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Summary. - A relative frequency property is employed to show that quantum 
YES-NO measurements of a discrete spin observable can be considered repeatable, 
if and only if a particular physically meaningful function, defined in the paper, 
exhibits a jump-discontinuity for end points of a closed interval. 
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1. - Introduction. 

It has recently been shown that continuous observables do not satisfy the 
repeatability hypothesis [l]. It has also been shown that, in the presence of a 
conservation law, even discrete observables are only approximately measurable [2]. 
Thus, both kinds of observables allow a value from their spectra to be a result of a 
:rpeasurement, but the value cannot be ascribed to a particular property of the 
measured individual system in a particular state. As opposed to this situation, when 
individual systems are subjected to YES-NO measurements of a discrete observable, 
unrestricted by any conservation law, the eigenvalue of the measured observable 
(projector) can always be taken to correspond to a particular property of the ensemble 
of individual systems. Thus, for repeated YES-NO measurements of an unrestricted 
discrete observable a YES-event occurs with certainty, i.e . with probability equal to 
unity, and a NO-event occurs with probability zero. In other words, from a statistical 
point of view, such measurements can always be considered as repeatable. However, 
in iooking at individual events, we face the following uilemma. 

We can take a view that a NO-event with probability zero never occurs. In this 
case, a measurement is considered repeatable in both senses: statistical and 
individual, as well as taken to ascribe an individual system a particular 
property. 

The other possibility is to assume that a NO-event with probability zero can 
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nevertheless occur. In this case the repeatability is not admitted so far as individual 
events are concerned. 

The latter interpretation is attractive because it suggests a unification of 
descriptions of quantum measurements in the sense that the approximately 
repeatable measuring process might be a model of measurements in quantum 
mechanics, not only for continuous and restricted discrete observables, but also for 
unrestricted discrete observables. However, to be able to consider whether or not an 
event with zero probability can occur, we should first have a physically meaningful 
«measure» for its (non)occurrence. And the purpose of this paper is to provide such a 
measure. 

We approach measurements of unrestricted discrete observables carried out on 
individual systems by means of ideal relative frequencies, i .e. those that apply to an 
infinite number of such YES-NO measurements of a particular observable. 
According to the lemmas provided in sect. 2, it turns out that the frequencies 
converge to appropriate probabilities in a way which enables defining an expression 
(eq. (13)) as the measure for the repeatability. The analysis carried out in sect. 3 
shows that the repeatability of individual events boils down to the claim that two 
isolated points (0 and 1) of the probability continuum under consideration (closed 
interval [O, 1]) should be ascribed different jump-discontinuous values of the 
expression given by eq. (13) than all other points (open interval (0, 1)). 

In order to pave the way for this conclusion, we shall first elaborate the statistics 
of measurements of individual systems within YES-NO experiments. 

2. - Estimation of probability by relative frequency. 

Let us call the event Xi = 1 a success on the i-th trial. The frequency with which 
the result 1 is obtained is 

where N + is the number of successes in the first N trials. 
The probability that the i-th trial gives the result 1 is denoted as P(Xi = 1) E [O, 1]. 

The probability that the i-th trial and the j -th trial give the result 1 is P(Xi = 1, Xi= 
= 1) E [O, l]. The expectation of the frequency and of its square is 

(1) 

(2) 

1 N 
(!) = - LP(X; = 1)' 

N i= l 

l N N 

(!2 > = <JJ> = - LL P(X; = 1, x = 1). 
N 2 i=lj=l J 

Now, what is usually taken to be the first basic feature of any quantum YES-NO 
measurement is that the particular individual events are completely independent, 
which can be expressed as P(X; = 1, Xi = 1) = P(X; = 1) P(Xi = 1), for i =I= j . 

The second basic feature of the YES-NO measurements is that trials form an 
exchangeable sequence. Hence P(X1 = 1) = ... = P(XN = 1) = :p. Thus eq. (1) reduces 
to (!) = p. 

