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MLADEN PAvrC:Ic* 

A THEORY OF DEDUCTION FOR QUANTUM MECHANICS 

Abstract. Unified quantum logic which merges all five possible oper­
ations of implication in quantum logic is proposed as a theory of deduc­
tion for quantum mechanics. This is supported by showing that quan­
tum logic cannot be based on YES-NO experiments carried out on in­
dividual quantum systems unless so postulated. As an indication of al­
ternative Kripkean semantics, Dishkant's embedding is carried out with 
a modal system which is neither reflexive nor symmetric. 

1. Introduction 

The theory to be considered as a candidate for a theory of deduc­
tion underlying quantum mechanics in this paper is a particular formu­
lation of quantum logic. 

By quantum logic we mean [following Mittelstaedt (1978, 1986), 
Kalmbach (1974, 1983), Goldblatt (1974), Nishimura (1980), and Dish­
kant (1974)] an axiomatic calculus for the orthomodular-valid formulas 
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whose syntax is determined by a particular set of axioms and rules of 
inference, and whose semantics are determined by the equational class 
of orthomodular lattices on the one hand1

, and by particular modal 
frames on the other. It should be stressed here that in the literature 
quantum logic is given many other different meanings as well . For ex­
ample, it is considered to be an orthomodular partially ordered set with 
the set of states defined on it2

, simply an orthomodular lattice\ a row 
of algebraico-logical structures named quantum propositional logics\ 
and finally so-called manuals and semi-Boolean algebras named quan­
tum events logics5 • None of these structures is, however, in accordance 
with the usage of "logic" as a deductive theory of valid inferences and 
consequently, since they cannot serve our purpose, they will no longer 
concern us. 

By a "particular formulation" of quantum logic we mean unified 
quantum logic (UQL), formulated in Pavicic (1989), which merges all 
possible operations of implication in quantum logic (definable by other 
operations) and dispenses with the relation of implication altogether. 
Unified quantum logic becomes classical logic when the classical impli­
cation is used instead of the quantum implications. The axioms and the 
rules of inference of UQL remain the same in both cases. 

The question as to whether quantum logic can be considered a the­
ory of deduction underlying quantum mechanics has been given many 
contradictory answers to date. It has been argued that quantum logic 
is necessarily an empirical logic, and that, therefore, it cannot be a the­
ory of a priori valid inferences6 . At the same time, many axiomatic 
deductive calculuses, all of which have the equational class of orthomodu­
lar lattices as their model, have actually been formulated7• 

We consider it necessary to resolve this controversy before dwell­
ing on deductive quantum logic itself. To this end in Sec. 2 we inves­
tigate quantum probability equal to unity which characterizes "predic­
table" and "repeatable" measurements of the first kind. In this case 
probability equal to unity ascribes a unique meaning to the ensemble 
of individual systems measured. It is of course possible to claim, without 

1 Cf. Kalmbach (1983), p. 233. 
2 Gudder (1970) . 
3 Nanasiova (1986). 
4 Lock & Hardegree (1 985). 
5 Lock & Hardegree (1985a). 
6 For a historical review see Jammer (1974), Ch. 8.6; For an analysis see Mittelstaedt (1986). 
7 For a review see Pavicic (1989). 
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a contradiction, that probability equal to unity does not ascribe a unique 
experimental meaning to all individual systems as it does to an ensemble 
of them. Such a claim can, however, be considered as a mathematical 
peculiarity without a physical meaning. We have, therefore, provided a 
physically meaningful function which physically differentiates between 
the two ascriptions although it does not enables an experimental deci­
sion between them. Hence, the only way to ascribe an individual system 
a proper value measured by a repeatable measurement is to postulate this. 

Thus we come to the conclusion that quantum logic is first of all 
an "a priori" calculus which is surely weakly confirmable by quantum 
mechanics in the same way in which classical logic is confirmable by clas­
sical mechanics8 . It may be that quantum logic is strongly empirically 
confirmable (deducibile) as well, since quantum formalism is in agree­
ment with the both possibilities . However, such an additional feature 
of individual quantum measurements can hardly be proved by experi­
ments conceivable today. 

