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A discussion is given of a recently formulated function which exhibits a jump for the end points of a closed interval in case of 
the individual interpretation of quantum measurements of the first kind and stays continuous on the whole interval for their 
statistical interpretation. 

Recently I formula ted  [1]  a function which dif- 
ferentiates quan tum events which occur with prob-  
abi l i ty  equal to uni ty from the ones which factually 
occur. The  result served me to establish [ 2 ] a formal 
difference between the indiv idual  (Copenhagen [3, 
p. 440] ,  or thodox [4]  ) and statist ical  [5]  interpre-  
ta t ion o f  quan tum theory within its formalism taking 
the function to represent  von Neumann ' s  property 
[ 6 ]. This  formal difference between the two inter- 
pretat ions is not measurable  but  nevertheless pro- 
vides a theoret ical  d is t inct ion between them. Since 
such a difference was taken to be "highly significant 
for the in terpre ta t ion  o f  quan tum theory"  [4]  and 
was at the same t ime cri t icized [4]  I consider  it help- 
ful to discuss it in some detail ,  which is the purpose 
o f  this Letter. 

The only way in which quan tum theory - without  
regard to the collapse postulate  - connects the "ele- 
ments  o f  the physical  real i ty"  (i.e. what  we observe)  
with their  "counterpar t s  in the theory"  [7]  is by 
means  o f  the Born formula  which gives us the prob-  
abi l i ty  that  the ou tcome o f  an exper iment  will con- 
f irm an observable or  a proper ty  o f  an ensemble of  
systems [6, p. 439] .  

In case of  discrete observables  we are able to pre- 
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pare a proper ty  and we can, by an appropr ia te  de- 
tection (de terminat ion ,  measurement ) ,  verify the 
proper ty  with certainty - i.e. with probabi l i ty  one /  
equal to unity ( [7, p. 777, 7th line from below],  [6, 
pp. 250, 439] ), i.e. a lmos t  certainly,  almost  sure or  
"except  on a nul l-event"  [ 8, p. 20 ]. This  means that  
for repeatable measurements  we only know that  a 
proper ty  will be verified with certainty (with prob- 
abil i ty one)  - that  is for an ensemble. Whether  the 
proper ty  will be verif ied for each individual  system 
thus prepared  we can only guess. For  there is no 
"counte rpar t  in the theory"  of  an indiv idual  detec- 
t ion even if  it is carr ied out "wi th  cer tainty":  The 
Born probabi l is t ic  formula  - which is the only link 
between the theory and measurements  - refers only 
to ensembles.  However,  as shown below, we can con- 
sistently postulate whether a measurement  of  the first 
order  verifies a prepared repeatable property for each 
system or  not. 

The approach I took rests on combining the Malus 
angle expressed by probabi l i ty  with that  expressed 
by relative frequency. For  connecting probabi l i ty  
0 < p <  l with the corresponding relative frequency I 
used the strong law of  large numbers  for the infinite 
number  of  Bernoulli  trials which - being indepen- 
dent  and  exchangeable - perfectly represent  quan- 
tum measurements  on individual  quan tum systems. 
These proper t ies  o f  the individual  quan tum mea- 
surements  I used to reduce their  repeatabi l i ty  to suc- 
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cessive measurements (as noticed in ref. [ 4 ] )  but 
that has no influence on the whole argumentation 
which rests exclusively on the fact that finitely many 
experiments out of  infinitely many of  them may be 
assumed to fail and nevertheless to build up to prob- 
ability one. 

The argument supporting the statistical interpre- 
tation is that probability one of  e.g. electrons passing 
perfectly aligned Stern-Gerlach devices does imply 
that the relative frequency N+/N of  the number  N+ 
of  detections o f  the prepared property (e.g. spin-up) 
for the systems among the total number  N of  the pre- 
pared systems approaches probability p= (N+/N)  
= 1 almost certainly: 

P l i m - - ~ - = l  = 1 ,  ( I )  

but does not imply that N÷ analytically equals N, i.e. 
it does not necessarily follow that the analytical 
equation N÷ = N should be satisfied. 