Since P(X; = 1, Xi= 1) = p, within the sums in eq. (2), there are N 2 
- N of 
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P(X; = 1, Xi= 1) = p 2, i =I= j and eq. (2) reduces to (!2) = [Np+ (N2 - N) p 2JIN 2
• 

The appropriate standard deviation is 

(3) Ap = [ (!2) _ (j)z ]lfz = ~ p(l;;. p) = -JP/, 
where q:= l-p. 

By the Markov theorem [3], we obtain that the frequency f = N +IN converges to p 
«in probability» and, by the Levi theorem [ 4], it then follows that f = N +IN con
verges to p almost certainly (a.c.), in symbols N +IN~ p, which means 

(4) 

(Note that N + is actually a function of probability and of the number of trials: 
N + = N + (p, N), and that the lemmas below apply to p from the open interval 
0<p<1.) 

However, on which minimal set and in which way does the frequency N +IN 
converge to p? 

We answer this question in the form of the lemmas given below. The lemmas are 
direct consequences of the DeMoivre-Laplace central-limit theorem. As a bridge to 
them, the following wording could presumably be of some help. 

Lemma 1 amounts to saying that, for (Ap)' given in the lemma, the probability of 
finding the frequency N +IN within [p - (Ap)', p + (Ap)'] approaches 1 as N 
approaches infinity. Lemma 2, on the other hand, states that the probability of 
finding N +IN within [p - (Ap)", p + (Ap)"], where (Ap)" = (pq) 112 Nn, n < - 112, 
approaches 0 as N approaches infinity. Lemmas 1 and 2 taken together answer the 
first part of the question stating that the minimal set on which N +IN converges top 
almost certainly is given by {x E Ri x E [p- (Ap)' ,p + (Ap)'] n [p- (Ap)",p + (Ap)"J}, 
where (Ap)' - Ap and Ap - (Ap)" are arbitrarily small, i .e. where k (see the definition 
of (Ap)' in Lemma 1) and n are arbitrarily close to -112 (approaching it from above 
and below, respectively). Lemmas 1', 2', and 3' generalize Lemmas 1, 2, and 3 for the 
case of (pq) 1l2 from Ap, (Ap)', and (Ap)" being substituted by (pq)r, y E R. 

Lemmas 1, 2, and 3 taken together answer the second part of the question by 
stating that N +IN finds its values on the interval [p - r;Ap, p - (Ap)" u (p + (Ap)", p + 
+ r;Ap ], where 0 < r; < oo is the confidence coefficient and where n from (Ap )" is 
arbitrarily close to - 112, with the probability given by the right side of eq. (10). The 
frequency N +IN finds its values on the interval [p - (Ap)', p - r;Ap) u (p + r;Ap, p + 
+ (Ap)'] with the probability equal to the previous one subtracted from unity. 

Lemmas 1', 2', and 3' taken together give a corresponding answer for y =I= ll2, 
stating in addition that for p approaching either 0 or 1 the frequency N +IN finds 
values on [p - r;(pq)r N -lfz , p + r;(pq)Y N-1/2 ] with probability 1 and 0 as N approaches 
infinity for y < 112 and y > 112, respectively, no matter which confidence coefficient r; 
we choose. 

The lemmas read as follows: 

Lemma 1. Let p, N +• and N be defined as above. If 0 < p < 1, -112 < k < -113, 
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and (Ap)' = (pq)lf2 Nk, then 

(5) lim P[p - (Ap)' ~ NN+ ~ p + (Ap)'] = 1. 
N---> oo 

Proof. The DeMoivre-Laplace central-limit theorem [ 4] reads as follows: If { mN} 
and {MN} are sequences of nonnegative integers satisfying mN ~MN, where N ~ 1, 
for which 