Whether or not the afore-mentioned a priori axiomatic calculus can 
be considered a theory of deduction underlying quantum mechanics has 
encountered scepticism for yet other reasons . First, the objection has 
been raised that such a calculus does not satisfy many axioms and rules 
valid in classical logic some of which have traditionally been taken to 
be indispensable for a "proper" logic9 • Such an objection has gradual­
ly been dropped since many quantum logical deductive systems were 
actually axiomatized "in a manner completely analogous to classical 
propositionallogic." 10 Secondly, a problem has been raised about the 
fact that all these deductive systems using different operations of im­
plication could apparently not satisfy a unique axiomatic system11 • 

However, we recently provided a unique axiomatization for all five 
equivalence classes of implications definable in quantum logic by me­
ans of other operations (e.g. negation and conjunction) 12 • The system 
is presented in Sec. 3. And finally, quantum logic is considered to be 
"intractable"13 for the lack of simple non-algebraic semantics which are 
apparently needed to solve certain problems so far unresolved, e.g . as 
to whether quantum logic has a finite model property or whether it is 

8 See Mittelstaedt (1986) . 
9 Jammer (1 974); Brody (1984). 
10 H ardegree (1979); For a review see PaviCic (1989). 
11 Zeman (1978), H ardegree (1975, 1981), Georgacarakos (1 980). 
12 Pavicic (1987, 1989). 
13 As worded by Goldblatt (1 984). 
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decidable. Although several such semantics have been formulated [Krip­
kean by Goldblatt (1974) and Dalla Chiara (1986) and probabilistic by 
PaviCic (1987a)] none of them has proved to be successful in solving 
these problems. Probabilistic semantics shows that a probability func­
tion needed to prove the completeness theorem for the semantics is not 
guaranteed existence as far as quantum logic proper is concerned. It seems 
that only by adding particular new axioms, thus obtaining a logic be­
tween orthomodular and modular, can we assure the existence of such 
a function14 • An analogous conclusion can be conjectured for the Krip­
kean accessibility relation on the basis of a result obtained by 
Goldblatt15 which is based on a reflexive and symmetric relation of ac­
cessibility. To this end in Sec. 4 we indicate a possibility of using another 
relation of accessibility by embedding quantum logic into a modal sys­
tem which is much weaker than those employed by Dishkant (1977) and 
Dalla Chiara (1986) although the same translations have been used. 

2. Statistical vs. empirical basis for quantum logic 

In this section we are going to show that quantum logic cannot be 
based on YES-NO experiments carried out on individual quantum sys­
tems unless so postulated. 

It has recently been shown that non-discrete observables do not 
satisfy the repeatability hypothesis16 . It has also been shown that in the 
presence of a conservation law even discrete observables are only ap­
proximately measurable17 • Thus we arrive at unsharp reality or gener­
alized quantum mechanics, which boils down to substituting projectors 
having spectra in {0 ,1} by effects (unsharp operators/observables) hav­
ing spectra within [0,1] 18 • Analysis of quantum measurements of con­
tinous as well as discrete observables along these lines " suggests that 
we should investigate the approximately repeatable measuring process­
es as models of measurements in quantum mechanics ... not only for con­
tinuous observables [but also for] discrete observables [e.g. in the presence 
of] some conservation law'' 19 • This suggestion can also be viewed in the 

