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The eigenvalue equations for the complex Pauli unique gaussians as well as for the non-unique ones are given, and the general
solutions to them are outlined. In addition, it is proved that not all real states are Pauli unique.

Recently, complex gaussians have been exploited
as basis functions for a description of molecular
motions which include vibrations in the semiclas-
sical approach [ 1], for a comparison of quantum and
classical mechanics [2], with electronic structure
investigations [ 3], etc. The gaussians were in general
given {1] by

wi=Cexp[ —a(g~q0)* +ipo(g—g0)/h] ,

k=1,2,

as well as by ¥  where Re(a)>0,
C=[2Re(a,)/h]"4, and a,=a%f. The last relation
implies Re(a,)=Re(a,), and Im(a,)=-Im(a,),
and in the following we shall refer to these expres-
sions as Re(a) and *Im(a), respectively. For the
same reason we shall write {a;| =]a,|=]al.

Two main features of the gaussians were impor-
tant for choosing them as basis functions: the local-
ization of the wave packet at |{(§>|=g, and
{<f)|=py and the position~momentum correla-
tion introduced by the Im(a) term. The former fea-
ture can be characterized, and elaborated further, by
“bound states in which the particle is restrained by
external forces (potential energy) to a particular
region in space” [4]. It is therefore of interest to
investigate which hamiltonians possess the consid-
ered gaussians as their eigenfunctions and whether
w, and y, (w¥ and y¥%) are uniquely determined by
their position and momentum distribution (i.e.

whether they are Pauli unique, to which question we
answered in the negative in ref. [5]).

It is shown below that y, is the eigenfunction of
H, whose potential part is complex no matter whether
Im(a)=0 or not *'. As for the afore-mentioned Pauli
non-uniqueness we showed in ref. [5] that
<ﬁ>tg\| = <ﬁ>wz = Do, <4>v7| = <é>v72 =40 (Where '/A/l
and y, are Fourier transforms of ¥, and y.), and,
in effect, (Hi>y=CH)y={H)y =<y,
=F. On the other hand, the gaussian with Im(a)=0
(in which case ¥, =,) belongs to the “real states”
and is therefore Pauli unique [8]. However, in ref.
[8] the question “are all real states Pauli unique?”
remained unanswered and we shall eventually fill in
this gap.

Let us consider the hamiltonian H, = j*+ ¥V, k=1,
2, whose domain is D(H,) c L,(—co, +0), which
is self adjoint, and where ¥, is the multiplication
operator whose representative function is

Vidq) =ha[ 2hai (g — g0)* — 2ipo(d— o)

—ifIm(ay)/Re(a))/m, k=1,2.

The eigenvalue equation is given by

' The hamiltonian to which ref. { 5] should be considered to refer
is A, Its potential part is complex, and given by V, defined in
the following, and not real as put in ref. [5]. I gratefully
acknowledge S. Epstein [ 6], who drew my attention to the fact
that a hamiltonian with a real potential part cannot have ¥, as
its eigenfunction. As to the complex potential it was used in
quantum mechanics as early as 1954 {7].
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Hi o= (5> + V) o= — (R212m) ¢} + V() b1 = Edy,

k=1,2, (1)

where ¢} =d%¢,/dg?>. (We shall use the notation
f'=df/dq, and f" =d*f/dq? throughout.)

v, obviously satisfies eq. (1) for E=p3/2m+
#%|al?m Re(a). In order to get a general solution to
eq. (1) let us introduce the polynomial

Pi= ,Zo conl2a(g—qo) —ipo/h}, k=1,2,
j=

and substitute ¢, =Py, into eq. (1). We obtain the
following equation:

Pi—4a,(q—qo) Pi+rP =0, k=1,2, (2)

where r=2mE/h*— p¥h*—2|a)*/Re(a). In order for -

this equation to be valid for any g the coefficient of
each ¢/ must be zero. On the other hand, since eq.
(1) has one irregular singularity at infinity [9], P,
must terminate for ¢, to be from L,( —~co, +o0). Let
it terminate at j=#n. Then the recursion relation
obtained for the highest potention of ¢, i.e. ¢”,

(n+1)Yn+2)cuynr2+H (r—darn)cy, =0,

k=1,2, (3)

implies r=4a,n, and therefore P, is wholly even or
odd according to n being even or odd.
Therefore, in case Im(a;) =0 we finally have

E,=pi2m+#* Re(a)(2n+1)/m,

and

n

$r=@,= ‘Zo ¢[2 Re(a)(g—4qo) —ipo/hY

xexp[ —Re(a)(g—qo)* +ipo(g—q0)/h] ,

where ¢,_,;=c,_3=...=0, and the other ¢; are given
by (3). _

In case Im(a,) #0, n has to be zero in order for E
to be real and consequently ¢, =w,. This does not
mean that y, is the only possible solution to eq. (1);
however, the second solution which is of the follow-
ing form [9]:

Wy fexp(—Aq’-b—BqZ-%-Dq) dg, Re(4)>0,
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as well as the linear combination of the two do not
belong to L;(—co, +o0), since eq. (1) has one sin-
gular point at infinity. And, as shown above, the
appropriate sequences cannot be terminated in the
usual way (i.e. the one which would directly deter-
mine the particular discrete energies). Of course,
approximations which belong to L,(—~c0, +co) are
always possible (e.g. by means of hypergeometric
functions), but it seems they have to be adapted to
the particular problem in question, and we shall not
consider the case any further. However, we would
like to draw the reader’s attention to an ambiguity
which emerges from the obtained results. The com-
plex gaussians with Im(a) # 0 have been introduced
in order to describe the position-momentum cor-
relation, which is by itself considered as a missing
element in our state description [10], and, on the
other hand, it has been shown in ref. [5] that the
considered gaussians, though not experimentally
indistinguishable, cannot be distinguished with the
help of the commonly used observables. Thus it
seems worth searching for such new observables
which would distinguish between the states.

What we are left with is to answer the question “‘are
all real states Pauli unique?” [8].

For the reader’s convenience we shall briefly re-
state the problem, and give the relevant definitions.

A state is considered to be real if at least one of its
representative functions w(g) (and/or one of its
Fourier transforms) is real. (The afore-defined y,
with Im(a) =0 is an example of the real state.) In
the following we assume, without a loss in generality,
w(q) be real. We also assume y(g) be square inte-
grable, i.e. belong to L,(—o0, +o0).

A function (y(q)) is considered a proper Pauli
non-unique “partner” of (real) w(q) if w(g)=
w(g)exp[ —i9(q)], where ¥(q) # const. (For in this
case ¥ and y are linearly independent [5].) The
Pauli non-unique partners have the same position
and momentum distribution [5], but not necessarily
the same energy. As an example of such Pauli non-
unique bound states can serve the ones of the har-
monic oscillator {4]. The Pauli non-unique partners
with the same energy are, however, much more
interesting and we shall concentrate on them.

Let us consider a general real state where y and
w are from the domain of the same self-adjoint ham-
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iltonian H, whose domain is D(H)cD(H)<
L.(~o0, +0), and let it be

CHy;=<(H>, . (4)

It is proved in ref. [8] that such a real state can be
nothing but Pauli unique, however, subjected to the
additional condition that the mean values from (4)
are bounded. Briefly, it boils down to the consider-
ation of eq. (4) which reads

BV 2m—iR2 (D" +28'p)12m+H >,

Since | (H), | <oo and since (&" +20’p>, must be
zero for ( H),, to be real, it follows that (§'?) »=0,
which is equivalent to 8'2=0. Hence &=const.
Obviously, the obtained result must hold whenever
w is an eigenfunction of H belonging to a finite
eigenvalue, since then Hy is from L,( —oco, +a0),
and the boundness of (4) follows from the Schwarz
inequality.

Let us now lift the assumption that the mean val-
ues from (4) are bounded and choose
w=1|q| ~¥*sin%q, and ¥ =cos ¢. There exists the fol-
lowing improper absolutely convergent Riemann
integral:

—€

w? dg= lim (J w? dg+ J w? dq)=1n4
€n—0 i
AV —co n

— A

and since > =y*y itself is (Lebesgue) measurable,
the Riemann integral coincides with the Lebesgue
one. Hence w belongs to L,(—o0, +o0), as well as
w. All the other integrals we are going to consider
will too be either absolutely covergent or not (and
therefore intinite in the sense of Lebesgue).

In order for v and w to give the same momentum
distribution the following equation has to be satisfied,

—i J w?9' dg+ f yy' dg= f wy' dg

— o
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and this is, given our functions, accomplished since
both integrals are absolutely convergent and equal to
zero. The equality of the position distributions fol-
lows directly from: y*w=y*y=y?2

The middle term from (5) boils down to (the inte-
gral on the left side exists, i.e. converges absolutely):

f (W?9" +2pp'9') dg= f (¥*9') dg

=l//219" =0

and the desired reality of (5) is achieved. Since, as
can be easily checked, [*, wy"dg=coc (hence,
according to the Schwarz inequality, v” ¢L,(—oo,
+00)} in the sense of Lebesgue, as well as of Rie-
mann, we need not have (for a suitable choice of
V(q)) (9'?),=0 in order to satisfy eq. (5). (In fact,
we can show that (8'?),=3(81n2-31n 3)/8.)

Thus we have answered the considered question in
the negative, contrary to the conjecture expressed in
ref. [8].
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