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Using a graph approach to quantum systems, we show that descriptions of 3-dim
Kochen–Specker �KS� setups as well as descriptions of 3-dim spin systems by
means of Greechie diagrams �a kind of lattice� that we find in the literature are
wrong. Correct lattices generated by McKay-Megill-Pavicic �MMP� hypergraphs
and Hilbert subspace equations are given. To enable future exhaustive generation of
3-dim KS setups by means of our recently found stripping technique, bipartite
graph generation is used to provide us with lattices with equal numbers of elements
and blocks �orthogonal triples of elements�—up to 41 of them. We obtain several
new results on such lattices and hypergraphs, in particular, on properties such as
superposition and orthoraguesian equations. © 2010 American Institute of Physics.
�doi:10.1063/1.3491766�

I. INTRODUCTION

We make use of hypergraphs �defined in Sec. III� and bipartite graphs �defined in Sec. V� to
describe large 3-dim quantum setups. One way to describe a quantum system in Hilbert space is
through the use of lattices, specifically Hilbert lattices �Definition II.3�, and our approach is based
on a correspondence between graphs and lattices.

Many authors have tried to justify empirically a mathematically well-proved orthoisomor-
phism between a Hilbert lattice and the lattice of subspaces of an infinite-dimensional Hilbert
space, which has been worked out by over the last 60 years.1,2 The finite-dimensional case was
elaborated even earlier by Birkhoff and von Neumann.3 The results were crowned by the result of
Pia Solèr4 that the field �e.g., complex numbers� over which the Hilbert space can be defined
follows from the Hilbert lattice conditions.

Yet, a satisfactory empirical justification has not been achieved. First steps have been at-
tempted with a description of spin-1, i.e., 3-dim systems. Several authors5–15 have obtained a
number of results in applications of the so-called Greechie diagrams �see Sec. II G� to spin
systems. For instance, a correspondence found between orthomodular lattices and MMP hyper-
graphs �defined in Sec. III by Def. III.1� enabled an exhaustive generation of all 3-dim Kochen–
Specker �KS� sets with up to 24 vectors.16
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On the other hand, many results on equations holding in Hilbert lattices �see Sec. II B� have
recently been obtained.17–21 An immediate idea was to verify these equations on the sets for which
an experimental setups was designed—KS sets. To our surprise, it turned out that the standard KS
setups described by Greechie diagrams do not allow a verification of these equations. Moreover,
known KS systems described by Greechie diagrams do not pass even the property of modularity
which any spin lattice should pass. Hence, something was missing in the known description of
those sets.

A missing link between empirical quantum measurements and its lattice structure was a proper
description of a correspondence between the standard quantum measurements, which use Hilbert
space vectors and states, and Hilbert lattices, which make use of Hilbert space subspaces that
contain these vectors and/or are spanned by them. What hampered a search for such a correspon-
dence was a too narrow focus on orthogonality via lattices represented by Greechie diagrams
�Definition II.12�.

As we show in Sec. II G, Greechie diagrams cannot serve the purpose because they, in
general, turn out not to be subalgebras of a Hilbert lattice �Theorem II.12�.

We give two examples which were most elaborated in the literature: empirical reconstruction
of quantum mechanics via lattice theory and a description of Kochen–Specker’s setups via lattice
theory. The examples show how the application of the Greechie diagrams lead these elaborations
to a dead end.

As for the empirical reconstruction, Hultgren III and Shimony used Greechie diagrams in their
detailed attempt to build up a Hilbert lattice of a realistic quantum system for a 3-dim spin-1
system passing through Stern–Gerlach filters.5,6 They did not succeed in building a Hilbert lattice
because the Greechie diagrams, as we show below �Theorem II.12�, are not subalgebras of a
Hilbert lattice. They failed to obtain some features they thought they should have obtained and
they obtained some features they thought they should not have obtained. As for the former
features, e.g., superposition, we show that they do not cause necessarily problems �see the remark
after Lemma II.2�. As for the latter features, it has been shown that their appearance was due to the
fact that they did not take into account both electric and magnetic fields.22 However, even if
Hultgren and Shimony had used them, they could have only repaired some faulty Greechie dia-
grams. In particular, they could have patched the missing links in their Fig. 3 �dashed lines� and
with them their lattice would read: 123,456,789,ABC,58B �using MMP hypergraph encoding,
described below�, but still would not pass the modularity.

As for the KS setup, Kochen and Specker23 in their proof used a partial Boolean algebra
�PBA�, which is a very general class of algebras. The closed subspaces of a Hilbert space form a
particular, specialized PBA. However, conditions that make PBA isomorphic to a lattice of Hilbert
space subspaces have not been discovered, although steps in that direction have been taken by
Smith.12,24,25 The equivalence of PBA and atomic ortholattices was proven by Pitowsky26 in 1982.
Apparently misled by this equivalence, some authors have represented KS setups by means of
Greechie diagrams in a series of publications.7–11 In Sec. III, we show that KS setups cannot be
described by means of Greechie diagrams because Greechie diagrams are not subalgebras of a
Hilbert lattice.

Now, in Sec. III we show that both a lattice reconstruction of quantum mechanics and a lattice
description of KS setups must take nonorthogonal subsets into account. They are required by the
conditions and equations that must hold in every Hilbert space.27 This is the reason why KS setups
cannot be described by means of Greechie diagrams, as we prove for all known spin-1 KS setups,
notably Kochen–Specker’s,23 Peres’,28 Kernaghan’s,29 Bub’s,30 and Conway–Kochen’s.30

We also find a way to obtain lattices that we can use to describe a quantum setup to any
desired degree of accuracy. They make use of subspaces that contain nonorthogonal vectors and/or
are spanned by them. The subspaces that appear in them are filtered by the aforementioned
conditions and equations that must hold in every Hilbert space. We call such lattices MMPLs �see
Definition III.2 and Fig. 8�.

However, our programs written for a generation of arbitrary MMP hypergraphs that can be
used for a construction of MMPLs with more than 30 vectors take too much time. Therefore, we
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consider lattices that have some of the properties MMPLs require and lack some others, with the
idea—which turns out to be rewarding—of getting lattices with more than 40 vectors that can be
obtained faster and that can in turn give all interesting MMPLs by means of different very fast
algorithms and programs. For instance, to obtain all 4-dim KS sets with 18 through 24 vectors
requires several months on a cluster with 500 3 GHz CPUs, while in Ref. 16, we found an
algorithm and a program to obtain them all from a single KS set with 24 vectors in less than 10
min on a single PC. This 24 vector KS set also belongs to the aforementioned class of lattices that
have “some of the properties MMPLs require and lack some others.” Vectors correspond to atoms
in lattices and to vertices in MMP hypergraphs, and tetrads correspond to blocks in lattices and
edges in MMP hypergraphs. MMP hypergraphs are defined in Ref. 14 and in Sec. III, Def. III.1.

The aforementioned “10 min” method we call a stripping technique.16 It consists in stripping
blocks off of a single initial KS set with 24 vertices �vectors� and 24 edges �tetrads� until we reach
the smallest such sets—called critical KS sets—in the sense that any of them would cease to be a
KS set if we stripped any further blocks away. The technique provided us with all 1232 KS subsets
with vector component values from ��1,0,1� contained in the 24–24 class of KS ��1,0,1� set.

We also applied the same technique to 60–60 KS sets that we obtained from a 60–75 set and
generated a huge number of critical sets �for 60–65 through 60–75 we rigorously verified that no
critical set exists and for 60–61 through 60–64 we confirmed that statistically with a high confi-
dence�. All the KS sets and critical sets we generated in this way form a new KS class �we call it
“60–75 KS class”� which is disjoint from the 24–24 class.31 The smallest critical set from this
class is a 13–26 KS set shown in Fig. 1 of Ref. 31.

In the above generation of 4-dim KS sets by the stripping technique, we were fortunate to find
covering KS sets with the same number of vertices and edges �24–24, 60–60�. For 3-dim KS sets
no such covering set with the same number of vertices and edges is known so in this paper we
pave the road of its generation by means of bipartite graphs �see Secs. V and VI�.

As we report in Sec. V, such a generation of bipartite graphs is still computationally too
demanding. We previously considered 3-dim systems with equal number of atoms �vertices� and
blocks �edges� with up to 38 atoms and blocks.15 Now we use much faster algorithms and pro-
grams and are able to reach 41 atoms and blocks. This is still not enough for a realistic system, but
we obtain several important properties of such classes of lattices that might help us to obtain even
better algorithms and reach the 50 atoms required for generation of realistic KS setups with the
help of the stripping technique.

The results we invoke and make use of are well-known in lattice theory. They have not been
reformulated in Hilbert space theory itself, so, we present all our results in the lattice theory, and
only when it would really help the reader to see what a Hilbert-space version of particular
properties and axioms would look like, do we formulate some results directly in the Hilbert space
parlance as, e.g., in Theorems II.9 and II.10. Hence for the reader who is not too familiar with the
lattice theory, we first introduce and characterize its basic notions in Sec. II, and here we give a
general framework in which we shall make use of the lattice theory.

A spin state of a system is assumed to be repeatedly prepared, manipulated, and/or filtered by
a device. The directions of vectors of the spin projections coincide with the orientations of the
device. Hilbert space subspaces that contain these vectors form lattices. To distinguish between
device orientations and spin orientations, we use the term experimental setup to mean a descrip-
tion of the devices and their fields. We use the term formalized setup to mean a theoretical
description of the quantum systems.

We start with a very general class of lattices—orthomodular lattices �OMLs� �see Definition
II.2�. Elements of spin-1 OMLs correspond to subspaces �1-dim rays and 2-dim planes� spanned
by Hilbert space vectors which must satisfy two classes of conditions.

�1� Equations, e.g., the orthoarguesian and Godowski equations �see Table I for a summary of
these and other equations mentioned�;

�2� Quantified expressions, e.g., the superposition principle �Definition II.3, part �3�; Eq. �18��.

They are essential for understanding the ramification of all quantum setups.
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�1� Equations that fail in a subalgebra of a lattice will also fail in the lattice �see Lemma II.2
below�. So no experimental setup for which quantum mechanical equations cannot have a
solution can be used for measuring properties of a quantum system. Such setups are non-
quantum setups.

�2� Quantified expressions that fail in a subalgebra of a lattice may, however, pass in the lattice
�see the remark after Lemma II.2 below�. Smaller setups, in which e.g., superposition cannot
be measured, are “subsetups” of setups in which superposition is possible.

Quantum setups and quantum lattices refer to systems whose OMLs are subalgebras of a
Hilbert lattice. Semiquantum lattices refer to systems whose OMLs are not subalgebras of a
Hilbert lattice. Examples of the former are proper KS lattices in the sense of being subalgebras of
a Hilbert lattice.

Semiquantum lattices with equal number of atoms and blocks we consider are atomic lattices.
They admit real-valued and vector states satisfy superposition, and yet violate, e.g., orthoarguesian
equations. To deal with them we can use Greechie diagrams, because we consider lattices that
consist of concatenated orthogonal triples and are not subalgebras of a Hilbert lattice.

