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Minimal Quantum Logic with Merged Implications 
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it is shown that the property of orthomodularity can be interpreted as a particular 
reduction of the operations of implication to the relation of implication, and a 
physical interpretation of~the result is given. 

1. I N T R O D U C T I O N  

Soon after quantum logic was established as a calculus of  quantum 
mechanics in the mid-1960s it became clear that the sense in which the 
calculus can be considered a s a  proper  logic was yet to be established. The 
missing element for such a characterization was a natural deduction scheme 
and an appropriate  notion of implication, on the one hand, and the absence 
of simple semantics, on the other. 

As for the former problem, several lines of  investigation have been 
carried out in the meantime, but a univocal answer has not been found. 
The approach adopted, e.g., by Goldblatt  (1974) and Nishimura (1980) 
employs nothing but a relation of implication, which some authors hold to 
be perhaps the only proper  implication (Greechie and Gudder,  1973) [and 
which is also called a formal or semantical implication (Hardegree, 1981a)]. 
Notwithstanding this opinion, a number  of  authors developed systems 
employing one of the possible operations of implication of the object 
language as defined by means of the other operations (conjunction, disjunc- 
tion, and negation) (Finch, 1970; Clark, 1973; Kalmbach,  1974; Abbott,  
1976; Hardegree, 1981a-c). It has been shown as well that several quantum 
logical systems can be obtained by adding an independent operation of 
implication to the object language of the considered calculus (Kron et al., 

1981). 
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As for the semantics of quantum logic, the standard semantics (truth 
polyvaluation included) amounts to the mapping of  its propositions onto 
the elements of an algebraic structure and therefore does little for the 
solution of the problem of whether quantum logic is to be considered a 
proper logic. On the other hand, the more genuine, Kripkean semantics is 
known to be applicable in a standard way (i.e., using a first-order characteriz- 
ation of a relation which determines the appropriate Kripke frame) only 
to minimal quantum logic (Dishkant, 1972; dalla Chiara, 1976) [also called 
orthologic (Goldblatt, 1974)]. Namely, it turns out that the property of  
orthomodularity, or, more precisely, the so-called axiom of orthomodularity, 
when added to minimal quantum logic in order to give quantum logic, 
destroys the possibility for Kripke's semantics of the first order to be ascribed 
to quantum logic (Goldblatt, 1984). Since an appropriate notion of  implica- 
tion is indispensible for a realization of Kripke's semantics, it is of interest 
to find out how the orthomodularity is connected with the role of  implication 
operations in the deduction scheme of  quantum logic. When we check 
whether the operations of  implications, definable in the object language of 
quantum logic and reducible to the "classical" implication for commensur- 
able propositions, "work"  in the same "minimal" way in which the relation 
of implication "works" in minimal quantum logic, we find out that all but 
one (the "classical" implication itself) of them do (Hardegree, 1981a). Does 
this mean that the property of orthomodularity and a particular reduction 
of these operations of implication to the relation of implication amount to 
the same thing? Yes, it does. And it is the purpose of this paper to prove it. 

2. QUANTUM LOGIC, MINIMAL QUANTUM LOGIC, 
AND CLASSICAL LOGIC 

Our main concern while defining the logics will be to avoid a deduction 
scheme based on the operation of implication, employing the relation of 
implication instead. To achieve this aim, we shall adopt Ackermann's (1956) 
schemata, adapted by Kotas (1971) and Goldblatt (1974). Moreover, we 
are going to consider the relation of implication between two propositions 
A and B, denoted by A ~- B, and called a "scheme" [the analogue to Kotas' 
(1971) "logical scheme"], an element of the object language, thus stressing 
the syntactic role the relation of implication can play in the deduction 
scheme of  the logic, up to the limitation that it cannot be nested. 

The propositions are based on elementary propositions P0, Pl, P2 . . . . .  

and the following connectives: ~ (negation; unary connective) and ^ 
(conjunction; binary connective). 