(6) 

as N ~ oo, where 0 < p < 1, and if fJ. = (mN-Np -1/2)(pqN)-1!2 and v =(MN -Np+ 
+ 1/2)(pqN)-lf2, then 

y 

(7) P(mN ~ N +~MN)= [1 + o(1)](2rr)-1!2 J exp [- ~2 ] dx, 
.~ 

where 1+o(l)~1 uniformly as N ~ oo. (o(l) is Hardy's «little O» [4].) 
Let us choose mN = Np - N 1+k (pq)1!2 + c(N) and MN= Np+ N 1+k (pq)112 - C(N), 

where -1/2 < k < -1/3, and 0 ~ c(N), C(N) < 1 are chosen so as to make mN and MN 
integers. We can easily check that mN and MN satisfy conditions '(6). To ensure 
mN ~MN and N ~ 1, we choose N > (qp/4)-1!<2+2kl. By introducing our mN and MN in fJ. 

and v we get 

(8) fJ. = - Nk+1/2 + [c(N) - 1/2](pqN)-lf2' v = Nk+l/2 + [1/2 - C(N)](pqN)-1/2 . 

Hence, fJ. ~ - oo and v ~ + oo when N ~ oo. Thus, the right-hand side of (7) approaches 
1 as N approaches infinity. Dividing the inequalities, to which the probability on the 
left-hand side of eq. (7) refers, by N-an operation that does not clash with the way in 
which eq. (7) is derived in ref. [4]-and taking into account that Np - N(Ap)' ~ mN 
and MN ~ Np+N(Ap)', we obtain eq. (5). D 

Lemma 2. Let p, N +, and N be defined as above. If 0 < p < 1 and n < -1/2, 
then 

(9) lim P[p - (pq)112 N":::::; NN+ ~ p + (pq)lf2 N"] = O. 
N-->"" 

Proof. Proceeding as in the proof of Lemma 1, we obtain expressions for fJ. and v 

which differ from (8) only in k being substituted by n. Hence, fJ. ~ 0 and v ~ 0 when 
N ~ oo. Thus the right-hand side of eq. (7) approaches 0 as N approaches infinity. 
Proceeding further, as in the proof of Lemma :i, we obtain eq. (9). D 

Lemma 3. Let p, Ap, N +• and N be defined as above, in particular Ap by eq. (3). 
If 0 < p < 1 and 0 < ri < oo, where ri is the confidence coefficient, then 

r, 

(10) #..T., P(p - ryAp ~ ~ ~ p + YJAP) = (2rr)-lf2 J exp (- ~2 ) dx. 
-r; 

Proof. Proceeding as in the proof of Lemma 1, we obtain the expressions for fJ. and 
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v which differ from (8) in k being substituted by - 1/2. Hence, p. ~ -71 and v ~ +ri 
when N ~ oo. Thus the right-hand side of eq. (7) boils down to eq. (9) as N approaches 
infinity. D 

The lemmas put together state that the convergence of the frequency N +IN to 
probability p takes place on a set defined as 

[p - (pq)l/2 Nk 'p - (pq)l/2 Nn) u (p + pq)l/2 Nn 'p + (pq)l/2 Nk] ' 

-1/2 < k < -1/3, n<-112, 

where k and n are arbitrary close to - 1/2. This means that a frequency N +/N which 
converges to an appropriate probability p is «improperly» Gaussian-like distributed, 
so far as only arbitrary large N's, instead of the ones approaching infinity, are 
considered; i.e. an arbitrary narrow strip is «cut out» from the middle of the 
Gaussian. (The lemmas remain «almost unchanged» when N is only «Sufficiently 
large» instead of approaching infinity.) , 

When N tends to infinity we can hardly speak about a distribution, because of 
(pq)112 Nk ~ 0, but we can express the result by saying the N +IN acquires a value 
which is strictly equal to p by probability zero: 

(11) 

The equation shows that the values of the frequency never cluster strictly at p but 
only around p, and puts forward an interesting characterization of the stochasticity of 
frequencies of the Bernoulli trials. In this case, the above statement that N +IN is not 
«properly» Gaussian-like distributed means that a line centred at p is «cut off» from 
an infinitely narrow strip to which the Gaussian «shrinks». 