To generate semiquantum lattices we proceed as follows. We first use algorithms that exhaus-
tively generate cubic bipartite graphs. We then show that they are equivalent to MMP hypergraphs,
which in turn correspond to OMLs with equal numbers of atoms and blocks. We generate OMLs
with up to 41 of atoms and blocks, and prove that they all have the above features. The obtained
OMLs narrow down the nonquantum classes of OMLs and might enable us to generate quantum
classes of OMLs of high complexity and KS setups. They also enable us to obtain several new
results in Hilbert lattice theory that rely on the features that the generated OMLs possess. In Sec.
V, we analyze the properties of the OMLs obtained in Sec. VI and provide a new type of graphical
representation for them in Sec. VII. We discuss the obtained results in Sec. VIII.

The “negative results” that we consider in this paper �classes of lattices that do not pass
particular equations� have recently been used as a tool for generating other equations21 and, in the
case of the aforementioned 4-dim KS sets, for generating new KS sets.

Our results also provide us with novel algorithms and results in the theory of bipartite graphs
and hypergraphs. Lattices that do not admit strong sets of states serve as inputs to algorithms for
finding new Hilbert lattice equations, and lattices that admit just one state serve for establishing
new lattice features and theorems.32,33

Bipartite graphs have recently been studied extensively in the field of quantum information. A
bipartite entanglement of the states constructed from the algebra of a finite group with a bilocal
representation �G� acting on a separable reference state has been studied in Ref. 34. If G is a group
of spin flips acting on a set of qubits, these states are locally equivalent to bipartite �two-colorable�
graph states and they include GHZ, CSS, cluster states, etc. Equivalence of CSS states �of which
GHZ states are a special case� and bipartite graph states has been shown in Ref. 35.

Graph states form class of multipartite entangled states associated with combinatorial graphs
�see, e.g., Refs. 36 and 37� and have applications in diverse areas of quantum information pro-
cessing, such as quantum error correction and the one-way model.

TABLE I. Summary of known equations holding in �quantum� Hilbert lat-
tices

Equation Variety Based on Definition

Orthoarguesian 4OA Geometry Equation �34�
Generalized OA nOA, n�3 Geometry Equation �34�
Mayet’s EA EA Geometry Ref. 21
Godowski nGO, n�3 States Theorem II.4
Mayet–Godowski MGO States Definition II.8
Mayet’s E-equations En, n�3 Vector states Equations �16� and �17�
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On the other hand, bipartite graphs have been shown to have an important application for
quantum search and related quantum walks, span-programs, and search algorithms such as
Grover’s.38,39

II. PRELIMINARY DEFINITIONS AND THEOREMS AND THE SEMIQUANTUM LATTICES

This section covers most definitions and background material. It is organized as follows.

• Hilbert lattices �Sec. II A�;
• overview of equations holding in Hilbert lattices �Sec. II B�;
• states �Sec. II C�;
• vector-valued states �Sec. II D�;
• superposition �Sec. II E�;
• orthoarguesian equations �Sec. II F�;
• Greechie diagrams �Sec. II G�;
• semiquantum lattices �Sec. II H�.

A. Hilbert lattices

The closed subspaces of a Hilbert space H form an algebra called C�H�, which is a member
of the class of OMLs. An OML, in turn, is a member of a more general class called ortholattices
�OLs�. We will first define OLs, OMLs, and related structures, then we will describe how the
closed subspaces of Hilbert space form a member of �some� of these classes of structures.

We define OL as follows, along with auxiliary constants 0 and 1, an ordering relation, and an
implication operation. The binary operations � and � are called join and meet, respectively, and
the unary operation � is called orthocomplementation. Recall that an algebra is an n-tuple con-
sisting of a base set and n−1 operations on that base set.

Definition II.1: An OL is an algebra �OL0 , � , � ,�	, such that the following conditions are
satisfied for any a ,b ,c�OL0:40 a�b=b�a, �a�b��c=a� �b�c�, a�=a, a� �b�b��
=b�b�, a� �a�b�=a, and a�b= �a��b���. In addition, since a�a�=b�b� for any a ,b
�OL0, we define the greatest element of the lattice (1) and the least element of the lattice (0),

1 =
def

a�a� and 0 =
def

a�a�, respectively, and the ordering relation �� � on the lattice: a

�b⇔
def

a�b=a⇔a�b=b. Quantum (Sasaki) implication is defined as a→b=a�� �a�b�.
When we say a lattice is an OL �or an OML, etc.� we mean that the lattice is a member of the

class OL �OML, etc�.
By adding an additional condition, we can restrict the class OL to become the successively

smaller �less general� classes OML, MOL, and BA as follows.
Definition II.2: An OL in which

b � a & c � a� ⇒ a � �b � c� = �a � b� � �a � c� , �1�

b � a ⇒ a � �b � c� = �a � b� � �a � c� , �2�

or a � �b � c� = �a � b� � �a � c� �3�

holds, is an OML, modular ortholattice (MOL), or Boolean algebra (BA), respectively.
Our primary interest is in the subclass of OML called HL �Hilbert lattices�.
Definition II.3: (Reference 41) An orthomodular lattice that satisfies the following conditions

is a HL.

(1) Completeness: The meet and join of any subset of an HL exist.
(2) Atomicity: Every nonzero element in an HL is greater than or equal to an atom. (An atom a

is a nonzero lattice element with 0�b�a only if b=a.)
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(3) Superposition principle: (The atom c is a superposition of the atoms a and b if c�a, c
�b, and c�a�b.)

(a) Given two different atoms a and b, there is at least one other atom c, c�a, and c�b, that
is, a superposition of a and b.

(b) If the atom c is a superposition of distinct atoms a and b, then atom a is a superposition of
atoms b and c.

(4) Minimum height: The lattice contains at least two elements a ,b satisfying 0�a�b�1.

These conditions imply an infinite number of atoms in HL, as shown by Ivert and Sjödin.42

With suitably defined operations, the closed set of subspaces of a Hilbert space C�H� can be
shown to be a Hilbert lattice �a member of HL�. The meet operation a�b corresponds to the set
intersection HaŸHb of subspaces Ha ,Hb of Hilbert space H; the ordering relation a�b corre-
sponds to Ha�Hb; the join operation a�b corresponds to the smallest closed subspace of H
containing the set union Ha Hb; and the orthocomplementation operation a� corresponds to Ha

�,
the set of vectors orthogonal to all vectors in Ha. Within Hilbert space there is also an operation
which has no parallel in the Hilbert lattice: the sum of two subspaces Ha+Hb, which is defined as
the set of sums of vectors from Ha and Hb. We also have Ha+Ha

�=H, i.e., the subspace that
equals the whole of Hilbert space itself. One can define all the lattice operations on a Hilbert space
itself following the above definitions �Ha�Hb=HaŸHb, etc.�. Thus, we have Ha�Hb

=Ha+Hb= �Ha+Hb���= �Ha
�ŸHb

���,43 �p. 175�, where Hc is the closure of Hc, and therefore
Ha+Hb�Ha Hb. When H is finite-dimensional or when the closed subspaces Ha and Hb are
orthogonal to each other, then Ha+Hb=Ha�Hb �Refs. 44, pp. 21–29, 45, pp. 66 and 67, and 46,
pp. 8–16�.

Using these operations, it is straightforward to verify that closed subspaces C�H� of a finite-
or infinite-dimensional Hilbert space form an OML �Ref. 45, pp. 66 and 67� and more specifically
a HL �Ref. 1, pp. 105–108, 166, and 167�. �In the case of a finite Hilbert space, C�H� is also an
MOL. �Ref. 1, p. 107�� Specifically, we have the following theorem.

Theorem II.1: Let H be a finite- or infinite-dimensional Hilbert space over a field K and let

C�H� =
def

�X � H
X�� = X� �4�

be the set of all closed subspaces of H. Then C�H� is a Hilbert lattice relative to

a � b = Xa � Xb and a � b = �Xa + Xb���. �5�

A more difficult problem is to determine, given a HL, how much of Hilbert space can be
reconstructed from it. An isomorphism is a bijection between two lattices that preserves the lattice
ordering �or equivalently the meet and join operations�. An orthoisomorphism is an isomorphism
that also preserves the orthocomplement operation. One can prove the following representation
theorem.47–49

Theorem II.2: For every Hilbert lattice (HL), there exists a field K and a Hilbert space H
over K, such that the set of closed subspaces of the Hilbert space, C�H�, is orthoisomorphic to HL.
(Note that multiplication is not necessarily commutative in this field, which some authors call a
“division ring” or “skew field.”)

In order to determine the field over which the Hilbert space in Theorem II.2 is defined, we
make use of a theorem proved by Pia Solèr.2,4 First, we need a definition.

Definition II.4: Let p and q be orthogonal atoms in a Hilbert lattice and c be an atom different
from p and q, such that c� p�q. Let x be any atom such that x� p�q. Let y an atom different
from x and p, such that y�x� p. Define d1= �c�y�� �q�x� and d2= �p�d1�� �q�y�. Then
�x�d2�� �p�q� is the (unique) harmonic conjugate of c with respect to p and q.

Now we can state the following application of Solèr’s theorem to an HL lattice2 �Theorem
4.1�.

Theorem II.3: The Hilbert space H from Theorem II.2 is an infinite-dimensional Hilbert
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space defined over a real, complex, or quaternion (skew) field if the following conditions are met.

• Infinite orthogonality: The HL contains a countably infinite sequence of orthogonal atoms
pi , i=1,2 , . . ..

• Harmonic conjugate condition: The HL contains a corresponding sequence of atoms ci
� pi� pi+1, such that the harmonic conjugate of ci with respect to pi , pi+1 equals
ci�� �pi� pi+1�.

Thus, we do arrive at a full Hilbert space, but as we can see the axioms for the Hilbert lattices
that we used for this purpose are rather involved. This is because in the past, the axioms were
simply read off from the Hilbert space structure and were formulated as first-order quantified
statements that cannot be implemented into a quantum computer. As opposed to this, the equations
describing properties of Hilbert lattices and elaborated on in Definitions II.6 and II.10, Eqs. �16�,
�17�, and �35�, and Theorem II.11 are directly applicable to experimental setups, and that is the
reason why the results we obtain in this paper and in the recent previous paper of ours have not
been conjectured previously.

B. Overview of equations holding in Hilbert lattices

The families of lattices OL, OML, MOL, and BA are completely characterized by identities,
i.e., equational conditions. Such families are called equational varieties. Equations, as opposed to
quantified conditions, offer many advantages, such as fast algorithms for testing finite lattice
examples and the use of tools and techniques from propositional calculus. At the very least, the
manipulation of identities is much simpler both conceptually and practically than the use of
predicate calculus to work with quantified conditions.

Until 1975, it was thought that the equations defining OML were the only ones holding in HL.
Then Day50 discovered the orthoarguesian equation that holds in any Hilbert lattice but does not in
all OMLs. Since then, much progress has been made in finding many new equations that hold in
HL and are independent from the others.

By Birkhoff’s HSP theorem51 �p. 2�, the family HL is not an equational variety, since a finite
sublattice is not a HL. A goal of studying equations that hold in HL is to find the smallest variety
that includes HL, so that the fewest number of nonequational �quantified� conditions such as those
in Definition II.3 will be needed to complete the specification of HL.

First we will summarize the equations known so far that hold in HLs but not in all OMLs �see
Table I�. They fall into three major categories: geometry-related, state-related, and vector-state-
related. The last hold in all “quantum” HLs, i.e., those orthoisomorphic to Hilbert spaces with real,
complex, or quaternion fields but not necessarily with other fields.