We therefore must postulate what we want: either 
N÷ =N and ( I ) or N+ CN and ( 1 ). (Since already 
the central limit theorem itself, which served us to 
infer (1) ,  holds only on the open interval 0 < p <  1, 
it would be inconsistent to try to prove one or the 
other possibility and I therefore cannot agree with 
Home and Whitaker when they say: "Even though 
the intrinsic probability o f  an event may be unity, 
[Pavi~:id] attempts to show that the relative fre- 
quency of  occurrence cannot be." [4] . )  

Of  course, the possibility N÷ ¢ N does not seem 
very plausible by itself and we therefore used the 
Malus law to construct the function which reflects 
the two possibilities and proved a theorem which di- 
rectly supports another difference between the prob- 
ability and frequency treatment o f  individual quan- 
tum measurements. 

As for the theorem we proved that 

which expresses randomness o f  individual results as 
clustering only around p (almost never strictly at p).  
(As I learned recently, a related result was achieved 
by Mugur-Sch~ichter [9 ] in a different informational 
content.)  Thus it does not take two theories [3, p. 
441 ] for a distinction between probabilities and fre- 

quencies. It suffices to ascribe frequencies to indi- 
vidual systems and related probabilities to their en- 
sembles in order to obtain the difference expressed 
by eq. (2).  

As for the function which reflects the two above 
stated possibilities I will just briefly sketch it here. 
The reader can find all the relevant theorems and 
proofs in ref. [ 1 ], a generalization to the spin-s case 
in ref. [2] ,  and a discussion with possible implica- 
lions for the algebra structure underlying quantum 
theory in ref. [ 10]. The function refers to the quan- 
tum Malus law and reads 

G(p) ~f L - '  lim [ [ a ( N + / N ) - a ( p ) [ N  '/z] , 
N ~ c ~  

where ot is the angle at which the detection device (a 
Stern-Gerlach device for spin-s particles, an ana- 
lyzer for photons) is deflected with regard to the 
preparation device (another Stern-Gerlach device, 
polarizer) and where L is a bounded random (sto- 
chastic) variable: 0 < L < ~ .  The function is well de- 
fined and continuous (or piecewise continuous) on 
the open interval (0, 1 ). In general it does not cor- 
respond to an operator but it does represent a prop- 
erty in the sense of  von Neumann [ 6 ]. For electrons, 
e.g., it is equal [ 1 ]: 

sin a 
G(p) = H ( p )  ~fH[p(o t ) ] -  sin a "  

Turning our attention to the probability equal to one 
we see [ 1 ] from the definition of  H ( p )  that H is not 
defined for the probability equal to one: H ( 1 ) =  o. 
However, its limit exists and equals 1. Thus a con- 
tinuous extension/-7 of t t  to [0,1 ] exists and is given 
b y / ~ ( p ) = l  for p~(0 ,  1) a n d / ~ ( 1 ) = 1 .  

We now assume (completely agreeing with ref. [ 4 ] 
that one cannot prove this but that is exactly the point 
of  postulating one or the other possibility) that L is 
bounded and positive not only for 0 < p <  I but for 
0~<p~< 1 as well. L is a stochastic, random variable 
defined so as to match random oscillation o f  the an- 
gle ot expressed by means of  frequency as opposed to 
one expressed by means of  probability on the basis 
of  the theorems proved in refs. [ 1 ] and [2 ] for the 
open interval (0, 1 ) (or its subsections). Dr. Whi- 
taker, in a discussion which we had a year ago in 
Cesena, put forward a possibility that L can in prin- 
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ciple become infinite for p =  1. For p =  1 and N+ = N 
this is possible but the result remains the same: See 
the interpretative difference of  point (iii) below ( in 
parentheses). For p =  1 and N÷ # N  (see points (i) ,  
(ii) below) one cannot accept such a possibility for 
the following reasons. 

L is defined as L=l imN,oo Ix(N) I where x (N)  
matches stochastical fluctuation o f  N÷/N so as to 
make it equal to p+x(N)Ap, where Ap is the stan- 
dard deviation from p of  the Bernoulli distribution 
and therefore A p = x / p (  I - p ) / N  [1,2]. F o r p =  1 we 
obviously cannot use x ( N ) A p  for measuring the dif- 
ference between p and N÷/N because in this case we 
strictly have A p =  0 independently o f  how large N is. 
However, we can reelaborate the whole problem from 
the "inverted" side using the Bayes (beta) distri- 
bution which is a binomial distribution whose vari- 
able is not p as for the Bernoulli distribution but N÷ / 
N [ 1 ]. (For  N approaching infinity, i.e. for the limit 
case, switching from one distribution to the other 
does not cause any problem.) 

