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Abstract 

Two elements of quantum computation are considered : quantum computer logic and quantum repeater. 
lt is shown that the quantum gate logic does have two different models and that it is therefore ambig
uous. It is also shown that without additional conditions imposed on quantum gates one cannot arrive 
at a general quantum computer machine language. In absence of such conditions quantum entangle
ment remains a selection protocol which makes quantum computer equ ivalent to many photon intensity 
interferometry. As an example for such an entanglement we discuss a quantum optical repeater. 

1. Introduction 

Classical computers are based on classical logic which has a numerical algebraic model 
(Boolean algebra) but also a probabilistic model: one takes the values of the logical propo
sitions and map them to [0,1] interval arriving immediately at a Kolmogorovian probability 
theory [3]. For quantum computers we still do not know of a quantum logic which wou ld 
- when mapped to [0,1] - give us a Hilbertian probability theory. What we do know is 
how to make quantum logic gates and superpose their inputs so as to enable novel quantum 
algorithms such as Shor's and Grover's [ 14] which in a polynomial time solve the problems 
for which classical algorithms apparently request an exponential time and how to "simu
late" a Schrodinger equation [l]. Hence, we are still away from a "proper" quantum com
puter which would convert input values for quantum logic gates directly to mean values of 
observables in a polynomial nwnber of steps, i.e., which would enable us to simply type in 
a Schrodinger equation and by simulating a molecule or whatever quantum system get a 
desired result. This kind of usage of quantum computers - which boils down to quantum 
mathematics - is what would represent not only qualitatively faster algorithms and a genu
ine parallel processing but an essentially new way of solving problems by simulating physi
cal systems with the help of a direct conversion of the input gate values. In this paper we 
present some results which brings us closer to the goal. 

In Sec. 2 we show that in addition to its well-known model - Boolean algebra - classi
cal logic unexpectedly turn out to have yet another model which is not distributive. We 
explain why this discovery does not have an impact on classical computers. Then we pre
sent another result, which is that quantum logic also have two different models and explain 
why the latter discovery does have an impact on quantum computers, as opposed to the 
classical case. We also stress that quantum gates do yield quantum entanglement but not a 
Hilbertian representation of a general quantum system. In this respect, physics of quantum 
gates corresponds to physics of the many photon intensity interferometry. 

As an example of such an analogy in Sec. 3 we present an optical quantum repeater. A 
photon from a four photon system, obtained by a controlled entanglement of two downcon
verted photon pairs, is entangled with a photon from another such four photon system. As 
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a result two other photons, each from one of the systems appear in a singlet state with an 
event probability arbitrary close to one. This is due to the fact that in such an entangle
ment, through a selection made by means of the remaining photons from the systems, the 
probability of photons corning out from the same side of a beam splitter can be made 
arbitrary small. By means of subpicosecond lasers with nanosecond oscillations locked to a 
master clock one can use the property to construct quantum repeaters for communication of 
EPR pairs. The repeater can be applied in quantum computer, in teleportation, quantum 
cryptography, and for loophole-free Bell experiments. 

2. Quantum Computer Logic and Algebra 

In classical logic used by classical computers it is enough to ascribe values, 0 and 1, to its 
propositions to arrive at Boolean algebra of the propositions. In quantum logic of elemen
tary input propositions for quantum computers we cannot do the same because one cannot 
ascribe a definite value to every proposition (Kochen-Specker's theorem). Still one can 
obtain a partial algebra which is a lattice. Complete specification of such a quantum algebra 
is an open problem as we shall see below. 

A computer is a computational device in which a 2 x 2 unitary matrices called logic 
gates act on elementary bits IO) = (I , 0) and I 1) = (0, 1) and on bits obtained by such 
operations. A classical gate is for example a NOT gate which flips bits in the following 
way: NOTIO)=NOT(l,0)=11) and NOTII)=NOT(0,1)=10). A quantum gate 
which is characteristic of the existing experimental hardware is the controlled NOT gate 
which acts on two such bits (quantum bits, qubits) in a conditional way [as simple NOT 
gate on the second (target) qubit provided the first (control) qubit is 1], e.g., 
NOTIIO) =III). 

