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We discuss a scheme for a full superdense coding of entangled photon states employing only

linear optics elements. By using the mixed basis consisting of four states that are unambigu-

ously distinguishable by a standard and polarizing beam splitters we can deterministically

transfer four messages by manipulating just one of the two entangled photons. The sender

achieves the determinism of the transfer either by giving up the control over 50% of sent

messages (although known to her) or by discarding 33% of incoming photons.
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1. Introduction

Superdense coding (SC)1 — sending up to two bits of information, i.e. four messages,

by manipulating just one of two entangled qubits (two-state quantum systems) — is

considered to be a protocol that launched the field of quantum communication.2

Apart from showing how different quantum coding of information is from the classical

one— which can encode only two messages in a two-state system— the protocol has

also shown how important entanglement of qubits is for their manipulation.

Such an entanglement has proven to be a genuine quantum effect that cannot be

achieved with the help of two classical bit carriers because we cannot entangle

classical systems. To use this advantage of quantum information transfer, it is very

important to keep the trade-off of the increased transfer capacity balanced with the

technology of implementing the protocol. The simplest and most efficient

implementation is the one that would use photons manipulated by linear optics

elements such as beam splitters, polarizers, and wave plates and only one degree of

freedom — polarization.

Since entangled qubits applied to the teleportation required Bell states, all

subsequent attempts to implement SC — as another transportation protocol —

concentrated on Bell states. The idea was to send four messages via four Bell states
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[see Eq. (1)] and herewith achieve a log24 ¼ 2 bit transfer. To this aim, a recognition

of all four Bell states was required.

The first linear optics implementation has reached only three quarters (three

messages) of its theoretical two-bit (four messages) channel capacity, i.e. log23 ¼
1:585 bits. This was because a recognition of two Bell states j�þi and j��i was

achieved while the other two j��i that could not be told apart were both used to

send one and the same message.3 This partial realization of the superdense protocol

was named dense coding. In 2001, Calsamiglia and Lütkenhaus proved4 that the

dense coding was all we could achieve with Bell states and linear optics.

Therefore in Ref. 5 we dispensed with the Bell state basis and introduced the

mixed basis which enabled us to go around the Calsamiglia�Lütkenhaus no-go proof

and carry a superdense coding with linear optics.

The finding revealed that the notion of superdense coding was not operationally

well defined, mostly because no particular application of this protocol in quantum

computation and/or quantum communication has been found so far.

In this paper, we therefore consider three possible operational definitions and

implementation of the superdense coding.

2. Mixed Basis and Entanglement

We define a mixed basis as a basis which consists of the following two Bell states

j�1;2i ¼ j��i ¼ ðjHi1jV i2 � jV i1Hi2Þ=
ffiffiffi

2
p

ð1Þ
and the following two computational basis states

j�3i ¼ jHi1jHi2; j�4i ¼ jV i1jV i2; ð2Þ
where H ðV Þ represents horizontal (vertical) photon polarization. We shall not use

the other two Bell states j��i ¼ ðj�3i � j�4iÞ= ffiffiffi

2
p

. Both Bell and computational

bases can be expressed by means of the mixed basis.

Let us first see why we cannot use only the computational basis, then why we

cannot use only the Bell basis, and in the end why we can use the mixed basis. We

consider photons being sent to a beam splitter after which we try to split them with

the help of polarizing beam splitters (PBS) and then detect them by means of

detectors with photon number resolution.

When we send two parallelly polarized photons to a beam splitter from its

opposite sides they will always emerge from the same side, bunched together and

showing the so-called Hong-Ou-Mandel interference dip [Sec. 3.2].6 It has been

calculated that both bunched photons keep the polarization direction they had

before they entered the beam splitter.7�9 So we can discriminate j�3i and j�4i from
each other and from j�1;2i with photon number resolution detectors or up to an

arbitrary precision with single photon detectors. If we sent perpendicularly polarized

photons — the other two states of the computational basis — to a beam splitter,

they would either bunch together (50%) or emerge from the opposite sides of the
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beam slitter (50%).7 The two photons that are split are correlated but unpolarized.