Taken together, it is clear that the lemmas and all their consequences heavily 
depend on the fact that N approaches infinity; therefore we are tempted to conclude 
that p itself does not play any role in the measure of deviation of N +IN from p, i.e. 
from its mean. However, so far as Lemma 3 is concerned, this is not the case, as we 
are now going to show. 

Retaining the previous notation and conditions it is obvious that the lemmas hold 
in the following form as well (y E R; 0 < ri < oo ): 

Lemma l'. 

Lemma 2'. 

n<-112. 
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Lemma 3'. 

+~(pq)r-l/2 

lim P[p - YJ(pq)r N-1/2 ~ N + ~ p + YJ(pq)r N-112] = ___!_ J exp [- x
2 Jax. 

~oo N ~ 2 
-~(pq)r-1/2 

Only Lemma 3' is changed with respect to Lemma 3 by the introduction of y and it 
will serve us in sect. 3 to discuss a possible estimation of N + /N by means of p + 
+ x(N)(pq)r N-1/2, where -oo < x(N) < 0, 0 < x(N) < +oo. 

First, we have to restrict y to the positive values. Otherwise we are in the position 
of estimating frequency by something which is greater than one for all N's which are 
not large enough, and this is absurd. 

For arbitrary large y > 1/2, the frequency N +IN finds its value on the interval 
[p-YJ(pq)rN-lf2 ,p+YJ(pq)rN-112 ] with a probability which is arbitrarily close to 
zero, no matter which confidence coefficient YJ is chosen. On the other hand, for ' 
y < 1/2, the smaller y is, the closer the expression on the right side is to one, no 
matter which YJ we choose. In a word, the values we should allow y depend on the 
nature of the problem we treat. 

Let us now consider the particular cases of probabilities equal to zero and one. 
Theorems concerning the Bernoulli trials, our lemmas included, do not say anything 
about the strict values p = 0 and p = 1. It follows from Lemma 1 that N + (p, N)/N ~ 0 
when p~ 0 and N ~ oo, and that N+ (p,N)/N ~ 1 when p~ 1 and N ~ oo. Thus we 
are tempted to expect to have strictly N + (0, N) = 0 and strictly N + (1, N) = N. 
However, as we show in the next section, so far as the quantum YES-NO 
measurements are concerned, we should be tempted to expect just the opposite. 

3. - Quantum YES-NO measurements. 

Let us consider polarization and spin preparation-detection measurements for 
photons, spin-(1/2) particles, and spin-1 particles. The appropriate probabilities are 
then either of the Malus form -p = cos2 (Ca)-with C = 1/2 for spin-(112) particles, and 
C = 1 for photons and for the zero projections of spin-1 particles; or of the form p = 
= cos4 (a/2) for ± 1 projections of spin-1 particles. 

Quantum systems are prepared, one by one, by a preparation device (a polarizer 
or a Stern-Gerlach device) and detected, one by one, by a detection device (an 
analyser or another Stern-Gerlach device) deflected at an angle relative to the 
preparation device. In a word, we carry out quantum YES-NO measurements on 
individual systems. Quantum mechanics then predicts that the relative frequency 
N + /N of the number N + of detections of the prepared property («prepared» in the 
statistical sense of the word-see sect. 1) on the systems among the total number N of 
the prepared systems, approaches cos2 (Ca) and cos4 (a/2) as N approaches infinity. 
And the other way round, whenever we register the frequency N +/N, we find the 
detection device deflected at angles (1/C) cos-1 (N +/N)lf2 and 2 cos-1 (N +/N)lf4 as N 
approaches infinity. 

The main point in our reasoning is that the angle a is not considered as 
a macro-observable measured directly by classical means, but as a function of 
the obtained frequency, in symbols a = a(N + /N), and as a function of the 
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corresponding probability (being the mean of the frequency), in symbols a= a(p). 
Of course, the value of the latter coincides with its macro-value. 

