 

Definition 6. For any morphism h: UQL ~-~ L a forcing relation I}- 
between elements of L - = L  ° -  {0} and formulas of 9 -  is defined as 
follows: 

(a) a r b - D O q  ~ a<.h(q) 

(b) a [~- 7 A  ~*~ ~(a  [~-A) 

(c) a l } - A A B  .~ a l ~ - A  & a l b - B  

(d) a l ~ - D A  ~ V b ( b t t - A  x~ b ~ a ± ) ,  

where q is an elementary proposition from Br - ,  A, B E N - ,  a, b ~ L  . 

Lemma 6. Let A e QO and a s L -.  Then a [ }- A + .~ a <~ h(A). 

Proof The proof is carried out by induction on the construction of 
A. For  the case A = -1 B, we refer to Ref. 32. Let us consider the remaining 
case A = B A C. By (d) and (c) of Def. 6, a IF- (B/x C) + transforms into 

Vb[Vc((cl~ - A +  & c l b - B  +) ~ c<~b ~) ~ b<~a ±] (10) 

In this expression we can substitute c j}--A + and c f / B  + by c<~h(A) and 
c ~< h(B), respectively, on account of the inductive assumption. Then we can 

825/I9/8-5 
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use the statement Vc( c <~ a => c <<, b) ~ a <~ b, which holds for our lattice, to 
reduce expression (10) on a<~h(A)nh(B) ,  which is the consequent we 
need. Proceeding in the opposite direction, we prove the lemma. | 

Lemma 7. Let us say A e ~  °-  iff A is a conjunction of several 
propositions belonging to N - c-, 5O, when 5 ° is the set of apodictic proposi- 
tions. (Of course, N - n 5f c No-  c @-.)  Then, for any A z @0-, there is 
[A ] ~ L ° such that for any a e L - ,  a I R A ~ a ~< [A ]. 

Proof  The proof is established by induction on the construction of 
A. In our case, (a) from Definition 6 is the basis of the induction. The rest 
of the proof is the same as in Ref. 32, and we refer the reader to it. | 

Lemma8.  Let C e@ and C be one of the axioms of B r -  or 
C = [] O [] O q ~ [] 0 6 where q is an elementary proposition from Br - .  
Then a 1 t- C for any a e L - .  

Proof  For all the axioms (more precisely: axiom schemata) we refer 
to Ref. 32. For, if axioms from Br + are forCed, then axioms from B r -  must 
be forced too, since the latter are special cases of the former. Thus, we only 
have to prove a l R E S O O O q ~  N © q  instead of (v) of Lemma6  of 
Ref. 32. The proof remains unchanged, except that we have to take [ O Oq]  
instead of [E2q]. | 

Lemma 9. Any rule of inference of B r -  has the following property: 
If its premises are forced by all a e L - ,  then its conclusion is forced by all 
a. 

Proof For all rules of inference apart from MR2 we refer the reader 
to Ref. 32. The rule MR2 is a special case of the following rule: 

~ A ~ O E ] ( A A B )  ~ ~ O A - , O B  ( l l )  

To prove the lemma, it is enough to prove its equivalence (in Br + ) with 
the following modal form of the orthomodularity property (corresponding 
to L7"), 

~ A ~ B  & ~ B ~ O O A  ~ ~ B ~ O A  (12) 

(11) ~ ( 1 2 ) .  Let us assume the premises of (12). The first one is 
equivalent to ~[]A~--,  E]A /x []B. Upon introducing the latter in the 
second premise of (12), by using (11), we obtain the conclusion of (12). 

(12) ~ (11). Let us assume the premise of (1 t). Since 
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~ A  A ~ B ~  ~ A  is a tautology, by (12) we obtain ~ D A  ~ ~ B / x  DA, 
from which the conclusion of (11) follows immediately. I 

Lemma 20. Let F c ~ - ,  A e ~ - ,  and let A ~- be the set of all 
propositions of the form D O ~ O q - ~  ~ O q ,  where q is an elementary 
proposition and q occurs in A or in a proposition from F. Then, if ~A,  
there is a proof of A from F u  A such that all the propositions of the proof 
belong to N . 

Proof Let ~ be a proof of A from F, and let us replace all q's occurr- 
ing in all propositions of ~ by [] 0 6 Then we obtain a proof 0 '  and A' 
from F' .  Obviously O ' c  ~--. Propositions of F '  and A' contain q only in 
the form [] © [] <>q. Since proposition [] Oq ~ [] © [] Oq is a theorem 
(MA6) of Br and belongs to ~ - ,  we can obtain a proof _r of A from 
A - u {A' }. We can choose ~r so that any of its propositions belong to ~ - .  
Analogously, for all Z ' e  F which belong to ~b', one can obtain their proof 
~(Z') from A - u Z ' .  The needed proof is the union of all ~(Z'), ~b', 
and 2;. I 

Theorem 4. ~ A  + ~ }-A. 