We describe the system of qubits by unit vectors in the Hilbert space H 2 over the field 
of complex numbers. We denote the two orthogonal states by IO)= (1 , 0) and II) = (0, 1). 
The states make an orthogonal basis for H2

. In a quantum computer we deal with a big 
number n of qubits which build up a composite Hilbert space H = H 2 0 ... 0 H 2

. The 
computational basis, i.e., the basis of this space, consists of the following 2n vectors: 
IOO · · · 00), IOO · · · 01), ... , I 11 ··· 11), where, e.g., IOO) means IO) 0 IO). Classical bits cor-
respond to quantum states: i1i2 ... ill <-> lill) = li1 ... ill). 

To compute the function f: i 1 i2 ... ill 1-+ f(i 1, ... i11 ). means to let the corresponding states 
evolve according to the time evolution unitary operator U (Schrodinger equation): 

(1) 

The unitarity of U assures reversibility and therefore prevents energy dissipation. This can 
be achieved with classical devices as well but only at the cost of exponentially growing 
hardware or exponentially rising time. The reason for that is simple: n classical states de
scribing a system in a classical computer can only be specified by ascribing values all 211 

basis states. So, in classical computation we have the input values for propositions and by 
means of logic gates we obtain new propositions with definite values. Hence we do have a 
logic. 

Do we have such a logic in quantum computation? Quantum computers achieve speed 
and a parallel way of computing - which are their essential features - by using superposi
tion which puts n quantum states in a superposition of all 21l basis states in one step. To see 
this let us consider the following superposition of n qubits: LL,. .. i,,=O li1i2 ... i11 ). Applying 
the linear unitary operation which computes f, from Eq. (1), to this state, yields: 
L;!,,i

2
, .,i,, =O lf(i1i2 . .. ill)). U computes f parallelly on all the 21l possible inputs i and in 

the end by a wave packet collapse a final output. 
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To obtain such a parallel computing in an assumed realistic computer, we start with an 
initial state Ii) which corresponds to an "input" to the computation. We then perform ele
mentary operations on the system using the quantum gates defined above. The operations 
correspond to the computational steps in the computation, just like logic gates are the ele
mentary steps in classical computers, and are performed on an isolated system, so the evo
lution can always be described by a unitary matrix operating on the state of the system. But 
can we translate a general Hamiltonian into a set of instructions for quantum gates on how 
to transform input states in time? The answer is currently in the negative. There is no 
known finite and definite receipt for such a correspondence. To make it possible we try to 
narrow the gap between an algebra of elementary propositions (corresponding to pure 
states) and the Hilbert space description. First, let us see whether we can unambiguously 
construct such an algebra starting with these propositions, i.e., with quantum logic. 

Let us denote any Hilbert space subspaces (e.g., the afore-mentioned one and two dimen
sional ones) Ha , Hb , He, . .. by a, b, c, .. .. Let C(H) be a set of closed subspaces. We 
define orthocomplementation for Ha, where Ha ~ H, as a' = {x E H (x I y) = 0, 
\ly E Ha}. On C(H) we define meet an bas Han Hh and join a U bas the smallest closed 
subspace of H containing Ha U Hb, which always exists. We write 0 for the smallest ele
ment (/J in C(H) and 1 for the largest element H in C(H). Ordering a::; b is defined as 
Ha ~ Hh which can be shown to be equivalent to a = a n b and to a U b = b. The order
ing corresponds (see below) to the operation of implication (Sasaki) which is defined as 
a --> b = a' U (an b) . The orthogonality Ha ..l Hb is given by a::; b'. Let us denote the 
set containing all a, b, c , . .. by L0