14 Mayet (1984). 
15 Goldblatt (1984). 
16 Ozawa (1984). 
17 Wigner (1952); Araki & Yanase (1960). 
18 For a review see Busch, Grabowski, & Lahti (1 989). 
19 Ozawa (1984). 
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light of the fact that both kinds of observables allow a value from 
their spectra to be a result of a measurement which, however, can­
not in general be attributed to a particular property of a measured 
individual system in a particular state. It is undoubtedly true that 
eingevalues of a projector can be taken to correspond to a particular 
property of an individual system on which a repeatable YES-NO ex­
periment of the first kind is carried out by simply disregarding the 
fact that this repeatability is actually a statistical concept20 However, 
in the light of the afore-mentioned results it would be interesting to 
see under which conditions we can drop the assumption that an eigen­
value of discrete observables determines a particular property of an 
individual system, on which a repeatable measurement of the first kind 
is carried out, without causing any change in the standard Hilbert 
space description of the measurement. It is well-known that we can 
do so provided we retain the correspondence between an eigenvalue 
and a mesured property for an ensemble of individual systems. In 
other words, for repeatable measurement, i.e. in case when a YES­
event is expected to occur with certainty (with probability equal to 
unity), a NO-event is nevertheless permitted to occur, although with 
probability zero. This interpretation (often called the statistical in­
terpretation of quantum mechanics) sounds rather artificial and there­
fore we have recently provided a result [Pavicic (1989a)] according 
to which the assumption of the repeatability of a measurement car­
ried out on individual quantum systems boils down to an actual jump­
discontinuity of a well-defined and experimentally meaningful func­
tion for just two end points of a closed interval. Thus, if we want 
to retain the repeatability assumption for individual systems subject­
ed to measurements of the first order we have to postulate so. A con­
sequence of such a postulate is the above stated discontinuity of a 
function defined below. While referring the reader to Pavicic (1989a) 
for details, we shall briefly present but the core of the result. 

Let us consider individual quantum systems of spins prepared, one 
by one, in a particular spin projection by a preparation (Stern-Gerlach) 
device along the vertical. Let them be detected by a detection device 
(another Stern-Gerlach device) deflected at an angle a with respect to 
the preparation direction. Then quantum mechanics predicts that the 
probability p = p(a) of confirming the prepared "property" (spin projec­
tion) in the long run is given as the square of an appropriate element 

20 von Neumann (1955) , pp. 214 & 335 . 
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from the diagonal of the rotation matrix. To simplifiy the argumenta­
tion let us take e.g. projection + 1 of spin 1. In this case the probability 
is given as 

a p = cos 4 

2 

If we now want to treat individual YES-NO measurements, we have 
to introduce frequenci~s and if we are to stay within quantum formal­
ism the frequencies have to be introduced on an infinite number of tri­
als, i.e . the frequencies have to be ideal. Let N + = N Jp,N) be the 
number of successes in the first N trials. Then the frequency with which 
the measured property is confirmed is N )N. 

The first basic feature of any YES-NO measurement is that par­
ticular individual events are completely independent, and its second basic 
feature is that trials form an exchangeable sequence. This means that 
quantum trials are Bernoulli trials and we can obtain, for any probabili­
ty p defined as p: = < N + /N > , from open interval 0 < p < 1, the fol­
lowing two results: 

N + (p,N) 
P[lim = p] = 1 

N- oo 
N 

(1) 

and 

N + (p,N) 
limP[ = p] = 0 
N- oo 

N 
(2) 

Eq. (1) means that N /N converges to p almost certainly and we 
abreviate it as N )Ng:/·p. Eq. (2) means that N )N acquires a value 
which is strictly equal to p by probability zero which is an interesting 
characterization of the stochasticity of frequencies of Bernoulli trials . 

If we were able to extend Eq. (2) to the closed interval 0:::;: p:::;: 1 
we would immediately obtain the result that the correspondence between 
eigenvalues and individual properties does not hold since in this case 
Eq. (2) for p = 1 states that N + (1,N) = N only by probability zero. Of 
course, that would not contradict Eq. (1) which in this case reads P[ lim 

N-oo 
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N + (1,N)/N = 1] = 1. Unfortunately, the theory of probability cannot 
say anything about end points of the closed interval. We therefore con­
struct a particular expression which turns out to be a "measure" of the 
validity of Eq. (2) for p = 1 and p = 0. The main point leading to the 
expresion is that angle ex is not considered only as a macro-observable 
measured directly by classical means but also, on the one hand, as a func­
tion of frequency ex= cx(N jN) and, on the other hand, as a function 
of probability ex= cx(p). The expression is 

G(p): = L lim Elcx(N jN)- cx(p) l N 112] = [p(1 - p)] 112 1 dp ~ - ~, O<p< 1, 
N~oo dcx 

where Lis an undefined but bounded and non-zero random variable. 
Since for our probability p = cos4(cx/2) we obtain 

G(p) = sin(cx/2)[1 + cos2(cx/2)] 112 

2sin(cx/2) lcos(cx/2)1 

we see that lim G(p) = 2- 112 and lim G(p) = oo. 
p~l p~o 

If we want to haveN (1,N) = N and N (O,N) = 0 we have to assu­
me that G(p) is not continuo~s at 1 and 0. The ~onsequence is the following. 