The geometry-related equations are derived using the properties of vectors and subspace sums
that hold in a Hilbert space. They include Day’s original orthoarguesian equation, the generalized
orthoarguesian equations, and Mayet’s EA equations.

The state-related equations are derived by imposing states �probability measures� onto Hilbert
lattices and include Godowski’s equations and Mayet–Godowski equations. �The justification for
doing so is that such states can be defined in Hilbert space, and we map them back to HL via the
orthoisomorphism of Theorem II.2.� These equations are derived by finding finite OMLs that do
not admit the “strong set of states” condition �Definition II.6� that Hilbert lattices do admit, then
analyzing the strong set of state failure in a prescribed way in order to derive an equation holding
in HL but failing in the finite OML.

Vector-state-related equations are derived by imposing “states” onto HLs that map to Hilbert-
space vectors instead of real numbers �again, justified by the fact that such “states” can be defined
in Hilbert space�. They do not always hold when the Hilbert-space field implied by the represen-
tation theorem �Theorem II.2� does not have characteristic 0. �Characteristic 0 means, roughly,
that the number 1 added to itself repeatedly grows without limit.� This remarkable property
narrows down, from the equation alone, the possible fields for the Hilbert space. The real, com-
plex, and quaternion fields of quantum mechanics have characteristic 0, so vector-state-related
equations do hold in all “quantum” HLs that have the additional properties demanded by Solèr’s
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theorem in Theorem II.3. The vector-state-related equations known to date are Mayet’s
E-equations.

C. States

Definition II.5: A state on a lattice L is a function m :L→ �0,1� (for real interval [0,1]), such
that m�1�=1 and a�b⇒m�a�b�=m�a�+m�b�, where a�b means a�b�.

This implies m�a�+m�a��=1 and a�b⇒m�a��m�b�.
Now, let us recall that the KS theorem and the Bell inequalities and equalities are all about

states and their experimental recordings that cannot be predetermined i.e., fixed in advance. The
latter states might be called “purely” quantum,52 as opposed to those that can be only predeter-
mined and are called classical. We can formalize these two kinds of states as follows.

Definition II.6: A nonempty set S of states on L is called a strong set of classical states if

�∃m � S��∀a,b � L���m�a� = 1 ⇒ m�b� = 1� ⇒ a � b� �6�

and a strong set of quantum states if

�∀a,b � L��∃m � S���m�a� = 1 ⇒ m�b� = 1� ⇒ a � b� . �7�

We assume that L contains more than one element and that an empty set of states is not strong.
Two important classes of equations that hold in all OMLs with strong sets of states �and, in

particular, all HLs�, but not in all OMLs, are the Godowski equations and the more general
Mayet–Godowski equations. Here we only define them for reference; for theorems and proofs, see
Refs. 19 and 21.

Definition II.7: Let us call the following expression the Godowski identity,

a1�
�

an =
def

�a1 → a2� � �a2 → a3� � ¯ � �an−1 → an� � �an → a1�, n = 3,4, . . . . �8�

We define an�
�

a1 in the same way with variables ai and an−i+1 swapped.
Theorem II.4: Godowski’s equations,53

a1�
�

a3 = a3�
�

a1, �9�

a1�
�

a4 = a4�
�

a1, �10�

a1�
�

a5 = a5�
�

a1, �11�

hold in all OMLs with strong sets of states.
We call these equations n-Go �3-Go, 4-Go, etc.�. We also denote by nGO �3GO, 4GO, etc.� the

OL variety determined by n-Go, and we call equation n-Go the nGO law.
Next, we define a generalization of this family, first described by Mayet.54 These equations

also hold in all lattices admitting a strong set of states and, in particular, in all HLs.
Definition II.8: A Mayet–Godowski equation �MGE� is an equality with n�2 conjuncts on

each side,

t1 � ¯ � tn = u1 � ¯ � un, �12�

where each conjunct ti (or ui) is a term consisting of either a variable or a disjunction of two or
more distinct variables,

ti = ai,1 � ¯ � ai,pi
i . e . , pi disjuncts , �13�
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ui = bi,1 � ¯ � bi,qi
i . e . , qi disjuncts , �14�

and where the following conditions are imposed on the set of variables in the equation.

(1) All variables in a given term ti or ui are mutually orthogonal.
(2) Each variable occurs the same number of times on each side of the equality.

We call a lattice in which all MGEs hold an MGO; i.e., MGO is the largest class of lattices
�equational variety� in which all MGEs hold. The simplest known example of an equation implied
by a MGE that is independent from all Godowski equations is19 �p. 775�

��a → b� → �c → b�� � �a → c� � �b → a� � c → a . �15�

Note that a strong set of classical states can be a special case of a strong set of quantum states
for which there exists only a single state m in Eq. �7�. According to the following theorems, that
means that both quantum and classical states must be orthomodular.

Theorem II.5: Any ortholattice that admits a strong set of quantum states is orthomodular.
Proof: The proof follows from Theorem 3.10 of Ref. 17. Note that an ortholattice that admits

a strong set of quantum states is much stronger than a bare OML because an infinite sequence of
the Godowski equations holds in every such lattice. �

Theorem II.6: Any ortholattice that admits a strong set of classical states is distributive and
therefore also orthomodular.

Proof: Equation �7� follows from Eq. �6�, and by Theorem II.5 an ortholattice that admits a
strong set of classical states is orthomodular. Let now a and b be any two lattice elements.
Assume, for state m, that m�b�=1. Since the lattice admits a strong set of classical states, this
implies b=1, so m�a�b�=m�a�1�=m�a�. But m�a��+m�a�=1 for any state, so m�a→b�
=m�a��+m�a�b�=1. Hence we have m�b�=1⇒m�a→b�=1, which means �since the ortholattice
admits a strong set of classical states� that b�a→b. This is another way of saying aCb.55 By FH
�the Foulis–Holland theorem�, a OML in which any two elements commute is distributive. �

This receives the following explanation within experiments. Systems submitted to a series of
preparations and measurements are described in a Hilbert space, which is often a product of
Hilbert spaces, but in the Bell and KS experiments, the experiments are counterfactual. If they
give different outcomes for the same observable under the same preparation and detection depend-
ing on the preparations of other observables, then they might turn out to be genuinely “quantum.”
If, however, they always give one and the same outcome for each observable, then they are
genuinely classical.

D. Vector-valued states

What underlies all quantum measurements is the orthomodular structure of subspaces, i.e.,
vectors and—as recently shown by Mayet18—states that related to the fields over which both
quantum and classical spaces are built: real, complex, or quaternion �skew� field. These Mayet
vector states are admitted by quantum, classical, and KS setups but also those that are wider than
quantum.

We stress here that the term setup basically means a physical experimental arrangement of
devices that manipulate and/or measure quantum systems. But when we describe the behavior of
a system subjected to these manipulations and measurements, we include the way the devices
affect the systems in the equations we describe the systems with. Such a description, which
includes the operators and equations that refer to experimental manipulation and measurements,
we also call a setup. In our approach, the latter term refers to the particular set of OML equations
that apply to corresponding experimental manipulations—setup in the former meaning. When an
ambiguity in the meaning appears, we call the former term an experimental setup or e-setup for
short and the latter term a formalized setup or f-setup for short. In this paper, the distinction is
always clear from the context. For instance, KS setups are f-setups throughout because no realistic
experiment is discussed. We formalize the definition of a setup as follows.

102103-9 Graph approach to quantum systems J. Math. Phys. 51, 102103 �2010�

Downloaded 12 Oct 2010 to 131.130.20.69. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Definition II.9: An experimental setup �e-setup� is an experimental arrangement of devices
that manipulate and/or measure quantum systems. A formalized setup �f-setup� is a theoretical
description of an experimental setup within a Hilbert lattice or a Hilbert space formalism. When
it is clear from context which setup is meant we use the term setup for both of them.

Not all OMLs admit Mayet vector states. There is a class of lattice OML equations that
characterize OMLs that admit these states. Two smallest equations from the class, E3 and E4,
respectively, read

a � b & a � c & b � c & a � d & b � e & c � f

⇒ ��a � b� � c� � ���a � d� � �b � e�� � �c � f�� � �d � e� � f , �16�

a � b & a � c & a � d & b � c & b � d & c � d

& a � e & b � f & c � g & d � h

⇒ ���a � b� � c� � d� � ����a � e� � �b � f�� � �c � g�� � �d � h�� � ��e � f� � g� � h .

�17�

These equations pass in most OMLs that characterize properties of both quantum �Hilbert� and
classical spaces including all our lattices with equal number of vertices �atoms� and edges �blocks�
that we primarily consider in this paper. However, Eq. �16� fails in �a� and �b� OMLs from Fig. 2
and Eq. �17� fails in Fig. 2�c�.

E. Superposition

What also characterizes the quantum—as opposed to classical—measurements as well as
those wider than quantum is the principle of superposition. Its main feature is that any two pure
states can be superposed generate a new pure state. In a lattice a pure state m corresponds to an
atom a�m�. �Atoms are defined in Definition II.3, part �2�.�

The following two theorems then cast the superposition within a OML framework that we
need.

Theorem II.7: (Theorem 14.8.1 from Ref. 1) Two pure states m ,n admit quantum superposi-
tions if and only if the join of atoms a=s�m� and b=s�n�, a�b, contains at least one different
atom c, which then satisfies c�a, c�b, and c�a�b.

Theorem II.8: (Theorem 14.8.2 from Ref. 1) An OML is classical (distributive) if and only if
no pair of pure states admits quantum superpositions.

The superposition from Theorem II.7 can be formulated in prenex normal form �to make it
easier to use in conjunction with certain first-order logic algorithms, including our latticeg.c
program� as follows:

� ∃ c�� ∃ z�� ∀ w����� ¬ �a = 0� & �� ¬ �z = 0� & �z � a�� ⇒ �z = a��� & � ¬ �b = 0�

& �� ¬ �z = 0� & �z � b�� ⇒ �z = b���� & ¬ �a = b��

⇒ ��¬�c = 0� & ��¬�w = 0� & �w � c�� ⇒ �w = c���

& ��¬�c = a� & ¬ �c = b�� & �c � �a � b����� , �18�

where ¬, &, and ⇒ are classical metaoperations: negation, conjunction, and implication, respec-
tively.

F. Orthoarguesian equations

In the end, there is a series of algebraic equations—we call them generalized orthoarguesian
equations �nOA, n=3,4 , . . .�—at least properly overlapping with those characterizing states and
superpositions, that must hold in all lattices of closed subspaces of both finite- and infinite-dim
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Hilbert spaces �and therefore in a Hilbert lattice�. They follow from the following set of equations
that hold in any Hilbert space.

Theorem II.9: Let M0 , . . . ,Mn and N0 , . . . ,Nn, n�1, be any subspaces (not necessarily
closed) of a Hilbert space, and let � denote set-theoretical intersection and + subspace sum. We
define the subspace term Tn�i0 , . . . , in� recursively as follows, where 0� i0 , . . . , in�n:

T1�i0,i1� = �Mi0
+ Mi1

� � �Ni0
+ Ni1

� , �19�

Tm�i0, . . . ,im� = Tm−1�i0,i1,i3, . . . ,im� � �Tm−1�i0,i2,i3, . . . ,im� + Tn−1�i1,i2,i3, . . . ,im��, 2 � m � n .