Proof Let us consider the morphism h: UQL ~-~ L such that, for any 
B belonging to the set T of all theorems of UQL, h(A)= 1 holds. By 
lemma6, a JF-B + for any a~L-  and any BeT. By Lemma 10 we con- 
clude, since T + ~ ~ - ,  that there is a proof of A + such that all its proposi- 
tions belong to ~ - ,  and from Lemmas 8 and 9 it follows that any proposi- 
tion belonging to the proof is forced by any a ~ L - .  Thus a IF-A ÷ and, by 
Lemma 6, h(A) = 1. Hence, FA. ] 

4. DISCUSSION 

In Sec. 2 we have formulated quantum logic as an implication calculus 
UQL. A unified operation of implicattion that satisfies the system includes 
all proper operations of implication (see Sec. 1) and serves to formulate 
quantum logic in such a way that the relation of implication cannot. On 
the other hand, quantum logic has been shown to be "intractable, "(2) 
provided it is characterized by the relation of orthogonality, which is in 
turn determined by the relation of implication. Does this mean that we 
could expect a better "tractability" of quantum logic if it were characterized 
by an operation of implication instead of the relation? An answer to this 
question is not known. If it is possible to characterize quantum logic by an 
accessibility relation which includes a symmetric and relexive one only as 
a special case, then an operation of implication seems to be the most 
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appropriate candidate for establishing such a characterization. One way to 
find such a relation of accessibility is to embed quantum logic in a modal 
logic characterized by the relation. And this is what we have done in Sec. 3. 
We carried out an embedding of quantum logic into an extension of modal 
system K ,  (34) obtained by adding MA2, MA3, and MR2 to K, which we 
called Br- .  System Br ° = K + MA2 + MA3 is characterized by the 
accessibility relation R which satisfies the following conditions(35'36/: 

( i )  VW 1 ~W2[Wt R~vt,' 2 • V14.'3(w2Rw 3 ==~ Wl R w 3 )  ] 

(ii) Vw t V w 2 [ w l R w  2 :=~ ~w3(w2Rw 3 & V14~4(w3Rw 4 => w I R w 4 ) ) ]  

Condition (ii) is exactly the one which Dishkant used to establish 
semantics for minimal quantum logic. (37) However, he also used reflexivity 
instead of condition (i) and a reflexive accessibility relation corresponds to 
axiom T ( ~ D A ~ A ) .  Besides, while establishing the equivalence of 
algebraic and semantic models, Dishkant reduced his relation of 
accessibility to the proximity relation (using the orthogonality relation to 
define R). Actually, it is only to be expected since minimal quantum logic 
is strongly determined by a class of orthoframes defined by the 
orthogonality relation. Does this mean that the appearance of a different 
logic Br- (Br  °) in which we can embed quantum logic (minimal quantum 
logic) is related only to a different translation we used in Def. 4 in con- 
tradistinction to (A A B) + : = A + A  B + used in Refs. 9 and 32? 6 The 
answer is in the negative since we are also able to embed quantum logic 
into a modal system B r - +  ~ [] O U_IA ~ []A using not Def. 4 but the 
definition from Ref. 9. (38~ In this case the condition (ii) for the appropriate 
relation of accessibility has to be strengthened but R is not reduced to the 
proximity relation. Of course, for minimal quantum logic the propositions 
translated in KTB and those translated in Br ° + ~ D O ~ A  ~ DA coincide 
and the relation of accessibility for the propositions boils down to the 
proximity relation. Whether an analogous reduction happens for quantum 
logic proper is not known. Namely, as soon as we add the property of 
orthomodularity to minimal quantum logic we no longer know whether the 
resulting quantum logic proper is still strongly determined by a class of 
orthomodular orthoframes or not. 

In any case, it follows that we cannot infer the properties of (minimal) 
quantum logic directly from the properties of a modal logic in which (mini- 
real) quantum logic can be embedded. What we, therefore, can do is to use 

6 The two definitions are equivalent in KTB but not in Br °. We can compare the embedding 
of minimal quantum logic in KTB vs, Br ° with the embedding of classical logic in 85 when 
translation A + : = D A  + is applied vs. its embedding in S4 when A - : = [ 2 J O A  + is 
applied. ~39) (K := MA1; B := ~ A  ~ ~ ©A). 
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such modal systems as indicators for possible semantics of quantum logic. 
This, of course, does not amount to saying that more non-equivalent 
semantics for quantum logic could exist but only that there are presumably 
more approaches to the problem which should eventually meet. 
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