The set of  propositions Q is defined formally as follows: 

pj is a proposition for j = 0, 1, 2 , . . .  
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-qA is a proposition iff A is a proposit ion 
A A B is a proposit ion iff A and B are propositions 

The disjunction connective is introduced by the following definition: 

A v B := ~ ( ~ A  A --qB) 

The operations of implication are introduced as follows: 

A -*o B := ~ A  v B (classical implication) 
A-*I B : = ~ A v ( A A B )  (Sasaki, Mittelstaedt, or ortho-) 
A -*2 B := B v (-1A A ~ B )  (Dishkant) 
A ->3 B := (A A B) v (-~A A B) v ( ~ A  A -qB) (relevance) 
A -*4 B := (A A B) v (-qA ^ B) v ((-qA v B) ^ ~ B )  
A -*5 B := ( ~ A  A ~ B )  v ( ~ A  A B) v ((-qA v B) A A) (Kalmbach) 

Our metalanguage consists (apart from the common parlance) of 
schemata from the object language as elementary metaproposit ions and of 
compound metaproposit ions built up by means of the following connectives: 
& ("and") ,  ~ ( " i f , . . . t h e n " )  [the analogue of Kotas '  (1971) "deductive 
scheme"] and r ("iff"), with the usual "classical" meaning. 

We define quantum logic QL as a schemata system containing the 
following axioms and rules of  inference valid for all A, B, C , . . .  c Q: 

Axioms 
AI: A-~F- A 
A2." A-~--q-l  A 
A3: A ^ B ~ - A ,  A A B ~ - B  
A4: AA-qA~-B 

Rules of inference 
RI: A ~ - B & B ~ C ~ A ~ - C  
R2: A ~  B ~ ~BF- ~ A  
R3: A F - B & A ~ - C ~ A ~ - B A C  
R4: A ~ - B & ~ A A B ~ - C A T C ~ B ~ - A  

We define minimal quantum logic, MQL, as QL without R4, i.e., as a 
system that coincides with Goldblatt 's  (1974) orthologic. 

We define classical logic, CL, as QL with the first premise of  R4 
dropped. 

Whether Q refers to QL, MQL, or CL will be clear from the context. 
Thus we define the relation of implication itself (denoted by A~-B for 

any A, B ~ Q) in QL, MQL, or CL in an implicit way through the foregoing 
axioms and rules of  inference. The definition will be given yet another 
meaning by Theorems 3 and 4. 
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Following Goldblatt (1974), we consider a nonempty set of propositions 
F from Q, and say that a proposition A is Q-derivable (denoted as F ~ A ,  
which is read: F implies A) if there exist B a , . . . ,  Bn such that B ~ ^ - . .  ^ 
Bn ~-A. Since other technical definitions and theorems are not essential to 
the present reasoning, we refer to Goldblatt (1974), Nishimura (1980), and 
dalla Chiara (1977) for them. 

The following schemata and rules of inference are rather trivial con- 
sequences of  A3, R1, R2, and R3, and therefore valid in all the logics for 
all A, B, C c Q :  

A3V: A ~ - A v B ,  B ~ - A v B  
R3V: A ~ C  & B~-C ~ A v B~-C 
R5: A ~ B ~ A A C ~ - B A C  
R5V: A t - B ~ A v C ~ - B v C  

In order to establish the equivalence between QL and quantum logic 
as formulated by Goldblatt (1974) and Nishimura (1980), we prove the 
following result: 

Theorem 1. QL is equivalent to MQL in which the orthomodularity 
axiom OML holds: 

OML: A A ( - ~ A v ( A ^ B ) ) ~ B ,  for all A, B ~ Q  

Proof We shall first prove that OML holds in QL. Let us construct 
premises for R4: 

(A1, A3V, R5) ~ A ^ B~-A ^ (~A  v (A A B)) 

(def. of v, A4) ~ ~ (A  ^ B) ^ A ^ (~A v (A ^ B)) ~ C ^ ~ C  

The conclusion of R4 now reads A^  ( ~ A v  (AA B))~-A^ B, and by using 
A3 and R1, we obtain OML. 