The function a= a(p), no matter which of the two afore-mentioned forms it 
acquires, is a continuous monotonic increasing function defined on [0, 1] and 
differentiable on (0, 1). Hence, it is invertible and its inversion function p = p(a) is 
also differentiable and da/dp = (dplda)-1 holds [5]. Therefore, in the definition of the 
derivative 

(12) I 
da I = lim I a(p + h) - a(p) I = I dp 1-1 
dp hr->O h da 

we are allowed to replace h by a particular net or series converging to zero and we 
shall do so using a particular expression, which will eventually serve ascribing values 
of the frequency N +IN top+ h. As a candidate of such an expression, the estimation 
analysis for N +IN carried out in sect. 2 singles out x(N)(pq)r Nf3, where 
0 < lxCN)I < oo, 0 < y < oo, and -oo < (3 < 0. Let us proceed along this line. 

The points p ± lxCN)l(pq)r Nf3 are the end points of the interval [p - lxCN)l(pq)Y Nf3, 
p + lx(N)l(pq)r Nf3] and, according to Lemmas 1' and 2', we can accomplish the 
ascription only when (3 = -112. For, according to Lemma 2', the frequency N+IN 
almost never acquires a value on the interval when the latter is defined by (3 < -112; 
thus, according to Lemma l', the frequency N +IN has almost all values on the 
interval, but perhaps none at its end points when the interval is defined by (3, which 
satisfies: -112 < (3 < -113. 

On the other hand, according to Lemma 3' and the discussion following it, for 
y > 112, when p approaches zero and one-these are the cases in which we are 
primarily interested-the frequency N +IN almost never acquires values on the 
interval. When 0 < y < 112 and p approaches zero or one the frequency again has 
almost all values on the interval, but perhaps none at its end points. 

Thus, we are left with (3 = -112 and y = 112, our points boiling down to p + 
+ x(N) !l.p, where !l.p is given by eq. (3). In other words, only for these values of (3 and y 
is the convergence of N +IN-on the minimal set from sect. 2-to p assured. 

According to Lemma 3, for every N, for "fJ ?=" lxCN)l large enough, almost all (i.e. 
with a probability approaching one) values of N +IN, as well as of p + x(N) !l.p, lie 
within the interval [p - "fJ!l.p, p + "fJ!l.p]. On the other hand, for "fJ':::::; lxCN)I small enough 
almost all values of N +IN as well as of p + x(N) !l.p, lie outside the interval [p -
- "fJ' !l.p, p + "fJ' !l.p]. Besides, according to Lemma 2 and eq. (11) the probability of N +IN 
being strictly equal to p is zero. 

Hence, for every N there is almost certainly such x(N), so as to make p + x(N) !l.p 
equal to N +IN and x(N) !l.p converging to zero (without making it equal to zero) as N 
approaches infinity. 

In eq. (12) we can, therefore, choose h = x(N) !l.p and substitute N +IN for p + h, 
thus obtaining 

I 
da I = lim la(N +IN) - a(p)IN1/2 = I dp 1-1 
dp N->oo lxCN)l(pq)l/2 da 

After a rearrangement it gives (for 0 < p < 1) 

(13) I 
dp 1-1 

G(p) := L - 1 lim [iaCN +IN) - a(p)I Nlf2 ] = (pq) 1l2 -d =: H(p), 
N->oo a 
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After a rearrangement it gives (for 0 < p < 1) 

(13) I 
d 1-1 G(p) := L - 1 lim [la(N +/N) - a(p)J N 112 ] = (pq)112 dp =: H(p), 

N~oo a 

where L = lim Jx(N)j is a bounded (0 < L < oo) random (stochastic) variable which 
N~oo 

does not have a definite value, in the same way in which, e.g. , lim sin x does not have 
x--.oo 

a definite value. However, the randomness of L is matched by the randomness of the 
other limit in eq. (13), so that G(p) turns out to be a continuous nonvanishing function 
on (0, 1). Namely, for our probabilities p = cos2 (Ca) and p = cos4 (a/2) we get 

sin (2Ca) 
G1 (p) = H 1 [p(a)] = 2C sin (2Ca) ' 

sin (a/2)[1 + cos2 (a/2)]1!2 

G2 (p) = H 2 [p(a)] = 2 sin (a/2)Jcos (a/2)J ' 

respectively. Therefore, for p E (0, 1), i.e.a E (0, rc/(2C)) and a E (0, re), the functions H 1 
and H 2 are well defined: 