We can " calculate" angle cx(N jN) as 2 cos- 1(N jN) 114 as N ap­
proaches infinity since then N jN~-'Fp. We can also "read off" angle 
cx(p) by a macro-instrument since cx(p) is the "real" angle correspond­
ing to "objective" probability p. Now, our result simply means that the 
difference icx(N jN) - cx(p) l between "microscopically" measured an­
gle cx(N jN) and "macroscopically" measured angle cx(p) = ex multipled 
by N112

, i.e. the expression icx(N jN) - cx(p)IN1
/
2 never vanishes as N 

approaches infinity on open interval 0 < p < 1. By adopting 
N (1,N) = N and N (O,N) = 0 we, therefore, cannot but assume that 
na~ure differentiates +open intervals from closed ones, i .e. distinguishes 
between two infinitely close points. However, we must admit that no 
formal reason speaks against such an assumption. 

3. Unified quantum logic 

Both classical and quantum logic can be considered as logics un­
derlying classical and quantum mechanics in the sense of having the 
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Boolean and the orthomodular lattice, respectively as their models. This 
statement can be given the following elaboration. 

Classical logic has the set of all subspaces of the phase space of clas­
sical particle mechanics which form a Boolean (distributive) lattice as 
its model, i.e. its Lindenbaum-Tarski algebra. Thus, the operations of 
the object language of the logic can be interpreted as the set operations 
and the set relation. Notably, conjunction can be interpreted as set­
intersection, disjunction as set-union, negation as set complementation, 
and finally operation of implication as set-inclusion (the set relation). 
In other words, the operations from the object language of classical logic 
find their unique counterparts in the semantic structure of the logic and 
vice versa, the semantical operations and relation are unique equivalence 
classes of the operation from the object language of the logic. For, ex­
ample, the semantical entailment (set inclusion, set relation) boils down 
to a unique equivalence class of the operation of implication. 

Subspaces of the Hilbert space form an orthomodular lattice and 
an orthomodular lattice is a model for quantum logic, i.e. its Lindenbaum­
T arski algebra. Again, conjunction can be represented as set intersec­
tion. Negation is represented as orthocomplement and disjunction as 
join operation on the lattice. Although semantically nonunique, the lat­
ter operations can be considered as syntactically unique. However, in 
this case there are five different equivalence classes of operations of im­
plication which can all be represented as set-inclusion (set ordering re­
lation)21. In the literature such different operations of implication 
served for formulations of apparently structurally different quantum 
logics22 . 

The purpose of this section is to show that formulations of quan­
tum as well as classical logic that employ different operations of impli­
cation are actually not structurally different. Notably, we give a unified 
axiomatic sustem of both classical and quantum logic employing disjunc­
tion, negation, and implication. We named the system unified quan­
tum logic (UQL). If we choose the operation of implication to be any 
of the five quantum implications defined below we shall have quantum 
logic. If we choose it to be the classical implication we shall have 
classical logic. 

The system itself is formulated as follows. 

21 Equivalently, we can take negation and implication as syntactically unique in which case 
there are four (not five; see note 23) different equivalence classes of operations of disjunction. 

22 For a review see Paviic (1989); See also Georgacarakos (1980). 
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The propositions are based on elementary propositions p0, pl' 
p

2
, •• • and the following connectives: l (negation), V (disjunction), and 

--t (implication). 
The set of propositions Q0 is defined formally as follows: 
pi is a proposition for j = 0, 1, 2, ... 
l A is a proposition iff A is a proposition. 

A VB is a proposition iff A and B are propositions. 
A--t B is a proposition iff A and B are propositions. 

The conjunction connective is introduced by the following defi­
nition: 
A/\B : = 1 ( 1 A v 1 B) 

Our metalanguage consists (apart from the common parlance) of 
axiom schemata from the object language as elementary propositions and 
of compound metapropositions built up by means of the following 
metaconnectives: & ("and"), :'.L.("or"), -("not"), ~ ("if, .. . then") , 
{o} ("iff"), with the usual "classical" meaning. 

