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Quantum Malus law for composite systems as a hidden-variable theory
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By referring to only two positions of measuring devices, thus avoiding the counterfactual reason-

ing of the Bell result, a plausibly general proof is provided that the distribution function of the hid-

den variables can be neither a continuous nor a singular local function but must be at least a singu-

lar nonlocal one. The recognition of Scully and Milonni s theory as a theory which makes the quan-
tum Malus law work for composite systems was the clue to the proof.

Only two loopholes remain in the Bell-like proofs that
local hidden variables cannot underlie quantum mechan-
ics (QM). One is the low efficiency of the detectors' and
the other is a possibility that the measuring process pro-
duces a change in the distribution function of the hidden
variables for composite systems. The purpose of this pa-
per is to narrow down the latter.

The Bell inequality involves results of at least three in-
compatible experiments carried out on pairs of subsys-
terns of composite quantum systems and consequently the
experiments cannot be carried out jointly (simultaneous-
ly). Thus it can be argued that the Bell inequality "ex-
cludes only those [hidden-variable theories] in which the
measuring process is assumed not to affect the distribu-
tion of the hidden variables. " In order to match this ob-
jection we give a plausibly general proof of the nonlocali-
ty of assumed hidden variables which involves only two
joint measurements carried out on the subsystems. It is
proven that the distribution function f (a) of the hidden
variables a can be neither a continuous nor a singular lo-
cal function but must at least be a singular nonlocal one.
The proof is viewed as a reduction of the Clauser-Horne
(CH) reformulation of Bell's result. In our search for
the reduction, a "new type" of nonlocal hidden-variable
theory (HV3) formulated for electrons by Scully and re-
forrnulated for photons by Milonni gave us the clue.

The essential assumption of the Bell-CH theorem is
that particular properties (e.g. , spin projection) of corre-
lated subsystems of a composite quantum system are at
least stochastically predetermined. The theorem itself
can therefore be reformulated as follows: "If the mea-
sured properties of the subsystems of a composite quan-
tum system are (supposed to be) predetermined, then

f (a) must at least be a singular nonlocal function (in or-
der to enable a hidden-variable theory to give the same
results as quantum mechanics). "

The aforementioned reduction of the theorem we carry
through by specifying the meaning of the "predetermined
property" so as to make the theorem read as follows: "If
the measured properties of the subsystems are predeter-
mined (prepared) by nature in the same way in which we

predetermine (prepare) them by our devices (polarizers,
Stern-Gerlach devices, etc.), then f (a) must at least be a
singular nonlocal function which cannot be considered

affected by the measuring process. "
For the correlated electrons and photons which we are

going to consider, this means that they are assumed to be
prepared (predetermined) so as to obey the quantum
Malus law (ML) as defined below.

Our elaboration recognizes Scully and Milonni's HV3
theory as a hidden-variable theory which makes ML
work for composite systems. It should be stressed here
that Malus' law for composite systems recently put for-
ward by Wodkiewicz as a modification of the (standard)
ML applies to the QW amplitudes and therefore has no
influence on the present elaboration.

To define ML let us consider individual quantum sys-
terns prepared, one by one, along a particular direction
which makes an angle a to the vertical. Let them be
detected by a detection device (a Stern-Gerlach device for
electrons, and an analyzer for photons) defiected at an an-
gle ~p

—a
~

with respect to the preparation direction. ML
then predicts that the probability (propensity) of
confirming the prepared property in the long run is

p(qr, a)=cos (y —a)/2C, where C=1 for electrons and
C =

—,
' for photons. Notice that p (y, a) =5„(a), for

C= I, where Fr~(a) is given by Eq. (2.4) of Ref. 5.
Let us further consider a system composed of two

two-state subsystems which are spontaneously anticorre-
latively generated along a. Subscripts 1, 2 of a will refer
to one of the two subsystems. Subscripts 1, 2 of q will

refer to one of the two detectors which detect subsystems.
Superscripts +,—will refer to spins "up" and "down"
for electrons and to "parallel" and "perpendicular" po-
larizations for photons, respectively. In the sequel we
shall call these states positive and negative, respectively.
Of course, a will never appear for photons since it is de-
void of a physical meaning in this case.

The probability of detecting one of the subsystems in
its positive state and the other in its negative state is for
electrons

p(V'i ai ~V'z
2

if the first subsystem is "prepared" in the positive (along
a) and the second, anticorrelatively, in the negative state,
and
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V'z
p (y,+, tx, ; y2, a2+ ) = sin sin

if it is the other way around. The other probabilities are
defined in an analogous way. For photons, e.g.,

(q t+, a,+;q 2+, a2+ ) =cos (q, —a)cos (q 2
—a) .

These probabilities are in Refs. 5 and 6 expressed by
means of the 5 functions in Eqs. (4.7) and (1), respective-
ly. For example,

where

(2i —1)!!
(2t )!!

(2i +2i —1)(2i —1)!!
2(2i +4)!!

(2i —1)!!
2(2i)!!

The only way to obtain

= f 5(a —P)cos (y& a)c—os (rp2 P)d—P .

The probability of joint detection of a positive state by
the first detector and a negative by the second for elec-
trons is in general given by the expression

P(mi' m2 ) =f f (~4[p(V t' ~t'V'2 ~2 )

If we now abandon any knowledge of a particular
orientation of a however assuming that particular though
unknown orientations do take place and if we assume
that the orientations do not depend on either g& or y2,
then we can always, up to a desirable precision, approxi-
mate the appropriate continuous density function f (a)
by the series g;" oC;cos'a. After some calculation we
get

P(rp,+, rp2 ) =D cos +E cos(y, +rp2)+F,
0'2

p + 1 2 0'& 0'2
(9 1 «p2 ) cos —PQM(f'1 ~9 2 )

which is the QM result, is to assume D =
—,
' and F. =F=O.

However, this leads to a contradiction since 2F =D. The
same result follows for the other probabilities for elec-
trons and photons.

If we assume some particular, known or unknown
singular value for a, let us say a = /, then P (y„p2) can
be expressed by assuming f (u)=5(a —g). Thus we ob-
tain P (y„q&2)WPQM(y„p2) as in the previous case.

Hence P(y&, y 2)WP QM( tp„y 2) no matter which f (a)
we choose so far as it does not depend on y] and y2.
Therefore both Scully and Milonni are "motivated" to
consider, in effect, the following nonlocal choice:
f (a)=5(u —y, ) which gives P(qr„@2)=PQM(y„q2).
Namely, if we introduce f (a) =5(a—y, ) into the equa-
tion for electrons for P (rp,+, rp2+ ) [which is the analogue of
Eq. (1)],we obtain

1 2%i . q%2 ~ 2'P1 ~ 2+2P(rpt+, tp2+)= 5(a —
y&)

—cos sin +sin cos2'2 2 2 2 2

=f —,'[5l~ —p&)+5(a —y, —n. )]sin
CX

cos d cx
2 (2)

which is nothing but P(tp„g2) given by Eq. (4.7) of Ref.
5, as can be easily calculated. In other words, although
being structurally diff'erent, ' HV3 and QM predict the
same experimental outcomes; i.e., they give the same final
results in the sense of P(p~, tp2) =PQM(lp] Ip2).

In conclusion, if one wanted to formulate a local
hidden-variable theory which presupposes that the
measuring process affects the distribution function of the
hidden variables, one would have to start with the as-

I

sumption that nature prepares quantum systems in a
different way than we do.
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