�20�

For m=2, this means T2�i0 , i1 , i2�=T1�i0 , i1� ��T1�i0 , i2�+T1�i1 , i2��. Then the following con-
dition holds in any finite- or infinite-dimensional Hilbert space for n�1:

�M0 + N0� � ¯ � �Mn + Nn� � N0 + �M0 � �M1 + Tn�0, . . . ,n��� . �21�

Proof: �Originally given—in effect—in the proof of Theorem 5.2 of Ref. 17; a similar proof
was also given by Mayet.20� We will use + to denote subspace sum when connecting two sub-
spaces and vector sum when connecting two vectors; no confusion should arise. Let x be a vector
belonging to the left-hand side of Eq. �21�. Then x�Mi+Ni for i=0, . . . ,n. From the definition of
subspace sum, x�Mi+Ni implies there exist vectors xi and yi, such that xi�Mi, yi�Ni, and
x=xi+yi. From the last property, we have xi+yi=x=xj +yj or

xi − xj = − yi + yj, 0 � i, j � n . �22�

For the case n=1 of Eq. �21�, we need to prove

�M0 + N0� � �M1 + N1� � N0 + �M0 � �M1 + ��M0 + M1� � �N0 + N1���� . �23�

Any linear combination of vectors from two subspaces belongs to their subspace sum. Since
y0�N0 and y1�N1, we have −y0+y1�N0+N1. Therefore, by Eq. �22�, x0−x1�N0+N1. Also,
x0−x1�M0+M1. Therefore,

x0 − x1 � �M0 + M1� � �N0 + N1� . �24�

Since x1�M1, we have x0=x1+ �x0−x1��M1+ ��M0+M1�� �N0+N1��. Also, x0�M0, so x0

�M0� �M1+ ��M0+M1�� � ft�N0+N1���. Finally, since y0�N0, we have x=y0+x0�N0

+ �M0� �M1+ ��M0+M1�� �N0+N1����, proving that x belongs to the right-hand side of Eq.
�23� and thus establishing the subset relation. This argument is illustrated by the following dia-
gram:

For n�1, notice that on the right-hand side, the term T1�0,1�= �M0+M1�� �N0+N1� in Eq.
�23� is replaced by the larger term Tn�0, . . . ,n�, with the rest of the right-hand side the same. From
the diagram above, it is apparent that if we can prove

x0 − x1 � Tn�0, . . . ,n� , �25�

then Eq. �21� is established. We will actually prove a more general result,
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xi0
− xi1

� Tm�i0, . . . ,im�, 0 � i0, . . . ,im � n,1 � m � n , �26�

from which Eq. �25� follows as a special case by setting m=n and i0=0 , . . . , im=n.
We will prove Eq. �26� by induction on m. For the basis step m=1, the same argument that led

to Eq. �24� above shows that

xi0
− xi1

� T1�i0,i1� = �Mi0
+ Mi1

� � �Ni0
+ Ni1

�

for 0� i0 , i1�n. For m�1, assume we have proven xi0
−xi1

�Tm−1�i0 , i1 , . . . , im−1� for all 0
� i0 , . . . , im−1�n. Then, in particular, we have the substitution instances

xi0
− xi1

� Tm−1�i0,i1,i3, . . . ,im� , �27�

xi0
− xi2

� Tm−1�i0,i2,i3, . . . ,im� , �28�

xi1
− xi2

� Tm−1�i1,i2,i3, . . . ,im� . �29�

Combining Eqs. �28� and �29�,

xi0
− xi1

= �xi0
− xi2

� − �xi1
− xi2

� � Tm−1�i0,i2,i3, . . . ,im� + Tm−1�i1,i2,i3, . . . ,im� .

Combining this with Eq. �27� and using Eq. �20�,

xi0
− xi1

� Tm−1�i0,i1,i3, . . . ,im� � �Tm−1�i0,i2,i3, . . . ,in� + Tm−1�i1,i2,i3, . . . ,im�� = Tm�i0, . . . ,im�

as required. �

We will use the above theorem to derive a condition that holds in the lattice of closed
subspaces of a Hilbert space. In doing so we will make use of the definitions introduced at the
beginning of Sec. II and the following well-known44 �p. 28� lemma.

Lemma II.1: Let M and N be two closed subspaces of a Hilbert space. Then

M + N � M � N , �30�

M � N ⇒ M + N = M � N . �31�

Theorem II.10: (Generalized orthoarguesian laws) Let M0 , . . . ,Mn and N0 , . . . ,Nn, n�1,
be closed subspaces of a Hilbert space. We define the term Tn

��i0 , . . . , in� by substituting � for +
in the term Tn�i0 , . . . , in� from Theorem II.9. Then following condition holds in any finite- or
infinite-dimensional Hilbert space for n�1:

M0 � N0 & ¯ & Mn � Nn ⇒ �M0 � N0� � ¯ � �M � Nn�

� N0 � �M0 � �M1 � Tn
��0, . . . ,n��� . �32�

Proof: By the orthogonality hypotheses and Eq. �31�, the left-hand side of Eq. �32� equals the
left-hand side of Eq. �21�. By Eq. �30�, the right-hand side of Eq. �21� is a subset of the right-hand
side of Eq. �32�. Equation �32� follows by Theorem II.9 and the transitivity of the subset rela-
tion. �

Reference 17 shows that in any OML �which includes the lattice of closed subspaces of a
Hilbert space, i.e., the Hilbert lattice�, Eq. �32� is equivalent to the mOA law, Eq. �34�, for m
=n+2, thus, establishing the proof of Theorem II.11.

Definition II.10: We define an operation �
�n�

on n variables a1 , . . . ,an �n�3� as follows:

a1�
�3�

a2 =
def

��a1 → a3� � �a2 → a3�� � ��a1� → a3� � �a2� → a3�� ,
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a1�
�n�

a2 =
def

�a1 �
�n−1�

a2� � ��a1 �
�n−1�

an� � �a2 �
�n−1�

an��, n � 4. �33�

Theorem II.11: The nOA laws,

�a1 → a3� � �a1�
�n�

a2� � a2 → a3. �34�

hold in any Hilbert lattice.
The class of Eqs. �34� are the generalized orthoarguesian equations nOA discovered by

Megill and Pavičić.17,19 They also play a role in proving the semiquantum lattice theorem �Sec.
II H�.

The smallest of the generalized orthoarguesian equations is the following 3OA:

�x → z� � ���x → z� � �y → z�� � ��x� → z� � �y� → z��� � y → z . �35�

All nOA imply 3OA, so, if an OML does not satisfy 3OA it will not admit any nOA.

G. Greechie diagrams

A Greechie diagram of an OML is a shorthand graphical representation of a Hasse diagram of
an OML.

Definition II.11: A Hasse diagram of an OML is a graphical representation of an OML
displayed via its ordering relation with an implied upward orientation. A point is drawn for each
element of the OML and line segments are drawn between these points according to the following
two rules.

(1) If a�b in the lattice, then the point corresponding to a appears lower in the drawing than
the point corresponding to a.

(2) A line segment is drawn between the points corresponding to any two elements a and b of the
lattice iff either a covers b or b covers a. (a covers b if and only if b�a and there is no c,
such that b�c�a.)

The most general definition of a Hasse diagram is given for a partially ordered set �poset�, but
all we deal with in this paper is a very special poset—OML—and therefore we defined a Hasse
diagram directly for an OML above.

Definition II.12: A Greechie diagram of an OML is a graphical representation of a Hasse
diagram of an OML in which points represent atoms [Definition II.3, part (2)] and smooth
lines—called blocks—that connect points/atoms—represent the orthogonalities between atoms.

The most general definition of a Greechie diagram is also given for a poset but this is again
too general for our purpose. A precise definition can be found, for example, in Ref. 45, p. 38,
which includes conditions—e.g., that there be no loops of order less than 5—necessary for the
diagram to be an OML. To avoid certain complications, we consider only those Greechie diagrams
with three or more atoms per block.

In Fig. 1 we show two Greechie diagrams and their Hasse diagrams. The points in a Hasse
diagrams that represent mutually orthogonal atoms, which themselves represent orthogonal vec-
tors, span a hyperplane or the whole space. Thus, the orthogonalities imply that the top elements
under 1 in the diagrams are complements of the atoms in the lowest level above 0.

The Hasse diagrams shown in Fig. 1 are subalgebra of a Hilbert lattice but, as we show below
�Theorem II.12�, already a 3-dim one with a third orthogonal triple attached to it is not. Therefore,
if we tried to arrive at complete lattices in a realistic application by reading off all properties from
a corresponding Hilbert space description, we would end up with complicated and unmanageable
properties. If we used just orthogonalities between, say, spin projections of a considered system,
we would arrive at an incorrect description by means of Greechie diagrams. In other words
Greechie diagrams cannot represent all possible OMLs—to do so, we also need more complicated
interconnections of blocks called pastings45 �p. 48� that we do not describe here.
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As mentioned below, Definition II.3, the number of atoms in a HL is infinite, which means
that finite Greechie diagrams cannot represent a HL. However, because of their practical advan-
tages, it is natural to ask whether Greechie diagrams can serve in the role of partial representations
or approximate representations of HLs, as has been sometimes assumed in the literature as men-
tioned in Sec. I. First, we make precise the notion of a partial representation with the following
definition.

Definition II.13: A subalgebra of an OL (and thus an OML, HL, etc.) L= �L0 , � , � ,�	 is a set
M = �M0 , � , � ,�	, where M0 is a subset of L0, the operations � , � ,� of M are the same as the
operations of L (optionally restricted to M0), and M0 is closed under the operations of L (and
therefore of M).

Because the notion of subalgebra is crucial to our argument, we will elaborate on it slightly.
Some literature definitions can be misleading if not read carefully. For example, Kalmbach45 �p.
22� omitted the algebra component breakdown as well as the word “same.” The reader could
interpret an OML M as being a subalgebra of L as long as M0 is a subset of L0 and M0 is closed
under the operations of M �even if different from the operations of L, which might be the case if
the operation symbols are interpreted as being local to their associated algebras as is that author’s
convention elsewhere�. A careful definition can be found in, e.g., Beran56 �p. 18�.

Lemma II.2: If M is a subalgebra of L, then any equation (identity) that holds in L will
continue to hold in M. Equivalently, if an equation fails in M but holds in L, then M cannot be a
subalgebra of L.

Proof: This is obvious from the fact that the operations on M are equal to the operations on L
�when restricted to the base set M0 of M�. Any evaluation of an equation in M, i.e., using elements
from M0, will have the same final value as the same evaluation in L. Since the equation always
holds in L, it will also always hold in M. �

Remark: Note that the above lemma does not necessarily apply to quantified conditions. A
quantified condition, such as superposition �Definition II.3, part �3�; Eq. �18��, that holds in a
lattice may not hold in a sublattice. As a trivial example, the quantified condition “has more than
two elements” does not hold in the two-element subalgebra consisting of 0 and 1. Although
superposition holds vacuously in the two-element subalgebra �because it has only one atom�, it
fails in the 3-dim Greechie diagram of Fig. 2, which is a subalgebra of any HL �in which
superposition might hold�.