• 

Definition: An ortholattice is algebra OL = (L0L , ' , U) in which the following conditions 
are satisfied for any a, b, c E L0

: 

L 1. a ::; a" & a" ::; a 
L2. a ::; a U b & b ::; a U b 
L3. a ::; b & b ::; a ::::?- a = b 
L4. a ::; 1 
LS. a ::; b ::::?- b' ::; a' 
L6. a ::; b & b ::; c ::::?- a ::; c 
L 7. a ::; c & b ::; c ::::?- a U b ::; c 

An ortholattice is orthomodular (OML) if \la, b E L0L : 

L8a. b ::; a & c ..l a ::::?- a n ( b u c) = (a n b) u (a n c), 
or 

L8b. au b = ((au b) n b') u b, 
or both; it is modular (ML) if \la, b E L0

: 

L9a. b ::; a ::::?- a n ( b u c) = (a n b) u (a n c) 
or 

L9b. a n ( b u (a n c)) = (a n b) u (a n c) 
or both, and it is distributive (DL) if \la , b E L0 

LlO. an(buc) = (anb)U(anc) 
It is well-known that C(H) is (trivially) orthomodular if H is infinite dimensional and 

modular if H is finite dimensional (von Neumann and Birkhoff). Subspaces of a classical 
phase space build a(n) (orthocomplemented) distributive lattice, i.e., the Boolean algebra. 

It is also well-known that in an orthomodular lattice the following equivalences holds: 
a::; b {:} a--> b = 1, where a--> b =def a' U (an b), and a= b {:} a= b = 1, where 
a = b =def (a --> b) n ( b --> a). In a Boolean algebra the following ones hold: 
a < b {:} a ~ b = 1 where a ~ b =def a' U b and a = b {:} a "' b = 1 where 
a -;::, b =def (a ~ b) n ( b ~ a). , , 

Using these equivalences one can mimic any valid logical expression (wff), f- A by 
a = 1. So, we easily arrive at either quantum (for either infinite or finite Hilbert spaces) or 
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classical logic. We shall denote wwf's derivable in these quantum logics from a set I' of 
their axioms and/or their consequences by r f-oM A and r f-M A and in classical logic by 
f- 0 A. However, once we go "there" we cannot go back. 

For, an ortholattice is weakly orthomodular (WOML) if and only if Va, b E L0L : 
LU. au b = ((au b) n b') u b = 1, 

it is weakly modular (WML) if Va, b E L0 

L12. a n ( b u (a n c)) = (a n b) n (a u c) = 1 
and it is weakly distributive (WDL) if Va, b E L0

: 

LIO. an(bUc) rv (aUb)n(aUc) = 1. 
None of these lattices are orthomodular. Even more, we are able to prove the following 

soundness and completeness theorem for them 

Theorem 2.1: [PaviCic and Megill] [10,11] I' f-x A if A is true in all WXL models, 
where X is either OM, or M, or D. 

in addition to the standard theorems 

Theorem 2.2: I' f-x A if A is true in all XL models, where X is either OM, or M, or D. 

In other words, all the logics do have at least two different models for which both sound
ness and completeness can be proved. In the parlance of the model theory: they are non
categorical. The meaning and the repercussions of this finding are as follows. As we have 
shown in [11], as soon as we ascribe ordered numerical values to propositions of classical 
logic it can have only one model - the Boolean algebra. What is peculiar though is that 
the syntax of the classical logic literally corresponds to the syntax of the weakly distribu
tive lattice and not to the one of the Boolean algebra. To all propositions of the quantum 
logic, on the other hand, one cannot ascribe definite numerical values in principle. There
fore one can impose two different algebras on input states (acting as propositions of quan
tum logic) which we will still discuss in Sec. 4. However, whatever algebra we choose one 
can show [4] that any of them should be much more structured than the algebra of plain 
quantum gates endowed with superpositions and entanglement, if we wanted to obtain a 
proper Hilbert space representation - whether infinite or finite dimensional-and tum quan
tum computer in a genuine quantum simulator. 