The mean value o f  the Bernoulli distribution lies 
at p and the maximum value approaches it as N ap- 
proaches infinity. The means value o f  the Bayes dis- 
tribution, on the other hand, lies at N÷ IN. The stan- 
dard deviation for the Bayes distribution is 

Af=~/ (N+/N2) (1 - N . / N )  

and we can interpret x (N)  so as to make p equal to 
N+/N+x(N)Af. In this case p= l does not cause a 
problem for L because then A f  must not be strictly 
zero (but only in the limit) in order not to make 
strictly N+/N=p = I. Hence L < ao since x ( N )  must 
stay finite in the limit in the same way in which it 
must stay so in eq. ( 13 ) o f  ref. [ l ] or in eq. (6)  o f  
ref. [2] .  However, we again have to stress that one 
can prove the central limit theorem only for the open 
interval 0 < p <  I. 

Thus we are left with the following three possi- 
bilities for G (which hold for an arbitrary spin s too 
[21).  

(i)  G(p) is continuous at 1. A necessary and suf- 
ficient condition for this is G( 1 ) = l i m p ~  G(p). In 
this case we cannot strictly have N+ = N since then 
G( I ) = 0 ¢ : l i m p ~  G(p) gives a contradiction. 

(ii) G( 1 ) is undefined. In this case we also cannot 
have N+=N since the latter equation makes G(1)  
defined, i.e. equal to zero. 

(iii) G( 1 ) = 0 .  In this case we must have N+=N. 
And vice versa: if the latter equation holds we get 
G ( I ) = 0 .  

Hence, under the given assumptions a measure- 
ment o f  a discrete observable can be considered re- 
peatable with respect to individual measured sys- 
tems if and only if G(p) exhibits a jump-  
discontinuity for p = l  in the sense o f  point (iii) 
above. 

The interpretative differences between the points 
are as follows. 

Points (i),  (ii) admit  only the statistical inter- 
pretation of  the quantum formalism and banish the 
repeatable measurements on individual systems from 
quantum mechanics altogether. Of  course, the re- 
peatability in the statistical sense remains un- 
touched. Possibility (i) seems to be more plausible 
than possibility (ii) because the assumed continuity 
of  G makes it approach its classical value for large 
spins [ 2 ]. Notably, for a classical probability we have 
l i m p ~ t G d ( p ) = 0  and for "large spins" we get 
lims~oo limp~ l G(p) =0.  

Point (iii) admits the individual interpretation o f  
quantum formalism and assumes that the repeata- 
bility in the statistical sense implies the repeatability 
in the individual sense. By adopting this interpre- 
tation we cannot but assume that nature differen- 
tiates open intervals from closed ones, i.e. distin- 
guishes between two infinitely close points. (The 
same conclusion about nature we would have to draw 
if we assumed a sudden jump in definition o f  the 
random function L leaving G( 1 ) undefined.) 

At first sight the statistical interpretation, i.e. points 
(i) and (ii) and their implicit appeal to L, seems 
hard to support since this apparently invokes a de- 
mand for a Gaussian distribution of  N+/N to be cen- 
tered at 0 or 1 which would clearly be impossible. 
However, we should bear in mind that the Gaussian 
distribution o f  N+/N, which is exact when N tends 
to infinity, is but an approximation of  the proper bi- 
nomial distribution o f  N+/N for only arbitrary large 
N's.  Furthermore, this approximation is less appro- 
priate, the closer the corresponding probability p is 
to zero or to one. And the binomial distribution is 
not symmetric as the Gaussian one but skewed to the 
left and right on the right and left half o f  the (0, 1 ) 
interval, respectively. Namely, it is easy to calculate 
that the skewness, defined as s3.'= ( ( N ÷ / N - p ) 3 ) /  
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(Ap)  3, is given by s3= (q-p)  (pqN) -1/2. Therefore,  