We define unified quantum logic (UQL) as the axiom system given 
below. The sign 1- may be interpreted as "it is asserted in UQL" . Connec­
tive l binds stronger and --t binds weaker than V an/\, and we shall oc­
casionally omit brackets under the usual convention. To avoid a clumsy state­
ment of the rule of substitution, we use axiom schemata instead of axioms. 

Axiom Schemata 

Al. 1- A-t A 
A2 . 1- A- l l A 
A3. 1- A --t AvB 
A4 . 1- B --t AvB 
A5 . 1- B--tAVlA 

Rules of Inference 

Rl. 1- A--t B & 1- B--tC ~ 1- A --tC 
R2 . 1- A--tB ~ 1- 1 B--t lA 
R3. 1- A --tC & 1- B--tC ~ 1- A VB--tC 
R4. 1- A-B ~ 1- (C --t A) - (C --t B) 
R5. 1- A- B ~ 1- (A --tC) - (B--tC) 
R6. 1- (A v 1 A) - B {o} 1- B 

where 1- A- B means 1- A--t B & 1- B--t A. 
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The operation of implication A~ B can be any one belonging to 
the six classes of equivalence defined by the following six operations 
of implication:23 

A~ B· = 0 • 

A~ 1B : = 

A~ 2B: = 

A~ 3B: = 

A~ 4B: = 

A~ B·= 5 . 

lAVB 
l Av(AAB) 
lB ~ 1 lA 

( l A/\ l B) v ( l AAB) V(( l A VB)/\A) 
l B~ 3 l A 

(AAB) v ( l AAB) v ( l A/\ l B) 

(classical) 
(Mittelstaedt) 

(Dishkant) 
(Kalmbach) 

(non- toll ens) 
(relevance) 

By UQL(i), i = 0,1, ... ,5, we denote UQL in which implication ~ 
is defined as ~ ;, i = 0,1 , ... ,5. 

We shall prove that UQL(O) is classical logic and that UQL(i), 
i = 1, ... ,5 are quantum logics by constructing the Lindenbaum-Tarski al­
gebra for each of them and showing that it is a Boolean (i.e. distribu­
tive) lattice for classical logic and an orthomodular lattice for quantum 
logics. 

By an orthomodular lattice we mean an algebra L = < L 0 , l. , n , 
U > such that the following conditions are fulfilled for any a, b, c 
EL o:24 

Ll. 
L2 . 

anb = bna 
(anb)nc = an(bnc) 

L3. au = a 
L4. 
L5 . 
L6. 
L7. 

an a _l = 0 (aU a _l = 1) 
an (aU b) = a 
anb = (a .L Ub .L ).L 
a:Sb & aUb_l = 1 => b::sa 

where the relation of implication is defined as a :S b : = an b = a. 
By a Boolean lattice (algebra) we mean an orthomodular lattice which 

satisfies the following condition25 : 

L8 . aU b _l = 1 => b :S a 

23 For details and further references see Pavicic (1987, 1989); Intead of expressing opera­
tions of implication by means of negation and disjunction (conjunction is defined by disjunction 
and negation) we can correspondingly express disjunction by means of negation and implication 
inthefollowing/ourways:(l A---> lB)--->A,(A --->B)---> B, lA --->( lA---> B),and l(A---> lB) ---> B. 

24 For connections with other defintions which appear in the literature see Zierler (1961), 
Finch (1969), and Pavicic (1987). 

25 Cf. Finch (1970); In a Boolean lattice (algebra) L7 is redunadant and can be dropped. 
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In order to stress an equal footing of classical and quantum logic 
regarding their algebraic semantics and at the same time to avoid clum­
sy distinction between UQL(O) and UQL(i), i = 1, .. . ,5, as well as be­
tween Boolean and orthomodular lattices, we shall write UQL in the 
sequel whenever a particular statement applies to both classical and quan­
tum logics. Furthermore we shall write simply "lattice" meaning a 
Boolean lattice whenever referring to UQL(O) and an orthomodular one 
whenever referring to UQL(i), i = 1, ... ,5. 

