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It is argued that the recent success in the foundational quantum mechanical research relies on
free tailoring of quantum subsystems with the goal of engineering their desired properties and on
a corresponding manipulation of parts of standard quantum and classical mathematical formalisms
describing composite systems. We give three examples: interaction-free measurements as a kind of
patching classical and quantum photon theory by experimental quantum principles, entanglement
and teleportation as a kind of chopping the standard Hilbert space description, and an automated
finding of arbitrary Kochen-Specker vectors as a kind of reducing equational problems to their
graphical representation.
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A. Introduction

When we speak about the role of mathematics in physics (the title of this conference) we usually start from the
assumption that a particular physical problem is supported by a well defined model. We then also assume that
a consistent theory is formulated for the model and that such a theory serves us to predict relevant experimental
outcomes. So, at the first glance, the role of mathematics (under which we understand the mathematics of a physical
model or theory) would be to guide us to the expected experimental outcomes and even to the new experiments and
results. In this paper, we argue that the role is not one-directional and that it immediately invokes the question of
the role of physics in the mathematics used for a formulation of a theory.

We limit ourselves to the quantum theory. Quantum theory is considered to be one of the most reliable, consistent,
and complete theory and it has certainly withstood all the trails so far. Our argument does not, therefore, challenge any
of these features of the quantum theory but merely underlines the fact that experimental feedbacks and experimental
considerations provide us with guidelines on how to apply the mathematical formalism. In today’s physics we are
more and more concerned with the systems we construct as opposed to systems that already exist in Nature. Such a
construction is supported by a construction of a mathematical description which by itself does not follow from some
general underlying theory, e.g., the Hilbert space theory in the case of quantum mechanics. In a word, manipulation of
systems requires manipulation of formalism. We illustrate and explain the claim by three short case studies from the
field of quantum mechanics and its foundational experiments. Technical details are given for the sake of completeness
but should be disregarded by nonspecialists.

B. Interaction-Free Experiments

Quantum interference of individual systems has recently been found capable of detecting objects without transferring
energy to them. In 1986 I formulated this in the following way. “Consider a photon experiment shown in Fig. 1 which
results in an interference in the region D provided we do not know whether it arrived to the region by path s1 or by
path s2. As it is well-known, experimental facts are: If we, after a photon passed the beam splitter B and before it
could reach the point C , suddenly introduce a detector in the path s2 in the point C and do not detect anything ,
then it follows that the photon must have taken the path s1—and, really, one can detect it in the region D but it does
not produce interference there. Quantum mechanically, if we registered the interference in the region D , we could not
find an experimental procedure to directly either prove or disprove that the photon uses both paths simultaneously.
The fact that by detecting nothing in point C we destroy the interference implies that the photon somehow knows
of the other path when it takes the first one.” (Ref. [1], pp. 31, 32)
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FIG. 1: Figure taken from Pavičić (1986): “By detecting nothing in the point C we destroy the interference [in the region D ].”
[1, p.31]; [2]

FIG. 2: Figure taken from Paul and Pavičić (1997): “Lay-out of the proposed interaction-free experiment; (a) In the shown
free round–trips the intensity of the reflected beam is approaching 0 for R approaching 1, i.e., detector Dr does not react; (b)
However, when an absorbing object is immersed in the liquid (whose refractive index is the same as the one of the crystal in
order to prevent losses of the free round–trips), for R = 0.999, 99.9% of the incoming beam reflect into Dr, 0.0001% go into
Dt, and 0.0999% hit the object.” [5]

This “photons’s knowledge” is not explicitly described by the quantum mechanical formalism. The interference is
described by the probability waves, so, the afore-mentioned consideration of the paths of the energy carriers, i.e., of
the photons themselves was not foreign to physicists of the time but was considered useless. However, a decade ago
Elitzur and Vaidman [3] realized that path considerations of the waves can be used for realistic measurements and
several such experiments have been carried out since. [4] There were several designs of the experiments but we will
keep to the one which reveals our point the best.