In the case of an OML represented by a Greechie diagram, a subgraph is not necessarily a
subalgebra. A counterexample is provided by Figs. 8a and 8b of Ref. 57, where the first figure is
a Greechie diagram that is a subgraph of the second, but the corresponding OMLs do not have a
subalgebra relationship. In particular, an equation holding in a Greechie diagram may not hold in
a subgraph of it, as that example shows.

The question as to whether Greechie diagrams can be subalgebras of Hilbert lattices is an-
swered by the following theorem.

Theorem II.12: Any Greechie diagram containing blocks that do not share atoms is not a
subalgebra of the lattice C�H� for a Hilbert space with dimension of 3 or greater.
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FIG. 1. 3- and 4-dim Greechie diagrams and their corresponding Hasse diagrams shown above them �Ref. 56� �Fig. 18, p.
84�.
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Proof: Choose one atom from each such block that are not shared with a common third block.
�There will always be such atoms due to the requirement that there be no loops of order less than
5 in a Greechie diagram.� The join of these two atoms is the lattice unit. However, in any C�H�,
the join of any two distinct atoms �one-dimensional subspaces spanned by vectors� whatsoever
spans a two-dimensional �2D� subspace, which for a Hilbert space of dimension �2 is not the
whole space �lattice unit�. This violates the requirement of Definition II.13 that the operations be
the same. �

Thus, the only Greechie diagrams that can be subalgebras of a lattice of Hilbert space sub-
spaces with dim �2, and thus of the orthoisomorphic HL, are either single blocks, such as in Fig.
1, or those in a “star” configuration where all blocks share a common atom �Fig. 7�.

H. Semiquantum lattices

Now we can state our main theorem.
Theorem II.13: (Semiquantum lattice algorithms) There exist OMLs represented by Greechie

diagrams that admit superposition, real-valued states, and a vector state given by Eq. (17) but do
not admit other conditions that have to be satisfied by every Hilbert lattice, in particular, equa-
tions such as the orthoarguesian and Godowski ones. As a consequence of violating Godowski
equations, these OMLs do not admit strong sets of states.

We point out here that we developed special algorithms and programs �e.g., states� that follow
the definition, Definition II.6, of the strong set of states and are much faster than those that check
whether an equation passes in a lattice. Besides, a lattice that satisfies Godowski equations need
not admit a strong set of states.

The generation algorithms mentioned in Theorem II.13 are presented in Sec. V The outcomes
of our massive computations, given in Sec. VI and based on these algorithms, provide Theorem
II.13 with the following corollary.

Corollary II.13.1: (Semiquantum lattices) There exists a class of OMLs that admit superpo-
sition, real-valued states, and a vector state but do not admit other conditions that have to be
satisfied by every Hilbert lattice.

This corollary corresponds to the original KS theorem and Theorem II.13 corresponds to the
algorithms that generate KS vectors as given in Ref. 58. Moreover, hopefully we shall be able to
use the same algorithms to generate genuine and complete KS setups and prove a nonvacuous KS
theorem because an OML that admits Mayet vector states and superposition and all other Hilbert
lattice conditions corresponds to a realistic quantum system whose measurement does not allow a
classical interpretation. For the time being, however, this project apparently exceeds today’s com-
puting power.

As shown in the next sections, we can give the proof of the theorems in several different ways.
However, our main proof is provided by algorithms for exhaustive generation of Greechie dia-
grams with equal number of atoms and blocks generated from cubic bipartite graphs presented in
Sec. V. We generated all such lattices from the smallest ones with 35 atoms and 35 blocks through

2 31

4

5

6

7

8
9

A

B

C

E

F G

H

I
J

K

D

(a)

6

5

4

3

2C

E

F

G

H
8

9

A

B

7

1

(b)

2

3

4

5

68

9

A

B

C
D

E

F

G

H

I

J

K

L

M

7

1

(c)

D

FIG. 2. �a� OML L42 �Ref. 17� in which Eq. �16� fails; �b� E3 �Ref. 19� in which Eq. �16� fails; �c� E4 �Ref. 19� in which
Eq. �17� fails.

102103-15 Graph approach to quantum systems J. Math. Phys. 51, 102103 �2010�

Downloaded 12 Oct 2010 to 131.130.20.69. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



all those that have 41 atoms and 41 blocks in which particular known Hilbert lattice equations fail.
Thus, although they satisfy a number of Hilbert lattice conditions they represent impossible setups.

III. WHY 3D KOCHEN–SPECKER SETUPS CANNOT BE DESCRIBED WITH GREECHIE
DIAGRAMS, AND HOW THEY CAN BE

In Sec. I we mentioned that the Hultgren and Shimony tried to build up a lattice that would
correspond to a spin-1 Stern–Gerlach experiment. Orthogonal vectors of spin-1 projections deter-
mine directions in which we prepare spin projections of a particle or orient our detection devices.
We can choose one-dimensional subspaces Ha , . . . ,He as shown in Fig. 1, where we denote them
as a , . . . ,e. The first Hasse diagram shown in Fig. 1 graphically represents the orthogonality
between the vectors in a 3-dim space—in our case the ones between each chosen vector and a
plane determined by the other two. In particular, the orthogonalities are a�b ,c ,d ,e since a
�b� ,c� ,d� ,e�, b�c since a�c�, and d�e since d�e�. Also, e.g., b� is a complement of b and
that means a plane to which b is orthogonal: b�=a�c. Eventually b�b�=1 where 1 stands for H.

That shows that if we wanted to use a Greechie diagram for some application or if wanted to
just generate it or check on some of its properties, we have to use all the elements of its Hasse
diagrams. So, our idea is to use a graphical pattern of Greechie diagrams directly and to go around
all the elements contained in the Hasse diagrams. For that we needed another definition of a
Greechie diagram which exploited only graphical elements of its shorthand representation of a
Hasse diagram—atoms and blocks. The following lemma provide us with such a definition.

Lemma III.1: A definition equivalent to Definition II.12 is the following one.59

(1) every atom belongs to at least one block;
(2) if there are at least two atoms, then every block is at least 2-element;
(3) every block which intersects with another block is at least 3-element;
(4) every pair of different blocks intersects in at most one atom;
(5) there is no loop of order less than 5,

where loop of order n�2− �b1 , . . . ,bn� is a sequence of different blocks, such that there are
mutually distinct atoms a1 , . . . ,an with ai�bi�bi+1�i=1, . . . ,n ;bn+1=b1�.

Using this definition we recognize a Greechie diagram as a special case of an MMP hyper-
graph.

Definition III.1: A hypergraph is a set of vertices (drawn as points) together with a set of
edges (drawn as line segments connecting points). A MMP hypergraph is a hypergraph in which

(i) every vertex belongs to at least one edge;
(ii) every edge contains at least three vertices;
(iii) edges that intersect each other in n−2 vertices contain at least n vertices.

This definition enables us to formulate algorithms for exhaustive generation of MMP hyper-
graphs, which are exponentially faster than possible generation of Greechie diagrams by means of
Definition II.12 because MMP hypergraphs are just sets of vertices and edges with no other
meaning or conditions imposed on them. Any condition we want lattices to satisfy we build into
generation algorithms, which can speed up the generation further. As opposed to this, a lattice
approach requires the generation of all possible lattices first and then filtering out lattices that meet
the condition. For the time being, we just assume that each vertex �atom; see below� is orthogonal
to other two on the edge they share. But as opposed to Greechie diagrams we shall also have
relations between nonorthogonal vertices.

We encode MMP hypergraphs by means of alphanumeric and other printable ASCII charac-
ters. Each vertex �atom� is represented by one of the following characters: 1 2 3 4 5 6 7 8 9 A B
C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u
v w x y z ! ” # $ % & ’ �� * - /: ; � 	 � ? @ � \ �^_� � | �~, and then again all these characters
prefixed by “+,” then prefixed by “++,” etc. There is no upper limit on the number of characters.

Each block is represented by a string of characters that represent atoms �without spaces�.
Blocks are separated by commas �without spaces�. All blocks in a line form a representation of a
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hypergraph. The order of the blocks is irrelevant—however, we shall often present them starting
with blocks forming the biggest loop to facilitate their possible drawing. The line must end with
a full stop. Skipping of characters is allowed.

For 3-atoms-in-a-block lattices, the biggest possible loop is either n /2 �for an even n� or �n
−1� /2 �for an odd n�, where n is the number of atoms. To see this this let use all �or all except one
for odd number of atoms� atoms to form such a loop. If we did not count the first atom in the first
block, each concatenated new block would contribute with two new atoms to the chain, and when
we finally close the chain so as to form the loop, one of the two new atoms in the last block will
coincide with the atom from their first block, which we did not take into account at the beginning
of our enumeration. That means that all additional blocks will only connect atoms already making
the biggest loop �apart from the free remaining one in lattices with odd number of atoms�. The
more restrictions we impose on a lattice, the smaller the biggest loop will be.

As a functional example, in Fig. 2 we present lattices in which Eqs. �16� and �17� fail.
We can now come back to the problem of finding lattices that would correspond to realistic

experiments. To understand the problem better, we shall discuss most known three-dimensional
�3D� KS lattices that are usually considered to be experimentally feasible. This will make clear
why none of these KS setups can be experimentally verified and why they are not “quantum,”
following the idea presented in Ref. 60.

We start with the original KS to show how it can be represented as a MMP hypergraph in our
notation: 123, 345, 567, 789, 9AB, BC1, …, D7z, …, 1z+U., as shown in Fig. 3. The other atoms
and blocks can easily be read off from the figure of the hypergraph.

We give MMP hypergraphs of four well-known 3D KS setups below to enable computer
verification of our present and other future statements on them. Notice that the number of atoms
and therefore the number of vectors is 192 and not 117 as commonly assumed. For an explanation
of this discrepancy, see the comment on Fig. 6 in the text below.

We establish an OML representation of KS setups as follows. Three mutually orthogonal
directions of spin projections correspond to three atoms within a block, say a ,b ,c in Fig. 1,
because in an OML a�b� means a�b. These three directions also correspond to the orientation
of a device we use to detect spin along them. Keeping one of the directions fixed, say a in Fig. 1,
means a rotation of the other two in the plane spanned by d and e, that corresponds to a�d� and
a�e�. As we show below, the aforementioned Hilbert lattice equations require that the OMLs also
have relations between nonorthogonal atoms, and therefore we cannot represent the considered KS
setups by means of Greechie diagrams. Therefore, until we come to that point, we shall speak only
of MMP hypergraphs.

Peres61 found another highly symmetrical �in 3D� but much smaller KS setup. Its MMP
hypergraph exhibits symmetry similar to the MMP hypergraph of the original KS setup as shown
in Fig. 4.

The smallest known KS setup was found by Bub.30 It is shown in Fig. 5.
In Fig. 6 we show MMP hypergraph of the Conway–Kochen KS setup.30 It reads 123, 249,

267, 9A+D, +1CK, ++1DE, 9QE, 35I, 3+6G, EHI, IJK, CP+7, +1+D+E, CO+G, DN++7,
DW++G, ++GRS, +7+V+T, S1+T, ++7TU, 1U+S, +26+9, +2+6+7, ++1+2+3, +S+W+9,
+S+R+G, +34+G, +35+I, +T+U+I, +I+J+E, +9+Q+E, ++3++2+1, ++2+6++7, ++36+
+G, ++94++2, ++35++I, 1+1++1. It was considered to be the smallest known KS setup, but it
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turned out that we cannot remove atoms 7, G, Q, and others that do not share two or more blocks
because they represent one of the three orientations of the spin projections.58,62 Hence, it has 51
and not 31 vectors as originally assumed. This holds for all considered KS setups. Thus, Peres’ and
Bub’s setups contain 57 and 49 vectors and not both 33 as commonly assumed.

