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Early Interaction-Free
Experiments

Ancient Ideas: Renninger (1960), Dicke (1981),
Pavičić (1986): “Whenever we fail to detect
interference we know that something is there.”

E.g., Pavičić (1986):

1993 enter Elitzur and Vaidman and say:
“Measurements might be useful”
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Ring Resonator
Harry Paul & Pavičić (Berlin, 1996)

Matteo was also there at the time

Let us calculate what we get at Dr:
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Interference
Reflected portion of the incoming beam:

−B0 = −A
√
R

After a full round–trip this joins it:

B1 = A
√

1−R
√
R
√

1−R eiψ

”All” round trips: interference (a geometric
progression) — the total amplitude (Dr):

B =
∞∑

i=0

Bi = −A
√
R

1− eiψ
1−Reiψ
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Resonator Int.-Free
Experiments

ψ = (ω − ωres)T — phase per round-trip (r-t); ω
— incoming frequency; T — r-t time; ωres —
resonance frequency (λ/2 = L/k, L r-t length)

So, ω = ωres ⇒ B = 0
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Classical Efficiency

The efficiency of the suppression of the reflection
into Dr when there is no object in the resonator;
ρ is the measure of losses
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Let object be atom
87Rb has closed shells up to 4p and an electron
in ground state 5s (J = L + S); We consider only
one excited state: 5p1/2.

Total nuclear ang. mom. K and J give the total
ang. mom. of the atom: F = J + K.
87Rb has K = 3/2, and its j = 1/2 ground states
are split by hyperfine interaction into doublets
with F = K ± j = 3/2± 1/2 = 2, 1.

External magnetic field B splits the levels into
magnetic Zeeman sublevels:
m = −F,−F + 1, . . . , F .
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Atom vs. photon
To excite and deexcite electrons between
m = ±1 and m = 0 we must use circularly
polarized photons with jp = 1 and mjp = ±1

When an atom receives angular momentum of a
photon, the following selection rules must be met:

∆l = ±1, ∆m = mjp = ±1.

When a photon is emitted, the same selection
rules must be observed.
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Atom vs. photon
(ctnd.)

By solving Schrödinger equation for our
three-level system

Ĥ|Ψ〉 = ih̄
∂|Ψ〉
∂t

,

we arrive at the Hamiltonian

Ĥ =
h̄

2




0 Ω1(t) 0

Ω1(t) 2∆ Ω2(t)

0 Ω2(t) 0




Ω1 and Ω2 are Rabi frequencies
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Excited state drops
out

One of the eigenstates of the Hamiltonian is

|Ψ0〉 =
1

√
Ω2

1(t) + Ω2
2(t)

(Ω2(t)|g1〉 − Ω1(t)|g2〉)

It depends only on “dark states” |g1〉 and |g2〉

We can use this to obtain a direct transfer of
electrons from |g1〉 to |g2〉 without either emitting
or absorbing photons on the part of atom in the
following way—Stimulated Raman adiabatic
passage (STIRAP).
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STIRAP
Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser
before switching on and off the first one.

This can be described by
∣∣∣〈g1|Ψ0〉

∣∣∣
2

= 1 for t→ −∞
∣∣∣〈g2|Ψ0〉

∣∣∣
2

= 1 for t→ +∞
Adiabatic complete population transfer
|g1〉 → |g2〉 is STIRAP:

Interaction-Free Ion-Photon Gates – p. 11/16



STIRAP
Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser
before switching on and off the first one.

This can be described by
∣∣∣〈g1|Ψ0〉

∣∣∣
2

= 1 for t→ −∞
∣∣∣〈g2|Ψ0〉

∣∣∣
2

= 1 for t→ +∞
Adiabatic complete population transfer
|g1〉 → |g2〉 is STIRAP:

Interaction-Free Ion-Photon Gates – p. 11/16



STIRAP
Experimentally, let photons be laser beams.

Now, let us switch on and off the second laser
before switching on and off the first one.

This can be described by
∣∣∣〈g1|Ψ0〉

∣∣∣
2

= 1 for t→ −∞
∣∣∣〈g2|Ψ0〉

∣∣∣
2

= 1 for t→ +∞
Adiabatic complete population transfer
|g1〉 → |g2〉 is STIRAP:

Interaction-Free Ion-Photon Gates – p. 11/16



STIRAP |g1〉 ↔ |g2〉

m= 0

2g1g

m=−1

1Ω
2Ω

m= 1

2F=

F=2

F=1

e

σ+

σ −

STIRAP

h
h

ω
ω

1
2
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Interaction-free
“excitation”

A left-hand circularly polarized photon could
excite an atom from its ground state |g1〉 to its
excited state |e〉 and a right-hand circularly
polarized photon could excite the atom from |g2〉
to |e〉.

So an L-photon will “see” the atom in |g1〉 but will
not “see” it when it is in |g2〉. With an R-photon,
the opposite is true.

We can induce a change of the atom from |g1〉 to
|g2〉 and back by a STIRAP process, with two
additional external laser beams
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State notation
We feed our resonator with +45◦ and −45◦

linearly polarized photons.

In front of an atom we place a quarter-wave plate
(QWP) to turn a 45◦-photon into an R-photon and
a −45◦-photon into an L-photon.

Behind the atom we place a half-wave plate
(HWP) to change the direction of the circular
polarization and then another QWP to transform
the polarization back into the original linear
polarization.
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State notation (ctnd.)
We denote the atom states as follows:

|0〉 = |g1〉, |1〉 = |g2〉
They are control states; atom is control qubit.

We denote the photon states as follows:

|0〉 = |45◦〉, |1〉 = | − 45◦〉
They are target states; photons are target qubits.

For example, |01〉 means that the atom is in state
|g1〉 and the photon is polarized along −45◦.
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Interaction-free
CNOT gate

00,1

M
1

ABS ABS
M

PBS

HWP QWP

(a) MM g1

QWP

0,1

D M

M10,1

0
ABS ABS

PBS

HWP QWPQWP

(b) M Mg 2

1,0

D

HWP

SBS SBS
M M

M M
HWP

(a) The atom is in state |g1〉 and can absorb |1〉;
(b) The atom is in state |g2〉 and can absorb |0〉;
|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉
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