The lay–out of the proposed experiment introduced in Paul and Pavicic (1996,7) [5–7] is shown in Fig. 2. The
outcomes has been confirmed by a real experiment carried out by Tsegaye, Goobar, Karlsson, Björk, Loh, and Lim
(1998) [8]. Our experimental proposal uses an uncoated monolithic total–internal–reflection resonator (MOTIRR)
coupled to two triangular prisms by the frustrated total internal reflection (FTIR). A squared MOTIRR requires a
relative refractive index with respect to the surrounding medium n > 1.41 in order to confine a beam to the resonator
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(the angle of incidence being 45◦). If, however, another medium (in our case the right triangular prism in Fig. 2) is
brought within a distance of the order of the wavelength, the total reflection within the resonator will be frustrated

and a fraction of the beam will “tunnel out” from the resonator. Depending on the dimension of the gap and the
polarisation of the incidence beam one can well define reflectivity R within the range from 10−5 to 0.99995. The main
advantage of such a coupling—in comparison with coated resonators—is that the losses are extremely small: down to
0.3%. In the same way a beam can “tunnel into” the resonator through the left triangular prism in Fig. 2, provided
the condition n > 1.41 is fulfilled for the prism too. The incident laser beam is chosen to be polarised perpendicularly
to the incident plane so as to give a unique reflectivity for each photon. The faces of the resonator are polished
spherically to give a large focusing factor. A round trip path for the beam is created in the resonator as shown in
Fig. 2. A cavity is cut in the resonator and filled with an index–matching fluid to reduce losses. (Before we carry
out the measurement we have to wait until the fluid comes to a standstill to avoid a possible destabilization of the
phase during round trips of the beam.) Now, if there is an object in the cavity in the round trip path of the beam in
the resonator, the incident beam will be almost totally reflected (into Dr) and if there is no object, the beam will be
almost totally transmitted (into Dt).

To understand this result we sum up the contributions originating from round trips in the resonator, to the reflected
wave. The portion of the incoming beam of amplitude A(ω) reflected into plane determined by δ is described by the

amplitude B0(ω) = −A(ω)
√
R, where R = |r|2 is reflectivity. The transmitted part will travel around the resonator

guided by one frustrated total internal reflection (at the face next to the right prism) and by two proper total internal
reflections. After a full round trip the following portion of this beam joins the directly reflected portion of the beam
by tunnelling into the left prism: B1(ω) = A(ω)

√
1 −R

√
R
√

1 −Reiψ. B2(ω) contains three frustrated total internal
reflections and so on; each subsequent round trip contributes to a geometric progression which gives the reflected
amplitude

Bn(ω) = A(ω)
√
R{−1 + (1 −R)eiψ[1 +Reiψ + (Reiψ)2 + . . .]} =

n
∑

i=0

Bi(ω) , (1)

where ψ = (ω−ωres)T is the phase added by each round trip. Here ω is the frequency of the incoming beam, T is the
round trip time, and ωres is the selection frequency corresponding to a wavelength which satisfies λ = L/k, where L
is the round trip length of the cavity and k is an integer. At summing up the round–trip contributions we have taken
into account that (because of the above condition imposed on the total phase shift φ) all the contributions must lie
in the reflected–wave plane and that their amplitudes must carry the opposite sign (to that of the reflected wave,

−A(ω)
√
R) so as to cancel out at resonance ψ = 0.

For an insight into the physics of the experiment it is sufficient to consider plane waves [A(ω) = A0]. The limit of
Bn(ω) yields the total amplitude of the reflected beam:

Br(ω) = lim
n→∞

Bn(ω) = −A0

√
R

1 − eiψ

1 −Reiψ
. (2)

We see that for any R < 1 and ω = ωres, i.e., if nothing obstructs the round trip of the beam, we get no reflection
at all [i.e., no response from Dr (see Fig. 2)]. When an object blocks the round trip and R is close to one, then we
get almost a total reflection. In terms of single photons (which we can obtain by attenuating the intensity of a laser
until the chance of having more than one photon at a time becomes negligible) the probability of detector Dr reacting
when there is no object in the system is zero. A response from Dr means an interaction–free detection of an object
in the system. The probability of the response is R, the probability of a photon hitting the object is R(1 − R), and
the probability of a photon exiting into detector Dt is (1−R)2. These results have been confirmed by several recent
experiments. [8]

A more realistic experimental approach we achieve by looking at two possible sources of individual photons: a cw
laser and a pulse laser and by using wave packets instead of plane wave as we did in [5, 7]. However, since all results
as well as physics of the experiments remain the same under such more realistic approach we will not enter into its
details here.