Therefore, we cannot distinguish between jHV i and jVHi in 50% of the events and

we again end up with the channel capacity log23 as for the Bell states.

On the other hand, in the Bell basis we can discriminate between j�þi and j��i
but not between j�þi and j��i [Sec. 4.1].6 At a polarization preserving (metallic)

BS, j��i photons split and j�þi photons bunch together but have different polar-

ization so that we can split them at PBSs behind BS. j��i photons also bunch

together but being entangled (unpolarized but correlated in polarization) both

photons from a pair project to either jHi or jV i, i.e. either both go through or are

both reflected from PBSs.

So, we can unambiguously discriminate two states from the computational basis,

jHHi; jV V i, two from the Bell basis, j��i, as well as any one of them from each

other by means of photon number resolution detectors. Thus we can discriminate all

four j� ii, i ¼ 1; . . . ; 4 and now there comes the question how to prepare them.

Alice gets j�þi photons by means of spontaneous parametric down conversion in

a BBO crystal.3 To send j�1i ¼ j�þi she puts nothing in the path of her photon. To

send j�2i ¼ j��i she puts in HWPð0�Þ (half-wave plate) in the path. It changes the

sign of the vertical polarization. To send j�3i she takes out HWPð0�Þ and puts in

HWPð45�Þ and a polarizer (pol) oriented horizontally. Her pol is of a PBS type: jHi
photon passes through and jV i is reflected from it. HWPð45�Þ turns j�þi into j��i
and pol projects both photons to state jHi in half of the occurrences. In the other half

of the occurrences, Alice’s photon is reflected from her pol and we have both photons

in state jV i, i.e. the pair in state j�4i. Alice might detect these \wrong" photons

with the help of a detector d. Below we will specify what Alice can do next. To send

j�4i, Alice is making use of a reflection from her PBS and then the \wrong" photons

go through.

We stress here that the preparation of j�3i and j�4i includes physics of entangled
systems because whenever Alice sends her qubit through a polarizer oriented hori-

zontally or vertically, the other qubit from the entangled pair (originally in the state

j�þi) will be immediately set into jHi and jV i state for any subsequent measure-

ment along H or V directions, respectively.

We noticed above that \in a way" Alice does not have a control over the choice of

her photon while preparing j�3i and j�4i states. Her photon can go either way in her

PBS. But she does know which way it took after it did so. And this opens a question

of an operational definitions and implementation of the SC.

3. Operational Definitions of SC

In the absence of a well-defined application, there can be three possible operational

definitions and implementations of SC.

We start with a formal definition.

Definition 1. SC is a technique used in quantum information theory to send two

bits of classical information using only one qubit, with the aid of entanglement.
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To make this definition more operational we restate it following Ref. 10.

Definition 2. In SC, a sender (Alice) can send a message consisting of two classical

bits using one quantum bit (qubit) to the receiver (Bob). The input to the circuit is

one of a pair of qubits entangled in the Bell basis state. The other qubit from the pair

is sent unchanged to Bob. After processing the former qubit in one of four ways, it is

sent to Bob, who measures the two qubits, yielding two classical bits. The result is

that Bob receives two classical bits which match those that Alice sent by

manipulating just her qubit.

Even this definition is not operational enough because several elements remained

unspecified:

(i) the owner of the pair can be Alice, Bob, or Anna;

(ii) Alice might be required to send each photon she receives from the source to Bob

or might not be required to do so;

(iii) Alice might be required to have a control over sent messages or not.

We shall consider all the aforementioned options.

In the original version of their superdense coding, Bennett and Wiesner1 assume

that Bob is the proprietor of entangled pairs and that he sends Alice one qubit from

each of his pairs. She manipulates her qubits and sends it back to Bob. Bob expects

of Alice to return him each qubit he sent her. In our version she might do that

[option (b)] or might not do so [options (a) and (c)].