We have already stressed that the quantum entanglement which obtain by controlled 
quantum gates corresponds to the second quantization of the standard quantum theory. In 
other words, it enables basic quantum algebra endowed with superposition but it does not 
add anything new to the algebra of quantum gates. 

Consider for example the following entangled state of 2 particles which can then be 
used for a teleportation of states or Bell experiments or quantum cryptography (we omit the 
normalization factors): 

100) + 111) (2) 

Here none of the two qubits has a definite state: the state of the system is not a tensor 
product of the states, and we cannot find a 1, a2 , bi , b2 such that 

since 

and a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0. These states represent situations that 
have no classical counterpart in the sense of many photons intensity interferometry. In a 
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quantum computer we can obtain them by combining the Hadamard transformation 
CIO) f-+ IO)+ II ), II ) f-+ IO) + II )) and the controlled NOT (CNOT) transformation and en
able executing algorithms (Shor's, Grover's, Bogoshian's) or constructing parts such as the 
repeater we present in the next section. But without a general algebraic syntax they do not 
enable imposing an arbitrary Hamiltonian on them. 

3. Quantum Optical Repeater 

Sending EPR pairs over distances as well as their entanglement is essential for quantum 
cryptography, teleportation [2], and computation. A serious drawback of such sending is 
that a quantum signal cannot be amplified. 

Here we give a physical model of a quantum optical repeaters not as a realistic proposal 
but in order to discuss its characteristic. We start with the devices we described in detail 
here in Trieste three years ago and elsewhere. [6,7,9) They "prepare entanglements between 
photons that nowhere interacted and whose paths nowhere crossed ... and put together two 
photons . . . from two photon pairs and make them interfere . . . at a beam splitter. As a 
result one finds polarization correlations between the other companion photons from the 
pairs whose paths nowhere crossed each other . . . [and] we can consider them event-ready 
prepared in an entangled state [8]. 

We combine three such devices as shown in Fig. 1. Each device is a source of a photon 
singlet and can work, e.g., as a non-linear crystal in which a downconversion occurs. For 
example, an ultra-short laser beam simultaneously pumps up three type-II crystals. Looking 
at polarization, we find the photons 1 and 6 entangled and we might say that a state is 
teleported from photon 1 to photon 6: we put parallel polarizer in the paths 1 and 6 and 
find that either all detectors react or only 2-5. But, however intriguing this might be the 
device has no application: it cannot transmit a genuine quantum state. It is said that by 
such a device we can carry out a genuine teleportation between photon 2 and 6. This is 
true but such a teleportation also has no application because a downconverted EPR pair 
(obtained at intersections of crystal output cones) is uncontrollable. What we need in quan
tum computing is a teleportation of a particular definite quantum state from one part of a 
quantum computer to another without destroying it (i.e., without finding it out) so that we 
can use it for further computation. 

There are several practical reasons why we cannot do that with the available sources and 
detectors. First, in order to have coincidence detection instead of coincidental sub-picosecond 
pumping of crystals we should have sub-picosecond responding time detectors which do not 
exist. Then we should have controllable sources and this is in principle impossible with sponta
neous downconversion. Let us however assume that we found a controllable EPR pair source. 

The next problem are the beam splitters because we must discard events whenever 
photons come out from the same side of a beam splitter which is 75% of events for each 
beam splitter and 42% for all three [5]. Let us consider asymmetrical (highly transparent or 
highly reflective) beam splitters. Each successful entanglement corresponds to a nonmaxi
mal singlet state [6,9) which has the following representation 

(3) 

Fig. 1: Outline of the device which entangles 
photons I and 6. 