What comes out from the above elaboration is that a description by means of essentially classical wave fields—taken
over directly from classical optics and the theory of electromagnetic waves—matches the behaviour of photons. But
waves in quantum mechanics, being “waves of probability,” are considered virtual, not real. Does this bring us to
a contradiction? No, only to another—non-classical—meaning of reality. For, it turns out that “switching off” the
destructive interference of the waves does not spread within a finite interval of time by the speed of light but establish
propagation conditions for photons instantaneously. Let us look at the following thought experiment shown in Fig. 3
and proposed by Fearn, Cook, and Milonni.[9]

“Emission of an excited atom in a cavity is inhibited and the question is being addressed of whether a sudden
replacement of one of the cavity mirrors by a detector can result in a photon count immediately or only after
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FIG. 3: Figure made following Fearn, Cook, and Milonni (1995) [9]: Inhibited photon emission of an excited atom in a cavity.

some retardation time. It is argued in the paper that it is possible to count a photon immediately following the
substitution of photodetector for a mirror.” [9] This has recently been confirmed by a real experiment with an
inhibited downconversion of photons from a crystal. [10]

“Two plausible explanations, leading to different answers, have been proposed. According to one argument, the
inhibited atom cannot “know” the mirror has been removed until the time t = T + d/c, where d is the atom-mirror
distance, and the atom can begin to radiate after this time. Since the propagation time to the detector is d/c, a
photon can be detected only after a time t+ d/c = T + 2d/c, i.e., after a time 2d/c following the mirror switchout.

The second viewpoint holds that, as in the case of a classical dipole radiator in a cavity, there are always fields (or,
more precisely, probability amplitudes) propagating from the atom to the removable mirror and back to the atom,
and that the inhibition of a spontaneous emission implies a destructive interference of the two counterpropagating
fields. The sudden removal of the mirror allows that part of the field propagating toward the mirror to escape from
the cavity, so that a photon can be counted immediately following the switchout of the mirror.

In the absence of detailed calculations or an experiment objections can be raised against either prediction.” [9] So,
Fearn, Cook, and Milonni offered a “detailed calculations” from which it followed “that the non-vanishing photon
counting rate at t = T occurs not at the expense of the atom, but rather as a depletion of field energy, i.e., a depletion
of the energy associated with the backward-propagating field and the interference of the counterpropagating fields.”
[9]

However, the conclusion cannot “follow” from a calculation made for probability amplitudes because they are not
real and they are not carriers of energy; the photons are the energy carriers but the photons are absent in the offered
picture till the removal of the mirror. It is actually, the other way round: the calculation is made for the offered
physical picture which is correct and ingenious but not directly derivable in either classical or quantum theory of
light. There is no general thumb rule to derive photon behaviour in the considered example: “Sometimes the classical
model is best, and sometimes the quantum one offers more understanding.” [11] Actually the combination of the two
supported by the experimental results can give us a (tentative) theory.

To see the meaning of such an approach and the interplay of experiment and theory let us look at the following
two modifications of the afore presented interaction-free resonator experiment.