Turning our attention to the probabilities equal to zero and one, we see that H's 
are not defined for these values: H 1 (0) = H 1 (1) = H2 (1) = 0/0; H2 (0) = oo. However, 
their limits exist: 

limH1 (p) = lim G1 (p) = lim H1 (p) = lim G1 (p) = (2C)-1 = H1 (0) = H1 (1), 
p--.0 p--.0 p--.1 p--.1 

Thus continuous extensions of H1 and H 2 to [O, 1] exist and these are given by H1 

and H2 , respectively. 
The functions G1 and G2 , on the other hand, cannot be approached in the same way 

because we do not know whether G1 (0), G1 (1), G2 (0), and G2 (1) are well 
defined. 

There are three physically acceptable possibiities [6]: 

1) G(p) is continuous at 0 and 1. A necessary and sufficient condition for that is 
G(O) = lim G(p) and G(l) = lim G(p), respectively. In this case we cannot strictly have 

p--.0 p--.1 

N + (0, N) = 0 and N + (1, N) = N, since then G(O) = 0 * lim G(p) and G(l) = 0 * * lim G(p) obtains a contradiction. p--.O 
p--.1 

2) G(O) and G(l) are undefined. In this case we also cannot have N + (0, N) = 0 
and N + (1, N) = N since the latter equations make G(Q) and G(l) defined, i.e. equal to 
zero. A continuous extension of G(P) to [0, 1] exists and given by G(p) := H(p). 

3) G(O) = G(l) = 0. In this case we must have N + (0, N) = 0 and N + (1, N) = N. 
And vice versa: if the latter equations hold we get G(O) = G(l) = 0. 

Thus we reach the conclusion that quantum YES-NO measurements of the dis-
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limit as P:nm approaches 1, i.e. as a approaches 0, and mostly an infinite limit as P:nm 
approaches 0, for any s and m. 

Hence, a YES-NO measurement of a discrete spin observables can be considered 
repeatable with respect to individual measured systems, if and only if G(p:nm), 
defined by eq. (13), exhibits a jump discontinuity for P:nm = 0 and P:nm = 1 in the sense 
of point 3 above. 

4. - Discussion. 

We considered polarization and spin preparation-detection measurements, so as to 
treat the angle a at which a detection device is deflected relative to the preparation 
device, as a function of the frequency N +IN measured on individual systems and as a 
function of the corresponding probability p = (N+IN). Thus, a = a(N+IN) can be 
expressed by means of the frequency N +IN as a(N +IN)= (llC) cos-1 (N +IN)lf2 and 
a(N +IN) = 2 cos-1 (N +IN)1!4 for the considered cases, respectively. For, according to 
eq. (4), N +IN~ p as N approaches infinity. On the other hand, a = a(p) is 
expressed by the corresponding «objective» probability ascribed to the systems, and 
therefore it represents the actual «macroscopic» angle of deflection. 

The obtained result, expressed by eq. (15), then states that the difference 
la(N +IN) - a(p)I between the «microscopically» measured angle a(N +IN) and the 
«macroscopically» measured angle a(p) =a multiplied by N 1l2, i.e. the expression 
la(N +IN) - a(p) I N 112, never vanishes as N approaches infinity. For strict values p = 0 
and p = 1 we, however, face a dilemma. Shall we assume that the difference in 
question suddenly drops to zero for these values of p, thus adopting individual 
interpretation of quantum mechanics and the repeatability of YES-NO 
measurements? Or shall we assume the continuity of undefiniteness of G(p) and the 
validity of eq. (11) for these values of p, thus adopting the statistical interpretation 
and banishing repeatable measurements on individual systems from quantum 
mechanics altogether? 