since p, being the mean of  N+ IN, cannot  tend to 0 
faster than I/N and cannot  tend to i faster than 
(N-1 )/N (see the argument  concerning the beta 
dis t r ibut ion in the discussion of  ref. [ 1 ] ), the dis- 
t r ibut ion o f  N+/N is skewed more  to the left so as 
to obey s3> - 1 or to the right so as to obey s3< + I, 
the closer p is to 1 or  0, respectively. Taking into ac- 
count that  for N approaching  infinity an exact ap- 
p rox imat ion  of  the b inomial  d is t r ibut ion  holds only 
on the open interval 0 < p <  1, the distr ibution o f  N + /  
N for p = 0 = l i m N ~ [ N + ( 0 ,  N)/N] and for 
p = l = l i m ~ o o  [N÷(1 ,  N)/N] could on no bet ter  
ground be assumed symmet ry  than asymmetr ic .  Be- 
sides, as I stressed above we can reelaborate the whole 
approach so as to use the Bayes (be ta )  d is t r ibut ion  
instead of  the Bernoulli  one and then we do not face 
such a problem since the Bayes dis t r ibut ion has its 
mean value at  N+ IN. 

In order  to show that  the above differences ob- 
ta ined for the discrete observables  suffice for a con- 
clusion on all observables  and the in terpreta t ion of  
quan tum theory in general we turn to the problem of  
repeatabi l i ty  within the theory of  measurement .  It 
was shown within the theory that both cont inuous  
observables  [ 11 ] and discrete observables which do 
not commute  with conserved quant i t ies  [ 12 ] cannot  
strictly satisfy ei ther  the repeatabi l i ty  hypothesis  or 
the collapse postulate  but  at best only approxi-  
mately. This means  that for such observables no 
proper ty  can be prepared  with certainty and our dif- 
ference then enables us to postulate  the exclusion (or  
not )  of  the repeatabi l i ty  for individual  events - the 
probabi l is t ic  repeatabi l i ty  o f  course remains  intact - 
even for the discrete observables which undergo 
measurements  o f  the first kind. (In this case eq. (2)  
holds even for probabi l i ty  one.)  The quantum for- 
mal ism thus allows and supports  Ozawa 's  conjec- 
ture: "'The nonexistence o f  repeatable measuring 
processes o f  cont inuous  observables suggests that  we 
should investigate the approx imate ly  repeatable  
measuring processes as models  o f  measurements  in 
quan tum mechanics.  Moreover ,  this direct ion o f  in- 
vestigation is appropr ia te  not only for cont inuous  
observables [but also for] discrete observables. . .  The 
author  believes that, in future invest igat ion on really 
existing approximately  repeatable measurements,  our 
framework of  measuring processes will provide a nice 

basis."  [11, p. 80].  And the present e laborat ion 
shows that if  such a programme demanded  a com- 
plete exclusion o f  probabi l i ty  equal to unity from the 
theory o f  measurement  that  would not be in contra- 
dict ion with real measurements  of  individual  events 
and their  statistics but that would demand  essential 
changes in the defini t ion of  the quantum probabi l i ty  
function. 

Let us therefore go back to the s tandard  quantum 
formalism to see how far we can go with the discrete 
observables strictly within this formalism. 

For  discrete observables on which a measurement  
of  the first kind was carried out the collapse postu- 
late reads: "The  measurement  t ransforms [the ob- 
served system ] from the state ~ into one of  the states 
~n, n =  1, 2, ... the probabi l i t ies  for which are re- 
spectively p =  1(0, ~n)2l, n~--- 1, 2, . . . ." [6, pp. 439].  

States in general as well as eigenstates ( together  
with the corresponding eigenvalues) in particular are 
only probabi l is t ic  concepts - probabi l i ty  ampl i tudes  
which in our case have to give probabi l i ty  equal to 
unity - and the "observed system" in the afore-men- 
t ioned von Neumann ' s  defini t ion of  the collapse 
postulate is nothing else but an ensemble. Relative 
frequency is on the other  hand a purely statistical 
concept.  So spin-up prepared individual  electrons all 
correspond to the spin-up eigenvalue. We can pos- 
tulate that within an infinitely long run a finite num- 
ber of  electrons can "go down" but this has nothing 
to do with the up-eigenstate and up-eigenvalue to 
which all up-prepared electrons (i.e. the ensemble)  
belong. 

Relat ive frequencies in general refer to ideal ex- 
per iments  carried out on individual  systems while 
probabi l i t ies  refer either to the ensemble or to each 
individual  system belonging to the ensemble if  we 
only postulate either one way or the other. 