The first one is shown in Fig. 4. The proposed experiment uses a combination of atom interferometer with ultracold
metastable atoms and the resonance interaction-free path detection by means of a movable MOTIRR (of course,
without liquid what only slightly reduces the efficiency). To increase the probability of an atom being hit by the
round tripping beam, the incoming laser beam should be split into many beams by multiple beam splitters, each
beam containing in average one photon in the chosen time window, so as to feed MOTIRR through many optical
fibres. The atom source in the atom interferometer is a magneto–optical trap containing 1s5 neon metastable atoms
which are then excited to the 2p5 state by a 598–nm laser beam. Of all the states to which 2p5 decays we follow
only 1s3 atoms whose trajectory are determined only by the initial velocity and gravity (free fall from the trap). Now
the atoms fall with different velocities but each velocity group forms interference fringes calculated as for the optical
case and only corrected by a factor which arises from the acceleration by the gravity during the fall. MOTIRR is
mounted on a device which follows (with acceleration) one velocity group from the double slit to microchannel plate
detector (MCP). (Atoms from other groups move with respect to MOTIRR and therefore cannot decohere MOTIRR).
The laser is tuned to a frequency equal to the 1s3 resonance frequency which in effect increase the cross section of
the atoms so as to make efficiently “visible” to (virtual) photons. The source is attenuated so much that there is
in average only one atom in a velocity group. The whole process repeats every 0.4 s. Assuming that we have 10 ns
recovery time for the photon detectors and 300 optical fibres we arrive at about 107 counts which all go into one
detector Dt when no atom obstructs a round trip. (For reflectivity R = 0.999 the probability of Dr being activated
is 2 · 10−9.) As soon as Dr detector fires we know which slit the observed atom passed through. After 103 repeating
of such successful detections we have enough data to see whether the interference fringes are destroyed significantly
with respect to unmonitored reference samples or not.
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FIG. 4: Figure taken from Pavičić (1996): Proposal for a welcher Weg experiment with ultracold atoms. MOTIRR resonators
R, see Fig. 2, here shown sideways, move together with the falling atoms which sit in their openings.” [7]

Figuratively, one could call the just described device a “Heisenberg microscope without a kick.” The Heisenberg
microscope reasoning for a welcher Weg experiment traditionally rest on the Heisenberg uncertainty relations. Un-
certainty relations always refer to the mean values of the operators and that means—even when the operators are
projectors—statistics obtained by recording an interaction, i.e., by a reduction of the wave packet. In our “interaction-

free microscope” measurement we do not attach any value to any operator in the Hilbert space description of the
observed systems and therefore, no uncertainty relation is involved. As for the welcher Weg experiment it has re-
cently been shown that “it is possible to obtain welcher Weg information without exposing the interfering beam to
uncontrollable scattering events... That is to say, it is simply the information contained in a functioning measuring
apparatus that changes the outcome of the experiment and not uncontrollable alterations of the spatial wave function,
resulting from the action of the measuring apparatus on the system under observation.” [12] There is, however, an
essential difference between our proposal and the one by Scully, Englert, and Walther [12] (microwave cavity proposal).
In the latter one there is slight exchange of energy which does not significantly disturb the spatial wave function of
the system taking part in the interference but does disturb its phase. In our proposal we have no exchange of energy
between atoms and photons.

Hence the result does not follow by means of any existing thumb rule within either classical or quantum formalism.
We arrived at it following the indistiguishability principle which tells us that we would have the atom interference
fringes only if we did not know which slit an atom passed through. Then we can construct a quantum mechanical
description which the result would fit into as carried out, e.g., by Karlsson, Björk, and Forsberg (1998) [13].

The second modification of the original interaction-free resonator experiment which is even more intricate than the
previous one is shown in Fig. 5. “We tune in our FTIR–MOTIRR system so as to have as big a gap between the
coupling prisms and the crystal as possible (e.g., corresponding to R = 0.9999). The Rochon prism p is rotated so
as to fully match the phase shift as its O–wave. Therefore, when the Pockels cell is off the round–trip path is not
influenced at all. When the Pockels cell is on the path is redirected through Rochon prism p (as E–wave) into detector
Dp. We switch on a cw laser and let it feed the system. When the Pockels cell is on detector Dr should fire with the
probability approaching 1. When it is off detector should Dt fire with the probability approaching 1.” [5]