Let us introduce two definitions using this convention. 
Definition 1. We call Y= < L,h > a model of the set of for­

mulas Q 0 (a model of UQL for short) if L is a lattice and if 
h: UQL ...... L is a morphism in L preserving operations l , V, and 

Definition 2. We call a proposition AEQ 0 true in the model Yif 
for any morphism h: UQL ...... L, h(A) = 1 holds. 

We can now prove the consistency of UQL for valid formulas from 
L. 

Theorem 1. If f-A, then A is true in any model of UQL. 
Proof The proof for UQL(O), when the model is a Boolean lattice, 

is well-known. The proof for UQL(i) , i = 1, ... ,5, when the model is an 
orthomodular lattice, is given in PaviCic (1989). Q.E.D. 

To prove the opposite, i.e. the completeness of UQL for the class 
of valid formulas of L, we first define relation = and give some related 
lemmas whose proofs are provided in Pavicic (1989). 

Definition 3. A=B: = f-A-B 
Lemma 1. Relation = is a congruence relation on the algebra of 

propositions ..sJt' = < Q 0
, l , V, --+ >. 

Lemma 2. The Lindenbaum-Tarski algebra ..J:Jt'l = is an orthorn.odu­
lar (a Boolean) lattice, i.e. L1-L 7 (L1-L8) are true for l I=, VI=, and 
--+I= turning into the corresponding lattice operations by means of natur­
al morphism k: ..J:Jt' --+ ..J:Jt'l =. 

Corollary. < ..sdt'l=,k> is a model of UQL. 
Lemma 3. k(A) = 1 => f-A . 
Thus we have proved the completeness of UQL for valid formulas 

of L, i.e. the following theorem. 
Theorem 2. If A is true in any model of UQL, then f-A. 
Taken together, UQL is shown to be a proper quantum-logical 

deductive system as far as its algebraic semantics is concerned. (Perspec­
tives for a modal, i.e. Kripkean semantics for UQL we shall consider 
in the next section). This also shows that most likely none of the five 
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implications defined above is to be preferred, in contradistinction to 
conjectures in the literature. 

While referring the reader to Pavicic (1989) for details, we shall 
close this section by just stating that the system possesses a number of 
desirable properties including the (weak) law of modus ponens, the (weak) 
law of transitivity, the property of orthomodularity derivable from the 
axioms of the system, a possibility of the implication to be nested, and 
a clear formal correspondence with an orthomodular lattice and the oper­
ations of implication definable in it. 

4. Modal semantics for quantum logic 

In the previous section we showed that as far as an algebraic seman­
tics is concerned, quantum logic can be considered a proper logic in quite 
the same sense as classical logic. 

Another sense in which an axiomatic system can be considered 
a proper logic is given by the possibility of finding a particular rela­
tion of accessibility which characterizes quantum logic, thus equip­
ping the logic with a modal, i.e. Kripkean semantics. Once found, 
the relation of accessibility may offer a canonical model would falsi­
fy all-theorems, i.e. establish decidability and possibly even the finite 
model property. For quantum logic such a relation of accessiblity has 
not been found. What has been achieved is a way of imposing par­
ticular restriction on a frame characterizing a weaker, so called ortho­
logic or minimal quantum logic thus obtaining a Kripkean "quasi­
semantics" for quantum logic26

. The relation of accessibility used for 
this purpose is a reflexive and symmetric one. It determines the or­
thoframe which characterizes minimal quantum logic. Whether a class 
of orthoframes characterizes quantum logic proper is not known. What 
is known is that even if it does, the frames cannot be defined by 
first-order conditions on such a reflexive and symmetric relation of 
accessibility. This result prompted its author Goldblatt ( 1984) to con­
clude on "intractability" of quantum logic. 