In the first coding experiment,3 Alice [Bob in the cited reference] owns the

entangled pairs, manipulates one of the qubits, and then sends both qubits of Bob

[Alice in the cited reference]. In our version Alice might [option (c)] or might not

[options (a) and (b)] own the pairs.

Three possible scenarios that operationalize the options are:

(a) Alice is assumed to send Bob a comprehensible message by means of four

elementary messages j� ii, i ¼ 1; . . . ; 4. Bob is the owner of the source; he sends

one photon to Alice and keeps one for himself. (A) She manipulates her qubits

and sends to Bob only those ones over which she can have a control; she discards

those over which she cannot have a control. Anna might also be the owner of the

source. She sends one qubit to Bob and one to Alice and they proceed as from

point (A) above;

(b) Alice is assumed to send Bob an intelligible but not necessarily a comprehensible

message by means of four elementary messages j� ii, i ¼ 1; . . . ; 4. Anna owns the

BBO crystal and sends one qubit to Bob and one to Alice. (B) Alice sends either

original or cloned qubits to Bob; she does not have a control over 50% of her

messages (assuming they are evenly distributed) but she does have records of all

the messages she sent. Alternatively, Bob can own the source and send one

photon to Alice and keeps one for himself. Then they proceed as from point (B)

above;
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(c) Alice owns the source. This scenario is essentially different from the previous

ones because Alice can discard not only the qubit which she could not control

but also the other qubit from the pair. Bob never finds out that the pair ever

existed. Alice can transfer comprehensible messages deterministically.

These three operational scenarios are shown in Fig. 1. Interpretations of

the scenarios essentially depend on applications. We elaborate on their appli-

cations in Sec. 4 and here we just discuss when the scenarios can be considered

deterministic.

(a) Alice is being sent her qubits and Bob expects her to use as many of them as she

can. Alice sends j�1i and j�2i with an efficiency ideally approaching 100%.

When sending j�3i or j�4i she has only 50% probability of success, but she

knows when she was successful and when not— her detector will not click when

she was and will click when she was not. Bob will also know when Alice was not

successful because he will then receive only one photon. So they can discard

unsuccessful attempts. Now the question emerges whether we have an appli-

cation for which it would be important to worry about the lost photon pairs. If

not, we can speak of ideally deterministic SC. Application proposed in Sec. 4

supports it.

(b) Anna is demanding and wants Alice to use all the photons she sends her.

However, she expects of Alice only to sends states j� ii, i ¼ 1; 2; 3; 4 as she can.

So, when sending say j�3i Alice sends half of them through her PBS as \they

choose" and clone the other half with the help of quantum dots (deterministic

cloning of definite known polarization is possible). We give an application of

this scenario in Sec. 4.

(c) Alice owns the source and both photons. She is allowed to manipulate just one

photon but she can stop the other if her photon chooses a \wrong" exit from her

PBS. Here the question emerges whether we can have any reason not to allow
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Fig. 1. Superdense coding. Operational definitions (a), (b), and (c) that we consider in the text.
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Alice to stop the whole pair. Again everything depends on the application. But

in the absence of a dominant SC application we can again speak of ideally

deterministic SC. In Sec. 4 we give an application which makes use of such a

coding.

4. Discussion

Efficient recognition of all four Bell basis states is undoubtedly essential for tele-

portation because they describe entanglement of photons which serve as \carriers"

for teleportation. However, for SC it is essential that we transfer four messages by

manipulating just one of the originally entangled qubits.

We showed that in the current absence of prevailing application of SC we can

carry it out deterministically with the linear optics in three different ways. Here we

present some possible applications of the coding in quantum cryptography. As

opposed to \pure" SC, its cryptography application will include classical channels

but we keep the basic SC scenarios from Sec. 3.