“We carry out two kinds of measurement. The first kind of measurement is switching the Pockels cell on and
monitoring Dr immediately afterwards. We accommodate the intensity of the laser beam so as to have one photon
in 0.1 ns in average. The fastest Pockels cells have reaction time down to 0.1 ns. The time an information travelling
at the speed of light needs to spread from the Pockels cell to the incoming gap can be made as high as 4 ns by
choosing the biggest available crystals. The fastest detectors have reaction time of under 1 ns. Before we switch on
the Pockels cell almost only detector Dt fires. After we switch on the Pockels cell we monitor detector Dr and see
whether it reacts instantaneously or after 4 ns. (Of course we cannot have a source of photons “on demand” and we
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FIG. 5: Figure taken from Paul and Pavičić (1997): “Lay–out of the proposed virtual–or–real–path experiment. When the
Pockels cell c is on it redirects the round–trip path through Rochon prism p into detector Dp and therefore almost only detector
Dr fires. When the Pockels cell c is off there is no influence on the round–trip path and almost only detector Dt fires. [5]

only determine whether the statistics change.) In accordance with the above reasoning of Fearn, Cook, and Milonni
and the corresponding experiment the detector should react instantaneously.” [5]

“The second kind of measurement is switching the Pockels cell from on to off and monitoring detector Dr im-
mediately afterwards. We lower down the intensity of the laser beam so as to have one photon in 10 ns in average.
We calculated that for R = 0.9999 the resonance fully establishes after 100 ns, i.e., after that time Dr cannot fire
(almost) at all. We monitor Dr within this 100 ns and see whether detector Dr stops firing immediately or only
after several firing within the first 100 ns. We have chosen 10 ns in the incoming beam so as to make sure that after
switching off the Pockels cell only an “empty” wave is coming to the system. A variety of the experiment would be to
lower down the intensity of the laser beam further down to under one photon in 100 ns.” [5] Of course we again only
monitor the statistics of clicks. Here, the reasoning of Fearn, Cook, and Milonni seems to require that the resonator
has to charge first, i.e., that the electric field wave (probability amplitude) has to wind up —at least 100 round trips
(1 µs) in the classical approach [6]. Still there is a viewpoint that a photon “sees” the cavity immediately and that
one could use a very narrow time window with downconverted photons (signal and idler photons appear within the
order of femtoseconds and a Pockels cell can provide a time window of under 1 ns) to carry out the measurement. An
experiment here would be useful.

C. Teleportation and Entanglement

Entanglement is taken to be “one of the most interesting and puzzling ideas associated with composite quantum
systems.” [14, p. 95] “Consider the two qubit state

|ψ >=
|00〉 + |11〉√

2
(3)

This state has a remarkable property that there are no single qubit states |a〉 and |b〉 such that |ψ〉 = |a〉|b〉. We say
that a state of composite system having this property (that it can’t be written as a product state of its component
systems) is an entangled state. For reasons which nobody fully understands, entangled states play a crucial role in
quantum computation, quantum information, and quantum teleportation.” [14, p. 96]

In this section we argue that entanglement is a typical example of our manipulation of systems and their formalism
with the aim of constructing quantum technological reality. Let us have a look at the following experimental proposal
of Pavičić and Summhammer (1993,1994) [15, 16] as given in Fig. 6.

Two independent sources, SI and SII , both simultaneously emit two photons correlated in polarisation to the left
and right. On the left photons we measure polarisations by the polarisation filters P1 and P2 and on the right photons
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FIG. 6: Figure taken from Pavičić and Summhammer (1994): “Two photons from different unpolarised sources each pass
through a polariser to a detector. Although their trajectories never mix or cross they exhibit 4th-order-interference-like
correlations when the other two photons interfere on a beam splitter even when the latter two do not pass any polarisers at
all.” [5]

by P3 and P4. To point out that we get photons really unprepared photons we like to stress that the sources can in
principle be atoms exhibiting cascade emission. But if want a feasible experiment we shall of course use downconverted
photons.