502 M. PAVICIC, Quantum Simulators and Quantum Repeaters 

Now we combine two such outputs at the middle beam splitter as shown in Fig. 1. Sing
lets from each unit combine to the following input product for the repeater: 

Coincidental firing of detectors over all beam splitters puts the photons 1 and 6 into 
following nonmaximal singlet: 

(5) 

If we had such a source which would always produce only one pair we would have a 
completely feasible and reliable loophole-free Bell experiment at hand, because the prob
ability of obtaining the above state for, e.g., R = 0.9999 is 0.9998. Explicitly 
P _,r = 1 - TR(2 - TR)/(1 - 2TR). All the other probabilities (for Pl", P2" oriented as 
j-+, or ---+---+, or ii and for both photons exiting from the same side of BS") contain T as 
a factor and are therefore all less than T = 1 - 0.9999 = 0.0001 in the above example. 

But an assymetrical state is of little use for a teleportation within a quantum computer. 
To teleport a state by EPR singlets we have to have symmetrical singlets and they waste 
75% of events in the above scheme. And the scheme is general and can also be obtained 
by means of Hadamar and CNOT gates within a quantum computer itself. Whether one 
can re-use the waste in calculation remains to be seen. 

4. Conclusion 

In Sec. 2 we show that there are two non-isomorphic models of the propositional calculus 
of quantum logic corresponding to an infinite dimensional Hilbert space representation: an 
orthomodular lattice and a weakly orthomodular lattice; that there are two non-isomorphic 
models of the propositional calculus of quantum logic corresponding to a finite dimensional 
Hilbert space representation: a modular lattice and a weakly modular lattice; and that there 
are two non-isomorphic models of the propositional calculus of classical logic: a distribu
tive lattice (Boolean algebra) and a weakly distributive lattice. Hence, all calculuses are 
non-categorical and none of them does map its syntactical structure to both models. They 
do so to one of the models and do not to the other. Surprisingly the models which do 
preserve the syntactical structure of the logics are not the standard ones - Boolean algebra 
and the orthomodular lattice - but the other ones - weakly distributive and weakly ortho
modular lattices. 

Classical computer applications are not affected by this finding since the usual ordered 
numerical valuation of classical logic excludes the weakly distributive model: two-valued 
classical logic admits only the two-element Boolean algebra - and the usual many-valued 
classical logic also admits only Boolean algebra as its model. Weakly distributive model for 
classical logic cannot be numerically valuated. It admits only a non-archimedean (non-or
dered) valuation. This opens a possibility of using non-ordered lattice models for a faithful 
reflection of the syntax of the logic. 

With quantum logic it is just the opposite - yes-no values cannot be ascribed to all 
quantum propositions due to the Kochen-Specker theorem [13]. This is the difference be
tween quantum and classical computation: the classical one proceeds by switching logic 
gates and ascribing values to propositions by the gate on the way till the final output of a 
sequence of calculation; the quantum one proceed in a syntactical way, e.g., by combining 
Hadamar transformation, CNOT transformation, phase shifts, etc., arriving at a genuinely 
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entangled state in which no one of the subsystems (propositions) is in any definite state. On 
the example of a quantum repeater we argued that without a complete syntax quantum 
computer is but a huge interfometer which always requires special algorithms to work. 

We have shown above that there are two possible syntaxes corresponding to two possible 
algebras: an orthomodular one and a weakly orthomodular one for a most general case, and 
a modular and a weakly modular one for the finite dimensional one. Orthomodular and 
modular algebras enable can mathematically be made isomorphic to infinite and finite Hil
bert space, respectively. Whether one can do that by a quantum computer is an open ques
tion because one first have to solve the problem of translating additional mathematical con
ditions into commands and transformations for quantum gates. On the other hand, one 
should see whether weakly orthomodular and modular algebras might offer a simpler syn
tax and whether it might tum out that a non-archimedean valuation is manageable. After 
all, finite-dimensional Hilbert spaces allow nonstandard non-archimedean Keller fields in 
addition to the standard (real, complex, and quatemionic) ones and it has been shown that 
this does not disable their usage for proper physical measurements. 
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