Our program VECTORFIND gives possible values of the vectors corresponding to atoms be-
longing to orthogonal triples of any of the above MMPs as explained in Ref. 58. Using our
program states,17 we can easily verify that all the above MMPs interpreted as lattices, even Hasse
and Greechie diagrams, admit a strong set of states, and using our program LATTICEG,17 we can
prove that they all really are OMLs �by confirming that Eq. �1� is satisfied by all of them� and that
they all admit Mayet vector states characterized by Eqs. �16� and �17� �by verifying that they pass
in them�.

On the other hand, using LATTICEG, we can also show that if we interpret MMP hypergraph as
Greechie diagrams, none of the considered lattices is modular since the modular law given by Eq.
�2� fails in each of them. This might come as a surprise since Birkhoff and von Neumann3 proved
that a finite-dimensional lattice has to be modular. However, it turns out that this is because
Greechie diagrams cannot describe relations between nonorthogonal vectors and planes they span.

To understand this better, we exhaustively generated Greechie lattices with up to 16 blocks
and then filtered them all for modularity given by Eq. �2�. For each number of blocks, we find only
one modular lattice—the biggest one has 33 atoms and 16 blocks. They all have starlike shape as
shown in Fig. 7�a�. In the figure we show the first four: 123, 123,145, 123,145,167, and
123,145,167,189—over each other—with vectors ��0,0,1��0,1,0��1,0,0��, ��0,0,1��1,�2,0��2,1,0��,
��0,0,1��1,�1,0��1,1,0��, ��0,0,1��1,2,0��2,�1,0�� �over each other�. Moreover, for all those lattices
up to 16 blocks we generated there is always only one such starlike modular lattice among them.
They all admit strong sets of states, but because of their planar distribution, they cannot describe
spin vectors in a realistic spin space.

For a comparison, in Fig. 7�c�, we show the smallest OML 123,145,267, with vectors
���0,0,1��0,1,0��1,0,0�, ��0,0,1��1,�2,0��2,1,0��, ��0,1,0��1,0,�2��2,0,1��� shown in Fig. 7�d�, which
allows a “3D” rotation that can correspond to a more complex experimental setup than the “2D”
rotations given in Figs. 7�a� and 7�b�. This means that Greechie/Hasse diagrams cannot represent
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even the simplest experiment where we let a particle pass successive magnetic fields, i.e., succes-
sive Stern–Gerlach devices, mutually rotated along different axes by means of Euler angles.

The same is true of the generalized orthoarguesian equations nOA given by Theorem II.10 and
Eq. �32� in a Hilbert space and by Theorem II.11 and Eq. �34� in a Hilbert lattice. If these
equations failed in a sublattice, they would fail in the lattice as well. Additionally, the point here
is that smallest orthoarguesian equation 3OA—and therefore all nOA with n�3—fails in almost
all known KS Greechie diagrams. Peres’ fails nOA for n=7. Again, this means that we cannot
represent KS setups with the help of Greechie diagrams.

The details are as follows. We consider Bub’s KS setup. To be able to apply our program
VECTORFIND for finding the vector components of Bub’s setup shown in Fig. 5, we have to write
down its MMP representation without gaps in letters. So, we have 123,…,DFH,…, where we
present only those Greechie/Hasse diagram atoms in which 3OA failed. Their Hilbert space vec-
tors are 1= �0,0 ,1�, 2= �1,0 ,0�, F= �1,−2,−1�, and nGO.

In a Hilbert space representation, Bub’s KS setup does pass 3OA. Let us consider 3OA in the
following form:

a � b & q � n ⇒ �a � b� � �q � n� � b � �a � �q � ��a � q� � �b � n���� .

In 3-dim Euclidean space, all subspaces are closed �they are lines, planes, or the whole space�, so
a�b=a+b, i.e., subspace join and subspace sum are the same. Thus, converting joins in the
previous equation to subspace sums and using the orthogonality, we get

a � b & q � n ⇒ �a + b� � �q + n� � b + �a � �q + ��a + q� � �b + n���� . �36�
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Now, using the subspaces determined by the aforementioned vectors and their spans in a
Hilbert space, we can easily check that Bub’s representation pass 3OA. For instance, vectors 1, 2,
F, and D, determine subspaces �0,0 ,
�, �� ,0 ,0�, �� ,−2� ,−��, and �� ,� ,−��, with arbitrary
coefficients 
 , . . .. They represent lines in both 3-dim Hilbert space and 3-dim Euclidean space.
�0,0 ,
�+ �� ,0 ,0�= �� ,0 ,
� is a plane spanned by 1, 2, etc. We show a verification of Eq. �36� in
Fig. 8.

Such a lattice—we call it MMPL—can be used for a Hilbert lattice representation of a Hilbert
space setup by the following procedure. Whenever we check an equation and we need either a
plane formed as a span of two existing lines or a line formed as an intersection of two existing
planes, we just add them to the basic Greechie/Hasse diagram that describes the triples of orthogo-
nal spin vectors. However, details of such a construction are not within the scope of the present
paper. We will elaborate on it in a forthcoming publication and here we just give a constructive
definition.

Definition III.2: A MMPL is a lattice of setup in which we explicitly state

(1) all orthogonality relation required by the setup (spins within it);
(2) only those nonorthogonal relations that are required by equations and conditions that lattice

atoms of a particular setup have to satisfy for at least one set of subspace (vector)
components.

So, the most general MMPL would be a lattice that would contain all possible atoms corre-
sponding to all possible Hilbert space subspaces allowed by all possible Hilbert space conditions
and equations. But our primary goal of considering MMPLs is to enable our algorithms to find
minimal lattices for a particular setup which would generate just one or just a desired set of vector
component values for orientation of spins and devices that would handle these spins.

Next, the superposition condition given by Eq. �18� fails in all considered KS OMLs. How-
ever, the superposition condition is a quantified expression that involves an existential quantifier,
so it is possible that it passes in an enlarged lattice even though it fails in the original one. For
instance, Eq. �18� fails in any five block loop but passes in the 36–36 OML shown in Fig. 11,
which contains five block loops. That means that we may be able to enlarge the above KS OMLs
so as to admit superposition. Of course, a first-order statement containing existential quantifiers
�when expressed in prenex normal form� that holds in a lattice need not hold in a subalgebra of the
lattice. As a trivial example, the statement “there exist 16 elements” is true for a 16-element lattice
but false for a smaller subalgebra.

IV. LATTICES THAT ADMIT ALMOST NO HILBERT LATTICE EQUATIONS

There are a number of OMLs that admit a full set of states but do not admit a strong set of
states and also those that admit a strong set of states �and therefore also a full set of states� but
violate equations that must hold in any Hilbert lattice. Using algorithms developed in Refs. 17 and
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19, we can easily generate such lattices. For instance, a lattice with 13 atoms �one-dimensional
Hilbert space subspaces� and 7 blocks �connected orthogonal triples of one-dimensional Hilbert
space subspaces� shown in Fig. 9�a� does admit a strong and therefore also a full set of states but
violates all orthoarguesian equations. Any Hilbert lattice admits a strong and therefore a full set of
states, and the orthoarguesian equations hold in any Hilbert lattice.17,19

On the other hand, the 16–9 OML in Fig. 9�b� satisfies orthoarguesian equations and admits a
full set of states but does not admit a strong set of states, L42 from Fig. 2�a� satisfies orthoargue-
sian equations and admits a strong set of states, but does not admit Mayet vector state, Eq. �16�,
while 16–10 OML in Fig. 9�c� neither admits a strong �and therefore also not a full� set of states
nor satisfies the orthoarguesian equations. All these OMLs and many more provided in Refs. 17
and 19 are examples semiquantum lattices. Yet other examples are provided by lattices that satisfy
the Godowski equations �corresponding to strong sets of states� of lower order but violate those of
higher orders.17 While all OMLs admitting strong sets of states satisfy all Godowski equations,
there are examples showing the converse is not true �Ref. 19, Fig. 10, p. 780�.

Such examples can be exhaustively generated, but no common structural feature has been
recognized so far. To be more precise, features and general rules for generation of infinite classes
of lattices that admit a strong set of states—Godowski equations18,19,53,54,63—satisfy the orthoar-
guesian properties—nOA equations,17,19 and a class of lattices that admit real Hilbert-space-valued
states—En equations19,20—have all been discovered, but the rule for generating all lattices that
lack all these properties has not been found. Since we still do not have a single example of a
complete realistic lattice for n�3, it would be important to find a class of lattices that would
narrow down the search for a complete lattice description of Hilbert space. Therefore, in Sec. VI
we consider a class of OMLs that admit a field over which a Hilbert space is defined but neither
a strong set of states nor any of the Hilbert space algebraic properties.

We stress here that an OML admitting a strong set of states will satisfy the Godowski
equations.18,19,21,53,54,63 Thus, OMLs that violate Godowski equations do not admit strong sets of
states. Moreover, most likely they cannot be enlarged to admit such a set in order to satisfy these
equations—similarly to what we have with the modular and orthoarguesian equations in Sec. III

V. MMP HYPERGRAPHS WITH EQUAL NUMBER OF VERTICES AND EDGES
GENERATED FROM CUBIC BIPARTITE GRAPHS

To avoid confusion with vertices and edges in �bipartite� graphs in this section �and only in
this section�, we use term atom for a vertex of a MMP hypergraph and block for an edge of an
MMP hypergraph. Since later we shall consider the corresponding lattices anyway, this terminol-
ogy is not inconsistent. Here we describe the exhaustive computation of MMP hypergraphs with
equal numbers of atoms and blocks having three atoms in each block and three blocks containing
each atom. This special case allows exploitation of a connection with graph theory in order to
considerably speed up the generation compared to our earlier methods.57,58
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FIG. 9. �a� A 13–7 OML that admits a strong set of states but violates Hilbert-space orthoarguesian equations; �b� a 16–9
OML that does not admit a strong set of states but satisfies orthoarguesian equations; �c� a 16–10 OML that admits neither
a strong nor a full set of states and violates all orthoarguesian equations.
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We begin by representing MMP hypergraphs as graphs with two types of vertex. An atom a is
converted to a white vertex A, and a block b to a black vertex B. If atom a lies in block b, then
vertex A is joined by an edge to vertex B. In graph theory terminology, the resulting graph is cubic
�each atom is in three blocks and each block has three atoms� and bipartite �edges have ends of
different colors�. In Ref. 58 �Sec. 5�x�� we have shown that 3-dim KS MMP hypergraphs have no
loops of length less than 5. This corresponds to the graph having girth at least 10 �i.e., having no
cycles of length less than 10�. Apart from taking the dual MMP hypergraph, which corresponds to
exchanging the colors of the vertices, isomorphism of the MMPs corresponds to isomorphism of
the graphs.