The state of the four photons immediately after leaving the sources is described by the product of two entangled
states:

|Ψ〉 =
1√
2

(|1x〉1|1x〉3 + |1y〉1|1y〉3) ⊗
1√
2

(|1x〉2|1x〉4 + |1y〉2|1y〉4) (4)

Here, |x〉 and |y〉 denote the mutually orthogonal photon states. So, e.g., |1x〉1 means the state of photon 1 leaving
the source SI to the left polarised in direction x. In the following we use the annihilation operator formalism, often
employed in quantum optical analysis.The operator describing the polarisation at P1 oriented along the x-axis and

the subsequent detection at D1 acts as follows: â1x|1x〉1 = |0x〉1, â†1x|0x〉1 = |1x〉1, â1x|0x〉1 = 0, etc. When P1
is oriented at some angle θ1 polarisation and detection are represented by â1 = â1x cos θ1 + â1y sin θ1. The phase

the photon accumulates between the source SI and the detector D1 adds the factor eiω1(r1/c+t
I

0−t1), where ω1 is the
frequency of photon 1, r1 is the path length from SI to D1, c is the velocity of light, tI0 is the time of emission of a
pair of photons at SI , and t1 is the time of detection at D1. Hence the annihilation of a photon at detector D1 means

application of the operator Ê1 = (â1x cos θ1 + â1y sin θ1)eiω1(r1/c+t
I

0−t1) onto the initial state of Eq. (4). Similarly,

detection of photon 2 at D2 means application of Ê2 = (â2x cos θ2 + â2y sin θ2)e
iω2(r2/c+t

II

0 −t2), where the symbols are
defined by analogy. On the right side of the sources, a detection at D3 can be caused by photon 3 emitted by source
SI or by photon 4 emitted by source SII . The beamsplitter BS may have polarisation dependent transmission and
reflection coefficients, denoted by Tx, Ty, and Rx, Ry, respectively. The angle of the polariser P3 is given by θ3.

Ê3 =
(

â4x

√

Tx cos θ3 + â4y

√

Ty sin θ3

)

ei ω4(
r

II
+r3

c
+t

II

0
−t3) + i

(

â3x

√

Rx cos θ3 + â3y

√

Ry sin θ3

)

ei ω3(
r

I
+r3

c
+t

I

0
−t3)

For D4 one defines Ê4 analogously.”[16]
Till this point in calculation everything follows from the standard quantum mechanics and there is no entanglement.

Entanglement comes to stage when we want to make some measurements on some subsystem and not some other
measurements on some other subsystems. For example, the coincidence probability for all four photons detected by
detectors D1,D2,D3 and D4 (see Fig. fig:josab-95) only (which means not by detectors D1⊥,D2⊥,D3⊥,D4⊥ or not by
D1,D2 and two photons 3,4 by one detector D3, etc.) reads: [16]

P (θ1, θ2, θ3, θ4) = 〈Ψ|Ê†
1Ê

†
2Ê

†
3Ê

†
4Ê4Ê3Ê2Ê1|Ψ〉 = 1

16 sin2(θ1 − θ2) sin2(θ3 − θ4) (5)
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FIG. 7: Figure taken from Pavičić (1995): “In the experiment two photons from two singlets interfere at a beam splitter, and
as a result the other two photons—which nowhere interacted and whose paths nowhere crossed—exhibit a 100% correlation in
polarisation, even when no polarisation has been measured in the first two photons.” [17]

and this is what we called entanglement of photons 1 and 2: “two photons from two singlets interfere at a beam
splitter, and as a result the other two photons—which nowhere interacted and whose paths nowhere crossed—exhibit
a 100% correlation in polarisation, even when no polarisation has been measured in the first two photons: [17]

P (θ1, θ2,∞,∞) =
1

8
sin2(θ1 − θ2) (6)

The latter result is presented in Fig. 7 and verified experimentally [18].
“The probability given by Eq. (5) and describing coincidence detections by D1 and D2 corresponds — when

multiplied by 4 — to the following singlet state:

|Ψs〉 =
1√
2
(|1x〉1|1y〉2 − |1y〉1 |1x〉2) . (7)

Multiplication by 4 is for photons that emerge from the same side of BS and which therefore do not belong to our
statistics. Analogously, the probability of coincidental detection by D1 and D2⊥:

P (θ1, θ
⊥
2 ,∞,∞) =

1

8
cos2(θ1 − θ2) . (8)

corresponds to the following triplet–like state:

|Ψt〉 =
1√
2
(|1x〉1|1x〉2 + |1y〉1 |1y〉2) . (9)

Thus, photons 1,2 belonging to quadruples containing photons 3,4 which appear at different sides of the beam splitter
behave quantum–like showing — according to Eq. (7) — 100% relative modulation. In other words, by detecting the
photons 3 and 4 on different sides of the beam splitter we preselect the orthogonal individual photon 1 and 2 pairs
(25% of all pairs) with probability one, while by detecting both photons 3 and 4 on one side of the beam splitter we
preselect the parallel pairs (75% of all pairs) with probability 1/3.”[17]

We see that Eq. (9) is actually Eq. (3) with |1x〉1|1x〉2 = |0〉|0〉 and |1y〉1|1y〉2 = |1〉|1〉. Note that to obtain Eq. (9)
we had to multiply the corresponding substate of the overall system by 4 to get it out of the statistics of the whole
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system given by Eq. (8). And while for measurements corresponding to Eqs. (7) and (9) we do have entanglement, for
other measurements in the considered set-up we do not have entanglements. E.g., the overall probability of detecting
both photons 3,4 in one arm of BS and detecting photons 1,2 by D1 and D2 is given by:

P (θ1, θ2, θ3 × θ4) = 〈Ψ|Ê†
1Ê

†
2Ê

†
3Ê

†
3Ê3Ê3Ê2Ê1|Ψ〉 =

1

16

[

cos(θ1 − θ3) cos(θ2 − θ3) + cos(θ1 − θ4) cos(θ2 − θ4)
]2
.

which for removed polarisers P3 and P4 reads:

P (θ1, θ2,∞×∞) =
1

8
[1 + cos2(θ1 − θ2)] .

We can also see that by removing one of the polarisers P1 and P2, say P2, we lose any left–right (Bell–like) spin
correlation completely: P (θ1,∞, θ3, θ4) = 1

8 sin2(θ3 − θ4), P (θ1,∞,∞,∞) = 1
4 , P (θ1,∞,∞×∞) = 1

4 . [17]
Hence, the entanglement is just a property of some subsystems of the whole composite system under a particular

measurement arrangement. This entaglement is also almost synonymous to teleportation. To see this let us look at the
source 1 in Figs. 6 and 7. (Sources 1 and 2 are simultaneously triggered by a common pumping laser beam.) Photons
coming out of it are in the singlet state and therefore their polarisations are completely unprepared but correlated.
With such an unprepared polarisation, one of the photons from the source 1 come to the beam splitter, interferes at
it with another photon coming from the source 2, loses its polarisation and “teleports” it to the second photon from
the source 2, i.e., to the photon 2. What does this mean? It means that by measuring polarisation of the photon 2
we recover the polarisation of the photon coming from the source 1 to the beam splitter. How do we know this? By
measuring polarisation of photon 1 by detector D1. (Since the photons coming out of the source 1 are in the singlet
state, measuring of the polarisation of the photon 1 answers the question which polarisation the other photon coming
out of the source 1 should have had if it had been directly measured.) This has also been verified experimentally. [19]
The experiment actually confirms Eq. (6). So, both entanglement and teleportation are about engineering particular
subsystems with particular properties corresponding to just some parts of a complete mathematical description of the
complete composite system.

D. Kochen-Specker Vectors

In entanglement we make a tensor product state for the whole composite system and then extract just a part of
the state. In a similar way we can approach other problems. For example, the problem of finding arbitrary vectors
satisfying the Kochen-Specker theorem. It says that one can find such arrangement of either Hilbert subspace vectors
or of measuring experimental devices that would detect outputs of quantum systems but would not of classical. The
problem boils down to the orthogonality of the one dimensional subspaces. This means that the relevant vectors are
included in the span of the other one dimensional subspaces of the space, i.e., that the vectors orthogonal to each
other build a whole Hilbert space in such a way that its classical interpretation is not possible. Under “classical
interpretation” we mean ascribing the vectors some definite values, e.g., 0 and 1. We have chosen the Kochen-Specker
problem because of recently proposed experimental tests of Kochen-Specker theorem [20, 21] and because of recent
disputes on feasibility of such experiments [22–26].

