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The condition under which a measured quan tum mechanical system is determined by distributions of observables are 
considered. Two given inequivalent states of the hamihonian H =  p2/2m + V(q), which have the same position and 
momen tum distribution, serve as a basis for the argumentation. 

Recently it was recognized that the standard, 
Copenhagen interpretation of quantum mechanics 
contains some unprovable and unnecessary "ad- 
ditions" to the formal apparatus of the theory 
which itself has turned out to be just a statistical 
elaboration of any yes-no  measurement [1]. Such 
criticism accentuates some old questions: How 
does one determine the state of a system that has 
been prepared in some specified manner? How 
many physical observables completely determine 
the state of a system [2]? And what in this case 
does the state of a system mean [3]? As early as 
1933 Pauli wrote: "The  mathematical problem, as 
to whether for given probability densities, the 
wave function, if such function exists, is always 
uniquely determined, has still not been investi- 
gated in all its generality." [4]. Recently, the prob- 
lem was reconsidered [3], and the result was ob- 
tained that in general such a function, called the 
"Pauli unique state", does not exist for given 
probability densities, i.e. observable distributions. 
It was proved that scattering states are not 
uniquely determined by their position and 
momentum distribution (the "Pauli non-unique 
states") while bound states of the hamiltonian 
H = p 2 / 2 m  + V(q) are [3]. 

On the other hand, it can easily be checked that 
the two functions 

~b 1 = C e x p [ - a ( q -  qo) z + ipo ( q -  qo) /h] ,  

and 

~2 = C e x p [ - a * ( q -  qo) z + ip0 ( q -  qo) /h] ,  

where R e ( a ) >  0, and C =  [2 Re(a) /~]  t/4, have 
the same position and momentum distributions, 
simply by comparison of their real parts (which 
determine the value of the densities ~b*)  and the 
real parts of the correspondent Fourier-trans- 
formed wave functions which, after elementary 
calculations, show up to be proportional to 

e x p [ -  Re (a ) (  p - po)2/4h [ a 12]. 

(Obviously, we obtain the same result using ex- 
pressions for mean values: (p )¢  = (~k I ~b} ~ )  = 
- ih (~Plb /~q l~b) ,  and the analogous one for the 
position operator with the Fourier-transformed 
functions.) 

We shall prove that the functions ~kl and q~2 
are linearly independent (i.e. inequivalent) by sup- 
posing the opposite. In this case they should be 
multiples of each other: 

~b 1 =c4,2=c'4,t exp[2i I m ( a ) ( q  2 -  2q0q) ], 

whence we get q = const., which is in contradic- 
tion with q being a variable. So we conclude that 
~Pl and ~P2 are mutually inequivalent. An analo- 
gous proof is valid for the Fourier-transformed 
functions. 

Next, we are going to show that under very 
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general physical assumpt ions  our functions have 
the same distr ibutions of the total energy opera tor  
H =p2/2m + V(q). 

Let us first consider its kinetic part ,  whose 
mean  values for ~ and q'2 are the same: 

(p2)¢ ,  = _h2(~b, ]32/3q2 i ~b, ) 

=h21alZ/Re(a) +p2 

= -h2(~b21O2/Oq2[~2)  = (p2 )+  2. 

Not ice  the enlargement  of the kinetic par t  of the 
energy which does not occur in the case of the real 
gaussian and which stems f rom the correlat ion 
between posit ion and m o m e n t u m  established by 
the imaginary  square terms within qq and q'2- In 
the corresponding Wigner  phase space representa-  
t ion [5] densities are no longer circular but  elliptic. 

The  potent ia l  pa r t  of the hamil tonian  is a mul- 
t iplication opera tor  V~b = V(q)q,. We suppose that  
V(q) is a real, non-negat ive square integrable 
function. Its mean  values are also the same: 

(I3")~ = £ L ~ b ] '  V ( q )  q, , dq 

= f Texp[-Re(a)(q-qo)2]V(q) dq 

We could easily generalize the obta ined results for 
R n as well as for any Borel subset of R" but  it 
would be of no use with the present  reasoning. 