To establish the opposite, we prove that the conclusion of R4 follows 
from its premises in the system MQL+ OML. Using the first premise, we get 

( A~  B, A1, R3) ~ A - ~ - A  ^ B ~ (OML) ~ B ^ (-TB v A) ~ A  

Using the second, we get 

(-qAABr--C A ~C, A4, R 2 ) ~  B ~ - ~ B v  A ~ ( A 1 ,  R 3 ) ~  BF-B A(-~Bv A) 

R1 applied to the obtained schemata gives B~-A, i.e., the conclusion of 
R4. �9 

Alternatively, it is an easy task to construct the Lindebaum algebra, 
Q / ~ - ,  for QL, which is an orthomodular lattice. 

The following theorem serves as a bridge between CL and classical 
logic as usually understood. 
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Theorem 2. CL is equivalent to MQL in which the distributivity axiom 
D holds: 

D: A^(BvC)- -4~-(AAB)v(AAC) ,  forallA,  B, C6Q 

Proof. By using the identity (-qB A A) ^ ~ (A  ^ ~ B )  ~ -  C A ~ C  as the 
second premise (the only one in CL) of R4, we obtain A ^ ( ~ A ^ B ) ~ B ,  
i.e., the commensurability (see the following section) of A and B. All the 
other details are well known and we omit them. �9 

3. THE MERGED IMPLICATIONS 

The above operations of implication are the only expressions construct- 
ible by means of the other operations in QL that are reduced to the classical 
implication when A and B are commensurable (Hardegree, 1981a), i.e., 
when they satisfy the following scheme (Zeman, 1979): 

A^(-nAv  B)~-B. 

It has been shown (Hardegree, 1981a) that the following rules hold in 
QL for i =  1 , . . . ,  5, while R(0) holds in CL: 

R(i): A F - B ~ C v ~ C ~ - A ~ B ,  i=0 ,  1 , . . . , 5  

The two stated results were taken in recent literature as basic and 
minimal ones in quantum logic, almost as a starting point of a considerable 
effort to single out particular implications best suited to the deduction 
scheme of the logic (Hardegree, 1981a-c; Abbott, 1976; Kalmbach, 1974, 
1983; Georgacarakos, 1980). In other words, it seems it has not been 
recognized that the "basic" and "minimal" rules R(i) are in fact rather 
strong. Namely, when we consider them not within quantum logic as usual, 
but in conjunction with minimal quantum logic, we realize that they turn 
minimal logic into quantum logic for i = 1 , . . . ,  5, or even more into classical 
logic for i =  0. Let us prove both claims. 

Theorem 3. MQL in which R(0) holds is CL, and vice versa. 

Proof. The first part of the claim is nothing but a corollary of Theorem 
2, and the "vice versa" part of the claim is well known. �9 

Theorem 4. MQL in which at least one of R(i) for i ~ 0 holds is QL, 
and vice versa. 

Proof. The "vice versa" part of the claim is well known. 
To prove the first part of the claim, we have to prove that R4 holds in 

such an MQL. 
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i = l .  
B)~-~A. 
B ^ ~ ( A ^  
we obtain 

i=2. 
R(2). 

The first premise of R4, together with R5 and R2, gives -~(A ^ 
For the last scheme, the second premise of R4 and R5 give 
B)~-C ^--nC. After applying R2 to this scheme and using R(1) 
B ~ A, i.e., the conclusion of R4. Hence R4 holds. 
Writing down R(1) for ~ B  ~-TA and using A2 and R2, we obtain 

i=3. As for i = 1, we have ~ ( A ^  B)~-~A. On the other hand, the first 
premise of R4 and R5V give A v B ~ B. Applying R5 and R1 to the obtained 
schemata, we obtain ~ (A  n B) ^ (A v B) k- -TA ^ B. Applying R5 once again 
and using A3 and R1, we get 