The original Kochen-Specker theorem [27] produced a set of 117 3-dimensional Hilbert space vectors for which there
is no way to assign 1’s and 0’s to their states and therefore no way to provide quantum space with a classical Boolean
model. The proof was tedious and subsequent attempts to reduce the number of vectors gave the following minimal
results: 33 [28] and 31 [29, p. 114] 3-dim vectors, 18 [30] and 14 [31] 4-dim vectors, 29, 31, and 34 5-dim, 6-dim, and
7-dim vectors, respectively [32], 36 8-dim vectors [33], etc. Reducing the number of vectors turn out to be important
because a direct connection between such vectors and an experimental setup can be established. [32] However, no
general method for constructing sets of Kochen-Specker vectors has been proposed so far. Recently we found one.

The main idea of our approach is to first show that for particular set of orthogonal Hilbert space vectors one can
impose no 0 -1 state on the vectors. However, we do that using the Hilbert space orthogonality: a ≤ b ∪ c∪ . . . , not
the standard one: (a, b) = 0, (a, c) = 0, . . . , which boils down to a non-linear system: a1b1 + a2b2 + a3b3 + . . . = 0,
a1c1 + a2c2 + a3c3 + . . . = 0, . . . But even this Hilbert orthogonality we do not “calculate”—it is “built in” in the
MMP diagrams defined below by its generation algorithm. We only check whether one can or cannot impose classical
0 -1 state on the diagrams. We then only have to find the one which does not allow such a state and this is done by
a simple program which follows the definition of the classical state.

MMP diagrams are diagrams which are organised as connected blocks of mutually orthogonal vectors. MMP
diagrams are defined as follows:

1. Every vertex (i.e., atom when a diagram corresponds to a lattice) belongs to at least one block;
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2. If there are at least two vertices then every block is at least 2-element;

3. Every block which intersects with another block is at least 3-element;

and then generated by the the isomorph-free generation procedure according to the following algorithm [34]:

procedure scan (D: diagram; β: integer)

if D has exactly β blocks then

output D

else

for each equivalence class of extensions D + e do

if e ∈ m(D + e) then scan(D + e,β)

end procedure

Without the latter algorithm MMP diagrams would remind us of Greechie diagrams [35] with one of the conditions
dropped. The isomorph-free generation procedure is what make them very different. Greechie diagrams are a handy
way to draw Hasse diagrams but Hasse diagrams get more and more intrinsically complicated when we enlarge the
number of atoms. E.g., a four-atom Greechie block has 16 elements, a five-atom Greechie block has 32 elements, and
an n-atom Greechie block has 2n elements, so they soon become intractable. MMP diagrams are however just strings.
A five vertex block has 5 elements, an n vertex block has n elements.

Depending on parameters we use in their generation (parameters appear as options in our programs) MMP diagrams
can be represented as lattices, but also as partially ordered sets, or as vectors from a Hilbert space which do not form
a lattice; they can even be used for representing relations between vectors, planes, and subspaces of any n-dim space
in classical physics. Which diagram will be appropriate for which purpose is determined by a selection procedure we
use once they are generated.

So, the 3 simple aforementioned conditions imposed on diagrams gives us all we need to get all finite subspaces of a
Hilbert space of arbitrary complexity: we just eliminate diagrams in which Hilbert lattice properties do not hold. We
currently use programs which generate and use lattices with up to 100 atoms but for all results we have obtained so
far, 15 to 28 atoms suffice. The results we obtained in dealing with Kochen-Specker vectors we are going to present
in forthcoming publications.
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[5] H. Paul and M. Pavičić, J. Opt. Soc. Am. B 14, 1273 (1997), arXiv.org/abs/quant-ph/9908023.
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