(a) Bob and Alice discard unsuccessful messages (33%). Alice repeats every such

message. Information transfer with successful messages can be considered

deterministic in the absence of applications which would forbid discarding

unsuccessful messages. Application can be the ping-pong quantum crypto-

graphy protocol.11,12 Since in this protocol we do not have to have a classical

channel through which Alice would inform Bob which messages to keep and

which to discard as in BB84 protocol, Alice and Bob make a direct deterministic

transfer of comprehensible messages with their 67% of messages. The transfer is

done with four messages per Alice’s qubit and with linear optical elements. The

discarded 33% of messages do not impair the quality of the transfer in any way.

Moreover, in the ping-pong protocol they need not be discarded but can be used

as a control channel;

(b) Alice takes care only to send all her photons as she can. So, she can send four

different messages (four different photon states j� ii, i ¼ 1; 2; 3; 4) by manip-

ulating just one photon but does not have a control over half of the states she

sends, although she deterministically knows which messages she sent. Appli-

cation might again be a ping-pong protocol. Alice can inform Bob on the cloned

photons (with a delay) over a public (classical) channel so that Bob can change

the received \wrong" message into the one Alice intended to send. The message

is still unreadable to Eve provided Alice randomly changes the orientation of

her qubit and informs Bob on it with a delay;

(c) Alice sends messages cleanly and deterministically to Bob by stopping both

photons whenever her photons come from the \wrong" exit. Alice repeats every

such message. Bob does not know anything about the existence of the \wrong"

pairs. In the ping-pong protocol Alice can use a public channel to tell Bob (with

a delay) to erase his qubit from the pair containing Alice’s \wrong qubit."
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In the end we would like to discuss the following possible objection to our

approach: \A SC applies to message generation and not to a message recognition;

therefore, we cannot discard 25% of \wrong" messages in our options (a) and (c);

hence, (a) and (c) are only an alternative scheme to achieve dense coding." The

answer to this objection is simple.

First, we do not discard 25% but 33% of messages assuming that they are equally

distributed. This is because for an equal distribution of messages we have to com-

pensate for the messages (j�3;4i) that cannot be sent in half of Alice’s attempts by

increasing the number of her attempts to do so. Let n be the number of each of the four

messages. Each unsuccessful attempt to send j�3;4i Alice has to repeat until the

messages go through. That gives 4nþ nþ n ¼ 100% and the percentage of each of the

sent messages is 16.7%. The percentage of each kind of \wasted" (repeated) messages

is also 16.7% and this reduces the efficiency of the four encoded messages by 33%:

4� 0:67 ¼ 2:7. Hence, our protocol only transfers four messages — while the dense

coding transfers only three— and has the channel capacity per photon pairs generated

at the source log2 2:7 ¼ 1:433 — while the dense coding has log2 3 ¼ 1:585.

Second, we deterministically generate four different messages after first dis-

carding 33% of unusable detections. Hence, our protocol is not an alternative scheme

of dense coding. In particular,

(1) pair generation of photon pairs in the photon source and message generation are

two independent things; there is no physical reason why Alice and Bob should

not be allowed to shrink the number of photons they obtain from the crystal, for

Alice’s generation of messages;

(2) both, our protocol and the dense coding protocol are about message generation

but with our protocol we are able to transfer four messages, while with the dense

coding we can transfer only three; in dense coding Bob cannot discriminate

between two of four messages while in our protocol he can deterministically

discriminate all four (j� ii, i ¼ 1; 2; 3; 4) messages.

(3) if any of the two protocol can be considered nondeterministic it is the dense

coding one because there Bob cannot discriminate between j��i and j�þi.
As for point (1) above we stress that similar discarding of unwanted events is a

standard technique of the quantum information engineering. Consider, e.g. gener-

ation of entangled photons on demand from three spontaneous parametric down-

conversion sources.13�15 We discard photon detections after photon detections until

we finally get a right set of four detections that tell us that the remaining two

photons are entangled and ready for usage. Actually we discard so many of them

that within a required time window we have a success probability of the order of

10�6. In this procedure a detection of four photons determines the entangled photons

on demand and in our procedure Alice’s manipulation of her qubits determines the

number of superdense coded pairs; discarded pairs are irrelevant for the coding and

play no role in it; relevant are only those that carry Alice’s messages to Bob.
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