The odd problem as to whether an individual  
quan tum system can be considered completely de- 
scribed by the standard formalism or  not is thus given 
a new aspect: We are forced to make up our mind:  
ei ther  to consider  the s tandard  formal ism a complete  
descr ipt ion o f  an individual  quantum system or to 
unders tand it as a completely statistical theory. 
Completely statistical in the sense that eq. (2)  is al- 
ways satisfied and that probabi l i ty  equals the cor- 
responding relative frequency only approximately .  
On the other  hand, a classical statistical theory based 
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on classical mechanics  - excluding chaos - never  sat- 
isfies eq. (2 )  since its probabi l i t ies  are basically geo- 
metrical.  Such an opposi te  behavior  o f  quan tum ver- 
sus classical probabi l i ty  stems from the kind o f  their  
probabi l i ty  functions: quan tum functions which are 
typical ly t r igonometr ic  polynomials  have real num- 
bers as their  values (as opposed  to relat ive frequen- 
cies) while classical functions which are typical ly 
geometr ic  rat ios have rat ional  numbers  as their  val- 
ues (concordant  with relat ive frequencies) .  The for- 
mer  is obviously a direct  consequence o f  the main  
feature o f  the individual  quan tum events that  they 
form Bernoulli  trials, i.e. that  they are complete ly  in- 

dependent  (in general we say the indiv idual  detec- 
t ions are unpred ic tab le ) .  

What  do we therefore achieve by adopt ing  one or  
the other  in terpreta t ion? The indiv idual  interpreta-  
t ion means  the completeness.  " In  that  perfect world, 
nothing happens ."  [ 13 ]. The statist ical  interpreta-  
t ion, on the other  hand,  supports  the view that  the 
logic underlying quan tum formal ism might be based 
on the statistics of  indiv idual  quan tum measure-  
ments  which might  in turn be t raced theoret ical ly by 
investigating possible extensions o f  algebraic quan-  
tum structures. I f  the tracing brought  us to new ob- 
servables and a new theory,  such a theory could not  
possibly turn quan tum mechanics  "wrong"  in the 
same way in which the theory o f  relativity d id  so with 
Newton 's  mechanics  but  would s imply have quan- 
tum mechanics  as a restr ict ion to s tandard  quan tum 
observables.  Thus quan tum theory might be inter- 
preted as a " r andomize r "  o f  some subquantum ob- 
servables (cf. refs. [ 13,14] ) but, o f  course, it cannot  
be interpreted in such a way by means  of  "preas-  

signed values" [15] ei ther  on a factual [16]  or  on 
a counterfactual  level ( the s tandard  Bell 's resul t) .  
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sity o f  Reims where this work has been done. I ac- 
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France  and the Minis t ry  o f  Science o f  Croatia.  

References 

[ 1 ] M. Pavi~ir, Nuovo Cimento B 105 (1990) 1103; 106 ( 1991 ) 
105. 

[21M. Pavi~i~, in: Problems in quantum physics, eds. J. 
Mizerski et al., Gdarsk, i 984 (World Scientific, Singapore, 
1990) p. 440. 

[31 M. Jammer, The philosophy ofquantum mechanics (Wiley, 
New York, 1974). 

[4] D. Home and M.A.B. Whitaker, Phys. Lett. A 160 (1991) 
325. 

[5] L.E. Ballentine, Rev. Mod. Phys. 42 (1970) 358. 
[6] J. yon Neumann, Mathematical foundation of quantum 

mechanics (Princeton Univ. Press, Princeton, 1955 ). 
[7] A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47 (1935) 

777. 
18 ] Y.S. Chow and H. Teicher, Probability theory: 

independence, interchange.ability, martingales (Springer, 
Berlin, 1978 ). 

[ 9 ] M. Mugur-Schlichter, Ann. Inst. Henri Poincar~ A 32 (1980) 
33. 

[ i 01 M. Paviri¢, Int. J. Theor. Phys. 31 (1992) 1753. 
l 11 ] M. Oz~wa, J. Math. Phys. 25 (1984) 79. 
112] H. Araki and M.M. Yanase, Phys. Rev. 120 (1960) 622. 
113] A. Peres, Am. J. Phys. 54 (1986) 688. 
114] K. Wrdkiewiez, Phys. Lett. A 112 (1986) 81. 
115] D. Home and M.A.B. Whitaker, Phys. Lett. A 115 (1986) 

81. 
[ 16] M. Pavi~i~, Phys. Rev. D 42 (1990) 3594. 

357 