For definiteness, we consider the case of 41 atoms and 41 blocks. That is, we seek 82-vertex
cubic bipartite graphs of girth at least 10. The method used is an extension of one used in the
nonbipartite case by McKay et al.64

We begin with 41 white vertices and 41 black vertices, plus the 61 edges at distance at most
4 from an arbitrary fixed edge. These 61 edges form a tree, since otherwise there would be cycles
of length less than 10. This starting configuration is shown in Fig. 10, with dashed lines indicating
the places available for extra edges.

The task is now to add 62 extra edges so that each vertex has three edges and there are no
short cycles. This is a nontrivial task since there are 676 places where an edge may potentially be
placed, but fortunately many of the possibilities are equivalent. We proceed using a backtrack
search together with some mechanisms for isomorphism rejection. The backtrack search looks for
an incomplete vertex whose set of potential neighbors is as small as possible, then recursively tries
each of them.

Isomorphism rejection is achieved by two methods which are described, in detail, in Ref. 65.
First, the starting configuration has a large group of symmetries and we avoid trying more than
one possibility that is equivalent under those symmetries. This can be done without explicit
isomorphism testing since the structure of the starting configuration is rather simple.

Second, when the space of supergraphs of any configuration C has been completely explored,
we reject any future configuration C� that contains C as a subgraph. This is valid since any cubic
graph constructible by adding edges to C� was previously seen �up to isomorphism� when edges
were added to C. This technique is too expensive to apply throughout the search because subgraph
finding is very difficult. As a compromise, we applied the technique only limited circumstances
with at most 78 edges �the initial 61 edges plus 17 more�. We did this using the graph isomorphism
package nauty.66

These isomorph-rejection methods are not complete, so each isomorphism type of graph was
generated a few thousand times.

The complete search on order 41–41 involved about 1014 separate configurations and took
approximately 60 GHz years. Later improvement gave a 4–fold speedup. The computation can be
efficiently divided into independent parts �see Ref. 65, for an explanation�, so it was run over a
few weeks on a multiprocessor cluster.

FIG. 10. Starting configuration for generation of 41–41 MMPs.
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VI. PROPERTIES OF LATTICES WITH EQUAL NUMBERS OF ATOMS AND BLOCKS

In this section we consider OMLs that correspond to MMP hypergraphs we obtain by means
of methods presented in Sec. V.

In Ref. 57 we mentioned five 35–35 OMLs �OMLs with 35 atoms and 35 blocks�, eight
38–38s, and gave a graphical representation of the single 36–36 �there is no 37–37�. They were
obtained by different algorithms and at the time we were not aware of their properties and did not
yet have tools to analyze them. In Ref. 15 we wrote down all 35–35s and 38–38s, gave two
graphical images of them, and obtained some features of them in a different context. So, in this
section we shall focus on 39–39s, 40–40s, and 41–41s. In doing so, we will make use of a new
way of presenting MMP hypergraphs because our previous one becomes unreadable for so many
edges. We introduce the new way as opposed to the previous one in Fig. 11.

The new presentation is based on a feature of such big lattices that one can recognize separate
cycles of blocks through a maximal set of vertices that belong to isolated blocks that mostly do not
take part in the cycles. The terminology “isolated blocks” and “cycles” will be explained in Sec.
VII. The approach stems from the way the lattice 36–36 is presented in Fig. 2 from Ref. 57 which
is here shown as the first figure of Fig. 11. We separately present the three cycles in the remaining
three figures and see that we have three separated closed cycles. In all the other cases below we
also recognize three independent cycles most of which are closed.

The cycles themselves will allow us to generate new lattice equations following the procedure
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FIG. 11. �Color online� 36–36 OML that admits exactly one state and is dual to itself. It is given in the standard compact
representation in the first figure and in our separate cycle representation in the other three figures. The figures are explained
in detail in Sec. VII.
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developed in Refs. 19, 21, and 67, but they do not automatically follow possible geometrical
symmetries of the hypergraphs. In the 36–36 case they do, but, e.g., they do not exhibit the left
right symmetry of the 35–35 lattice shown in Fig. 12. Closed cycle representation does not exhibit
any symmetry.

There are 11 bipartite graphs with 78 vertices that give 39–39 OMLs. Nine of them corre-
spond to the MMP hypergraphs that are dual to themselves—when we exchange their atoms for
blocks and vice versa, we obtain OMLs that are isomorphic to the original ones.

(39–39–00): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST,
7UV, 8GO, 8MV, 9Ia, 9LT, AKU, AQc, BPb, BXd, CGS, CRY, DVW, DPa, EKO, EIX, FTb, FHQ,
NSc, UYZ, MRX, LWd, JWc, NZa, JYb, HZd.

(39–39–02): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8XY, 9KQ, 9IT, AMP, AVd, BRa, BWb, CGS, CQZ, DIP, DYb, EOW, ELd, FMX, FHU,
LSa, KUb, NWZ, JVZ, NTc, HRc, JXa, Ycd.

(39–39–03): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8MU, 9IT, 9QY, AKW, AHV, BNP, BXZ, CGS, CQZ, DJP, Dac, EKO, EIX, FNY, FVb,
SWd, MRd, UXa, Jbd, LTc, LZb, WYa, HRc.

(39–39–04): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8UX, 9TZ, 9Ia, ASW, ANP, BHV, Bbc, CGS, CQa, DNX, DJb, EUY, EKZ, FIP, Fcd, KOb,
MTc, LVa, MQY, HRZ, RXd, JWY, LWd.
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FIG. 12. �Color online� First figure shows a 35–35 lattice presented by means of its biggest loop, hexadecagon; it exhibits
a left-right symmetry with respect to an axis through vertices V and Y. Three other figures show the same OML in the
separate cycle representation. They are explained in detail in Sec. VII.
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(39–39–05): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8XY, 9NU, 9Ra, AKW, AHQ, BMP, BVc, CGS, CNb, DVY, DIa, EKO, EJd, FHU, FXZ,
LSZ, IPZ, QYd, WXb, MTd, LRc, Jbc, TWa.

(39–39–06): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8XY, 9MQ, 9Td, AKZ, AJV, BRb, BHc, COW, CKS, DNa, DVX, EQZ, EIY, FHU, FLd,
GZa, NPc, JPd, MUW, IWb, SYc, Tab, LRX.

(39–39–07): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8MU, 9IT, 9QY, AKW, AHV, BNP, BXa, CGS, CQZ, DJP, DLd, EKO, EIX, FVY, FNc, Sab,
MRb, UXZ, JWb, Tcd, WZc, LYa, HRd.

(39–39–09): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GO, 8SX, 9NV, 9bd, AUY, AHZ, BJP, BLc, CGW, CVc, DZb, DMP, EKO, EIU, FHT, FNQ,
KZa, JSa, IRb, LTd, QWa, WYd, MXY, RXc.

(39–39–10): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST, 7UV,
8GW, 8OY, 9QZ, 9IU, AKS, APb, BRa, BXc, CGX, CKQ, DMb, DJT, ESW, EZc, FLa, FIP, HVb,
HZd, NOd, MRW, NUX, LVY, JYc, Tad.

Two bipartite graphs give 4 MMP hypergraphs that are not dual to themselves.
(39–39–01a): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST,

7UV, 8GO, 8SW, 9Rb, 9NX, AMP, AVZ, BHa, BQd, CKO, CUX, DQY, DJW, EIP, ETa, FRc,
FLZ, GYZ, Kab, LSd, HUc, IXd, MWc, NTY, JVb.

(39–39–01b): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST,
7UV, 8GW, 8MZ, 9Sa, 9Rd, AOX, AVY, BKb, BJc, CGO, CKS, DNQ, DIU, EHY, ETc, FPZ, FLd,
HRb, JPa, QWc, LVW, MTX, IXd, UZb, NYa.

(39–39–08a): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST,
7UV, 8GO, 8WX, 9JU, 9MR, ALY, AId, BVZ, BNP, CGS, CLQ, DVW, DMd, EKO, EIT, FHY,
FUc, KZa, Sab, QXc, WYb, HRZ, NTX, JPb, acd.

(39–39–08b): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN, 6OP, 6QR, 7ST,
7UV, 8GO, 8Ua, 9LT, 9Ic, ASW, AKP, BJR, BNb, CGS, CNc, DPY, DJa, EOX, ETb, FIV, FMQ,
HQZ, HYb, KUZ, MWa, WXd, XZc, VYd, LRd.

The above OMLs admit neither a strong set of states nor any known property stronger than the
orthomodularity itself apart from the Mayet vector field equation �17�. One pair �39–39–01a,b� of
the duals that are not dual to each other admit at least two states, while the other �39–39–08a,b�
admit one single state. All OMLs that are dual to themselves �39–39–00,-02–07,-09–10� admit
exactly one state �1/3 for each atom�.

Bipartite graphs with 80 vertices that give 40–40 OMLs are much more numerous than those
with 78 vertices above. There are 174 such graphs and they give 80 OMLs that are dual to
themselves. Among them there is only one �40–40–038� that admits more than one state. Among
the others �94 graphs� there are eight OMLs that admit more than one state �40–40–043a,b,
�097a,b, �111a,b, �130a,b�.

There are 2515 bipartite graphs with 82 vertices that give 4612 41–41 OMLs. 418 of the
MMP hypergraphs are dual to themselves and the other 4194 are not. The latter graphs form 2097
pairs of duals that are not dual to themselves. Of the former ones, ten admit two or more states �all
the others admit only one single state� and of the latter ones, 78 dual pairs admit two or more
states, and the remaining 2019 pairs admit only one state. We can recognize that the more vertices
we have, the smaller is the portion of lattices dual to themselves.

The biggest loops of 39–39 are enneadecagons �19-gons� and of 40–40 and 41–41 icosagons
�20-gons�68 which makes them inappropriate for the standard graphical presentation—there are too
many lines over each other in their figures to discern patterns. Therefore and because of the new
feature of the existence of three separate cycles for 3D OMLs with equal number of vertices
�atoms� and edges �blocks�, we present details of our separate cycle representation and give
several figures in Sec. VII.

102103-25 Graph approach to quantum systems J. Math. Phys. 51, 102103 �2010�

Downloaded 12 Oct 2010 to 131.130.20.69. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



VII. SEPARATE LEVEL REPRESENTATION OF THE MMP HYPERGRAPHS

As already mentioned in Sec. VI, our new layout of MMP hypergraphs is inspired by the
presentation of the 36–36 one given in Ref. 57 and repeated here as the first figure in Fig. 11. Our
goal is to simplify graphical representation of big MMP hypergraphs and big arbitrary hypergraphs
with the same number of atoms and blocks, i.e., vertices and edges, respectively.

In the latter figure, one can notice nine radially placed blocks which do not have common
atoms �and which therefore include 27 atoms�, while nine remaining atoms form an inner ring. We
call radial blocks independent blocks and remaining atoms free atoms. The outermost atom of each
independent block is connected to the outermost atoms of two other independent blocks by two
blocks, middle atoms of which are free atoms. These connecting blocks form a cycle shown
separately in the second figure of Fig. 11 �as opposed to the original layout, where oppositely
placed independent blocks are connected, we connect adjacent blocks�. Similarly, middle atoms of
independent blocks are connected by blocks with free atoms as their middle atoms and there is
again a cycle of connecting blocks �shown separately in the third figure of Fig. 11�. Finally,
innermost atoms of independent blocks are also connected with blocks that contain one free atom.
In the original layout, free atoms are “last” atoms of connecting blocks, but as the atoms in a block
can be freely permuted, we can again form a cycle, shown here as the fourth figure of Fig. 11.