By adopting the former interpretation we cannot but assume that Nature 
differentiates open intervals from closed ones, i.e. distinguishes between two 
infinitely close points. One can try to object that the consequence of the obtained 
result is overemphasized and try to argue that for a's, which are infinitely close to 
zero, i.e. for p's infinitely close to one, the expression la(N +IN) - a(p)I N 1l2 

approaches zero for an arbitrary large N. However, such an argument does not hold 
water, since p = (N +IN) and whenever p is not strictly equal to one, N + (being an 
integer) cannot be greater than N -1. Namely, given the data (N +, N) one can easily, 
by means of beta distribution, find the inverse probability p which satisfies 

N +IN - [N + (N - N + )]1!2 Nk :::::; p:::::; N +IN + [N + (N -N + )]112 Nk, -714 < k < -513, 

with a probability which is closer to one the larger N is. In this way, p simply cannot 
be let infinitely close to 1 without first N being infinitely large. And we have already 
shown in sect. 3 that lim lim [ia(N +IN) - a(p) I Nlf2 ] * 0. We point out here that N 

p-.1 N->co 

and p cannot simultaneously tend to infinity and one, respectively, since the 
existence of such a simultaneous limit implies the existence and equality of the 
appropriate successive limits. As one of the successive limits turned out not to exist, 
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a simultaneous limit cannot exist either. The above reasoning applies to the case 
p ~ 0 in an analogous manner. 

By adopting the latter interpretation, we allow but a bare statistical meaning to 
quantum probabilities, including those ones which are equal to unity and zero, and 
deny them a unique experimental meaning with which all individual measured 
systems would comply. 

Since the consideration of an experiment which would differentiate between the 
two interpretations is rather beyond the scope of the present paper, we shall close the 
discussion by comparing the obtained result with a possible classical one. 

Had electrons obeyed a classical «linear» probability law, the deflection angle 
under consideration would have been expressible [7] as a= n{l - p). In this case, eq. 
(13) gives G(p) = rc(pq) 112

, which is, as opposed to the quantum case, well defined for 
p E [O, 1] and we meet no problems for p = 0 and p = 1. Thus, for a classical 
probability, the assumptions N + (0, N) = 0 and N + (1, N) = N invoke no dilemma. 
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Note added in proofs. 

The generalization we referred to in the last but one paragraph of sect. 3 is carried out in 
ref. [8]. 
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On p. 1104, 1st line from below, the expression 

P(X;= 1, Xi= 1)=p 
should read 

P(X; = 1, Xi= 1) = p. 

On p. 1105, 11th and 12th line from below, the expression 

[p- ri!J..p, p - (!J..p)" u (p + (!J..p)", p + (!J..p)"] 
should read 

[p - ri !J..p, p - (!J..p)") u (p + (!J..p)", p + (!J..p)"]. 

On p. 1107, 6th line from above, the expression 

[p - (pq)l/2 Nk, p - (pq)l/2 Nn) u (p + pq)l/2 Nn, p + (pq)l/2 Nk]' 

should read 

[p - (pq)l/2 N\ p - (pq)l/2 Nn) u (p + (pq)l/2 Nn, p + (pq)l/2 Nk]. 

On p. 1110, 11th line from below, «possibiities» should read «possibilities». 

On p. 1110, 4th line from below, «and given» should read «and is given». 

Due to a technical incovenience, on p. 1109 the last two lines are doubled; and on p. 
1110, 1st line from below: 
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Thus we reach the conclusion that quantum YES-NO measurements of the dis

should read: 

Thus we reach the conclusion that quantum YES-NO measurements of the dis
crete spin observables considered is repeatable with respect to individual measured 
systems, if and only if G(p) is jump discontinuoll;S in the sense of point 3 above. 

In general, for spins and its projection m we have p = P~m = (8~m)2, where a~m is an 
element of the rotation matrix. It is not difficult to show that G(p~m) has a finite 
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