-I(A A B) ^ ~ (A  ^ TB) A ~ ( ~ A  A ~B)~-~A  ^ B 

Now, the second premise of  R4, together with R2 and R(3), gives B~-A, 
i.e., the conclusion of R4. 

i = 4. The first premise of R4, A1, and R3V give A v B ~- B, which, in 
combination with A3 ( ~ A ^  B~-B) and R5V, gives A v (B ^-TA)~-B. This 
and (see i =  1) ~ ( A ^  B)~-~A as in the previous case ( i = 3 )  give 

-I(A A B) ^- I (A ^-TB) A ~(-1A A (~B v A) )~- ~ A  A B 

Hence (see i=  3) R4 holds. 
i = 5. The first premise of R4, R5V, and the definition of  disjunction 

give 7 ( - 1 A ^ ~ B ) ~ B .  The first premise of R4, R2, R5, and R3V give 
~ B  v (B ^ ~A)~-~A.  Combining the two obtained schemata and applying 
R5, R3, and R1 three times, we obtain 

-~(~A ^ ~B)  ^ -l(A ^ ~ B )  ^ (-1B v (B ^ -1A)) F-~A ^ B 

Hence (see i = 3 )  R4 holds. �9 

Given the last theorem, we see that quantum logic is nothing but 
minimal logic extended so as to make "A ~i  B," i = 1 , . . . ,  5, a logical truth 
iff "AF- B." Because of this as well as for the reason given in the following 
section, we propose that the implication be "defined" by R(i) i = l, . . . ,  5, 
thus merging all five possible operations of  implication "into" one relation 
of implication. 

4. CONCLUSION 

The foregoing elaboration has revealed that the property of  orthomodu- 
larity can be understood as the merging of the possible operations of 
implication with the relation of implication. Thus, quantum logic is a logic 
that "works" with the help of the relation of implication, provided the 
possible operations of implication are reduced to it. On the other hand, it 
is a rather simple corollary of Theorem 4 combined with R1 that the 
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metalogical modus ponens holds in quantum logic for any of the implications 
defined above. However, for none of the operations of implication, apart 
from the classical one in CL, does the proper deduction theorem hold 
(Kalmbach, 1974). 

In our opinion, these apparently contradictory aspects of  quantum 
logic make it feasible to consider quantum logic as a proper, though 
"empirical," logic, providing we keep to the following physical interpre- 
tation. 

The propositions of  quantum logic represent observables measurable 
by experiment, and their combination within the object language of the 
logic of measurement corresponds to possible combinations of the observ- 
ables whether they are measurable or not. To handle the propositions, we 
must have particular metarules in the same way in which we must have a 
theory to be able to arrange experiments. The obvious disadvantage of such 
a situation is that the possible experimental outcomes can be divorced from 
the observables as such. The standard way out is to ascribe probability 
functions (states) to all the propositions, in other words, to merge logic 
with its probabilistic semantics. From our point of view (Pavi~i6, 1987) this 
boils down to a correspondence between the relation of  implication--which 
"stands" for metarules--and an ordering relation among the probability 
functions. 

Now, the fortunate property of any classical theory is that there is a 
direct correspondence, given by Theorem 3, between the relation of implica- 
tion, which in turn corresponds to a particular ordering among probabilitity 
functions, and the unique operation of implication, for which the deduction 
theorem holds. The unfortunate property of any quantum theory is that 
there is no such unique operation in its logic, as shown by Theorem 4. 
However, as we have already stressed, we can treat the relation of implica-  
tion itself in a syntactical way, i.e., as a part of the object language, using 
the schemata approach adopted above, provided we have formulated a 
probabilistic semantics that would justify such a move with respect to 
possible ascriptions of probability functions to the propositions, and the 
subsequent formulation of  the Hilbert space description. And this is what 
we have done in Pavi~i6 (1987). 
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