Based on described analysis of the layout of the 36–36 MMP, we break the representation of
MMPs with equal number of atoms and blocks into three separate levels.

The first step is to identify sets of independent blocks, i.e., those that meet two criteria: they
do not share atoms and no three such blocks are connected by a single block. In the archetype case
of the 36–36 MMP, all connecting blocks �blocks that connect independent ones� contain one free
atom. When all sets of independent blocks are found, we extract the largest ones.

In the second step, for each such set we try to identify all cycles that visit all independent
blocks in the set. Here we do not use the term “cycle” in the sense of graph theory—our cycle is
a sequence of blocks that connect atoms of two independent blocks and pass through a free atom
�if required, atoms of connecting blocks are permuted so that the free atom becomes the middle
one�. The shortest cycle forms the first level of our presentation. Independent blocks and free
atoms are arranged in the sequence in which they are visited. But, as compared to the archetypal
36–36 MMP, there are some differences: �1� a cycle is usually not closed, that is, it does not finish
in the same atom in which it starts �as can be seen on the uppermost blocks in the second figure
of Fig. 12 and first ones of Figs. 13 and 14�, although sometimes it does �first figure in Fig. 15�;
�2� in most cases some independent blocks are visited two or even three times �Figs. 12, 13, and
15�; �3� in most �maybe even all� cases some free atoms are visited more than once and, of course,
there are free atoms that are not visited at all �all examples, Figs. 12–15�.

If required—and if possible—atoms of independent blocks are permuted so that the visited
atom becomes the first/outermost atom �if the block is visited twice, then visited atom is placed in
the middle�.

In most cases we can find a second cycle that begins and ends on the same independent block,
but not in the same atom; besides, these cycles usually do not visit all independent blocks. This
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FIG. 13. �Color online� 39–39–06 OML dual to itself.
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can be seen in all our examples: the third figure of Fig. 12 and the second figures of Figs. 13–15.
Such cycles form the second level of our layout �again, if required and if possible, atoms of
independent blocks are permuted so that connecting blocks visit their second/middle atoms�.

The remaining blocks are contained in the third level. In some cases they again form a cycle:
the third figures of Figs. 14 and 15 �in fact, in these two examples, the second and third cycles can
be regarded as a single cycle, but we broke that cycle when the independent block in which it
began was visited for the second time�. But usually the third level contains two or even more
unconnected sequences of blocks. Namely, some blocks connect one atom of some independent
block and two free atoms, that is, there are some blocks that do not connect two independent
blocks: the fourth figure of Fig. 12 and the third figure of Fig. 13.

The previously described parts of our algorithm are implemented in the C programming
language using the Boost Graph library.69 The program for the final graph layout �including the
calculation of the atoms’ coordinates and drawing of the graph� is written in the ASYMPTOTE �Ref.
70� vector graphics language based on Donald Knuth’s METAFONT.

VIII. CONCLUSIONS

In this paper, we found a correct way to establish a correlation between a lattice description
and a Hilbert space description of quantum systems as well as their preparation, handling, and
measurement. Our description also allows for a straightforward reconstruction of the quantum
formalism from empirically justified axioms. In Sec. III we explain how this can be done and why
the previous descriptions from the literature were wrong. Essentially they were wrong because
they were based on Greechie diagrams that handle only orthogonalities between Hilbert space
subspaces and have no way to describe conditions and equations that have to be satisfied in any
Hilbert space or any Hilbert lattice quantum formalism and that involve detailed relations between
nonorthogonal subspaces.

We describe several families of equations and other conditions that must hold in every Hilbert
lattice in Sec. II. We made use of correspondences between graphs and lattices, which in turn
correspond to Hilbert space subspaces, in order to visualize and study 3-dim quantum setups in
Secs. III–VII. In particular, we found and investigated MMP hypergraphs �see Def. III.1� with
equal numbers of vertices and edges, which correspond to bipartite graphs �Sec. V�. Separately, we
studied Greechie diagrams used in the literature to represent Kochen–Specker and other quantum
setups �Secs. V and IV� to see which Hilbert lattice properties hold and which do not hold in them.

In Sec. III, we developed a new graphical representation of the known KS setups by means of
MMP hypergraphs �see Figs. 3, 4, 8, and 6� to visualize their properties. Then, using our algo-
rithms and programs, we showed, in particular, in Eq. �36� and Fig. 8, that Greechie diagrams
cannot represent KS setups because they are not subalgebras of a Hilbert lattice. This is obvious
from the fact that in a Greechie diagram, the join of nonorthogonal atoms �lines� a and q �in Fig.
8� is the whole space �1�, while in a Hilbert space, it is a plane a+q. Therefore, if we wanted to
have a lattice representation of KS setups, we should add lattice elements missing in Greechie
diagrams as shown in Fig. 8. This provides us with a new type of lattices �MMPL� that include all
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FIG. 14. �Color online� 40–40–34 OML dual to itself.
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relations — between both orthogonal and non-orthogonal elements — needed for a lattice descrip-
tion of a considered quantum system. We define MMPL by Def. III. 2. However, a detailed
elaboration of such a representation is outside of the scope of the present paper.

Application of such an approach is in any case computationally unfeasible for the time being,
and therefore we consider nonquantum setups to narrow down classes of lattices that we can use
to obtain complex setups in the future and, in particular, KS setups.

The Kochen–Specker theorem claims that there are quantum experimental setups that cannot
be given a classical rendering. Its proof was based on setups �KS setups� that were considered
quantum and to which it was impossible to ascribe classical 0–1 values. A number of authors have
represented KS setups or indeed any spin-1 experimental setup by means of Greechie lattices.5–13

However, in Sec. III we proved that no known three-dimensional KS setup represented by
Greechie/Hasse diagrams, in particular, Kochen–Specker’s, Bub’s, Conway–Kochen’s, and Peres’,
pass the equations that hold in every Hilbert space. These KS setups themselves do, of course,
pass these equations in the Hilbert space itself.

A Hilbert space description of such systems is orthoisomorphic to a Hilbert lattice �Theorem
II.2�.1 An OML equipped with additional properties described in Sec. II such as admitting strong
sets of states and Mayet vector states, atomicity, the superposition principle, the orthoarguesian
property, etc., is easier to handle in the lattice theory than in the original Hilbert space. This is
because, e.g., Peres’ KS design, shown in Fig. 4, has 40 triples of mutually orthogonal vectors.
The majority of the vectors are orthogonal to vectors from other triples and rotated at various
angles in space with respect to every other. In Hilbert space we would have to extract this vector
edifice from the Schrödinger equations describing the deflections of a spin-1 system in electric and
magnetic fields. Lattices, as opposed to such a standard Hilbert space approach, are easier to
handle, but even they are too demanding at present.

Therefore, it is viable to approach the problem from the other end, to see whether we can
generate lattices that would admit neither quantum nor classical interpretation from the very start
as we did in Sec. III. Such finding of properties and lattices that are not sufficient for a full
description of a quantum system �e.g., the aforementioned description by means of Greechie
diagrams� is likely to enable us to achieve, eventually, a complete lattice description �with super-
position included� of quantum experiments.

Here we stress that the superposition we refer to above and in Theorem II.13 and Corollary
II.13.1 is a superposition of vectors contained in 1-dim Hilbert space subspaces. As opposed to
this, when we look at all possible superpositions of two vectors, they span a plane in a 3-dim
Hilbert space. That is trivial in the sense that for some definite constants, we can always find a
value that a superposition of two vectors has, in particular, direction, but is nontrivial in the sense
that for bigger lattices, we can find a superposition for vectors for which only mutual orthogo-
nalities are known.

Another reason for a “semiquantum approach” is that there exist several methods of finding
and generating new properties and equations in the theory of OMLs and Hilbert lattices based on
the lattices that do not admit some states or properties. The most relevant here is a method of
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FIG. 15. �Color online� 40–40–38 OML dual to itself.

102103-28 Pavičić et al. J. Math. Phys. 51, 102103 �2010�

Downloaded 12 Oct 2010 to 131.130.20.69. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



generating the Mayet–Godowski equations �Definition II.8� by means of lattices that do not admit
strong sets of states.19,21 Based on all that, together with several previous results based on lattices
admitting only one state,32,33,71,72 in Sec. II we formulated the following theorem.

Theorem II.13: (Semiquantum lattice algorithms) There exist algorithms that generate finite
sequences of OMLs that admit superposition, real-valued states, and a vector state given by Eq.
(17), but do not admit other conditions that have to be satisfied by every Hilbert lattice, in
particular, equations such as orthoarguesian and Godowski ones (Sec. II B). As a consequence of
violating Godowski equations, these OMLs do not admit strong sets of states.

Such a choice is determined by our recent finding that OMLs with equal number of atoms and
blocks possess and lack properties stated in the theorem. They all satisfy the superposition prin-
ciple and therefore do not admit classical interpretation, they all admit real-valued states, and they
all admit a vector state which, when applied to Hilbert lattices, select those over which a field
�real, for the time being� can be defined. They admit neither strong sets of states nor orthoargue-
sian properties, and this makes them nonquantum but suitable for generation of quantum proper-
ties such as Mayet–Godowski equations.21 We generate them by means of novel algorithms which
first generate bipartite graphs �Sec. V� and then convert them into hypergraphs that correspond to
OMLs with equal numbers of atoms and blocks as described in Sec. V These results substantiate
the following corollary of Theorem II.13.

Corollary II.13.1: (Semiquantum lattices) There exists a class of OMLs that admit superpo-
sition, real-valued states, and a vector state but do not admit other conditions that have to be
satisfied by every Hilbert lattice.

To verify these and find new properties of lattices with equal number of atoms and blocks, we
had to generate a significant number of them. Toward that goal, we developed several algorithms
for generating and verifying properties on them as well as for their graphical representations, in
Secs. V–VII, respectively.

The generation was performed by representing lattices as graphs then applying an extended
algorithm that exhaustively determines all the associated graphs.

As a final note, we point out that in Sec. III �antepenultimate paragraph�, we obtained an
important “by-product” in the field of Hilbert lattice equations while we were checking whether
nOA, Eqs. �34�, pass Peres’ OML that corresponds to Peres’ MMP hypergraph shown in Fig. 4. In
Ref. 17, we found the new infinite class of generalized orthoarguesian equations of Theorem II.11,
but at the time the computing power of available clusters were only sufficient to find lattices in
which the equations up to 4OA would pass and a 5OA fail. In Ref. 19 we generated lattices in
which 6OA failed and OAs up to 5OA passed. Such examples are important because they prove
that the equations form a successively stronger sequence at least up to those orders. In Ref. 17, we
proved that all individual orthoarguesian equations previously found �by other authors� were
equivalent to either 3OA or 4OA. When we found our nOA, it was unknown whether the same
might occur with nOA at the 6OA level.20 Our result �the aforementioned passing of 3OA through
6OA and failure of 7OA in Peres’ lattice� dispels any doubt. It was serendipitous that we obtained
this result in this way because no present-day supercomputer is capable of generating 7OA ex-
amples by brute force—at least not with our present algorithms.
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