Lastly, we stress that, given the above-proved 
inequivalence of ~b I and +2, they cannot  be ob- 
servationally equivalent in general. In order  to 
prove  this claim one can be tempted  to use a 
pro jec tor /~  on ~b~ and ~b2, defined so as to satisfy: 
( ~ 2 [ ~ 1 ) ~ ( ~ 2 [ * b } ~ 2 ) ,  and try to show that: 
( p ) ¢ ,  ~ ( p ) ¢  #l. However,  we cannot  do this 
because,  though inequivalent,  ~b~ and ~2 are not 
or thogonal  to each other, 

#1 I gratefully acknowledge that the use of the projector P for 
the clarification on this point has been suggested by a 
referee of this journal. 

(¢2 
- ~ J o  

( t , I  +Re(, ,)  + iv'i" I -Re(a )  

f i l a l  
= (¢,  1¢2)*. 

The proof  can receive the following elabora- 
tion. 

Since ~1 and ~2 are linearly independent  there 
exist ~b 1 and ~z which are bior thogonal  to ~ and 
~P2, i.e. which satisfy: (~b'l~pj) = {~p, I~p') = 8,!, 
i, j = 1, 2 [6], and we can define projectors on +r 
and +2 as /3 = I + I ) ( + ~  L, P2 = 1+2)(+2 I- Thus,  
on the one hand we get 

= I& I¢,)  = 0, 

on the other hand it is 

(,b,)¢, = (~b, I ~P')(~,  [~b,) = (,b2)¢~ = 1, 

Therefore:  

(/',)+2 * (/'1)<, (/'2)< * ( & ) < ,  

i.e. the projectors /3 and Jb 2 do not give the same 
distr ibution for ~1 and ~b 2. The  question of actual 
feasibility of the corresponding exper iments  is, 
however,  beyond the scope of this paper.  

Let us now remind ourselves of the afore-men-  
tioned discrepancy between our  result and those 
of others [3] according to which no bounded  state 
of our hamil tonian could be represented by a 
complex  gaussian. The  l imitat ion follows f rom the 
fact that the proof  given in ref. [3] tacitly assumes 
that  the uncertainty relation reaches its lower limit. 
This is the well-known " t e x t b o o k  requi rement"  
that  the gaussian be minimal,  i.e. that  it admits  the 
minimal  possible value of the uncer ta inty relation, 
Namely ,  if we require that  the equali ty sign in the 
uncer ta inty relation is obta inable  for a chosen 
state, then the coefficient a in our gaussian cannot  
be but  real. Recalling, however, that  there is only 
one idealized case, i,e. the harmonic  oscillator, in 
which the uncer ta inty relation can gain its minimal  
value, we feel free to conclude that  there is no 
proper  physical  reason which would force us to 
stick to the real gaussian, i.e. to the minimal i ty  
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requi rement  imposed on the uncer ta in ty  relation. 
Thus  it seems that funct ions  which do not  satisfy 
the requirement,  among  them the complex gaus- 
sian, are worth investigating. 

There is still one side which prompts  such 
investigation. If we consider a quan tum object 
restricted to a bounded  region, a sharp clash be- 

tween the individual  and  statistical uncer ta inty  
relations emerges (the former being infinite),  no 

mat ter  which suitable funct ion we use to describe 
the object [7]. Therefore, what we need is a func- 
t ion which is properly defined in an u n b o u n d e d  
region as well, i.e. which belongs to .L,°2(-oo, 

+ or). And  it is well known  that the commonly  

used funct ion ~0 - - - exp ( ipoq /h )  does not  belong 
to £P2(-  ~ ,  + ~ )  (because f_+ ~ * ~bo~b o dq  ,t oo). 
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