However, if it were possible to find a relation of accessibility 
for quantum logic which is not reflexive and symmetric, then the 
possibility to impose first order conditions on such a relation in order 
to characterize the logic would still be open, provided we do not 

26 Goldblatt (1974). 



A theory of deduction for quantum mechanics 121 

keep too heavily to the (usual) correspondence with the Hilbert space27 • 

How to find a relation of accessibility characterizing a logic at all? 
Obviously, first of all so as to define the relation directly on the logic28

• 

But can we find it so as to embed quantum logic into a modal system 
characterized by the relation? For example, Goldblatt (1974) and Dalla 
Chiara (1977) embedded minimal quantum logic into the Brouwerian 
KTB system29 and Dishkant (1977) embedded quantum logic into an 
extension of KTB which he designated Br+. These results were taken 
as an indication that we can infer metalogical properties of quantum 
logic from · the metalogical properties of a modal logic in which quan­
tum logic can be embedded30 • On the other hand, it has been shown 
in Pavicic (1989) that the (extended) KTB, which is characterized by 
a symmetric and reflexive relation of accessibility is not the only modal 
system in which (minimal) quantum logic can be embedded. This seems 
to indicate that we cannot infer the properties of quantum logic direct­
ly from the properties of a modal logic in which quantum logic can be 
embedded. We can only use such modal systems as indicators for possi­
ble relations of accessibility which could eventually characterize quan­
tum logic, and for which we have to find out how to define them on 
quantum logic. However, the translation used in Pavicic (1989) differs 
from the ones used by Dishkant (1977), Goldblatt (1974), and Dalla 
Chiara (1977) and we know that by means of different translations we 
can embed the same logic into different modal systems. For example, 
by using translation A+ : = o A+ classical logic can be embedded into 
S5 while by using A+:= o o A + it can be embedded into S431

• Be-

27 The irreflexive and symmetric orthogonality relation obviously plays a crucial role in an 
algebraico-logical representation of the Hilbert space quantum formalism. Both Goldblatt's (1974) 
and Goldblatt's (1984) results were achieved by using this fact; In particular, Goldblatt's (1984) 
result was achieved by using a direct correspondence with the Hilbert space. 

28 As Goldblatt (1974) and Dishkant (1972) did it for minimal quantum logic. Dishkant 
(1972) used the condition corresponding to our MA3 which we presented at the end of Sec. 4, 
together with reflexivity, thus apparently obtaining a stronger result than Goldblatt (1974). However,. 
in proving the completeness Dishkant (1972) did not use the condition corresponding to MA3 
but the symmetry, which is a special case of the condition. Actually, according to Goldblatt's result, 
a relation of accessibility which would fully satisfy the condition, i.e. which would not collapse 
into a symmetric relation, cannot exist in minimal quantum logic. For quantum logic itself this 
still has to be proved or disproved. 

29 To call the system "Brouwerian KTB system" is somewhat redundant since the Brouwerian 
system [called so e.g. by Hughes & Cresswell (1968)] is the KTB system [called so e.g. by Chellas 
(1980)]. The KTB system is a K system to which T and B axioms are added. T and Bare defined 
at the end of Sec. 4. 

30 See e.g. Dalla Chiara (1986), Sec. 3. 
31 Fitting (1970). 
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sides, one can argue that the translations used by Dishkant (1977) and 
Goldblatt (1974) are to be preferred over the one from Pavicic (1989) 
since the former adopted the classical conjunction: (AAB) • : =A + AB + 
while the latter did not: (AAB) • : = o 0 (A • AB • )32 • Therefore, if we 
wanted to take the possibility of embedding quantum logic into differ­
ent modal systems as an indication of a new relation of accessibility, 
which might - if existent on the logic - supersede the old one, we 
should preferably do this by using the same translation. And this is what 
we are going to do in this section. 

In doing the embedding we shall adopt the translation used by Gold­
blatt and we shall closely follow the procedure and particular results from 
Dishkant (1977) and Pavicic (1989). Dishkant (1977) carried out an 
embedding into a KTB system to which a rule, whose special case is 
MR2, defined below, was added. He designated this system Br • . 

We are going to show that it is possible to embed quantum logic into 
the system M- , defined below, of which Br • is a proper extension. 

We define M - as classical logic, i.e. as UQL(O) (with 
A-+ B: = l A VB) to which the following axiom schemata and rules of 
inference are added. The sign f- M may be interpreted as "it is assert­
ed in M - ". The set of all propositions in M- is denoted as M 0 . In M-, 
r- M o A- l o l A holds. 

Axiom schemata. 

MAl. 
MA2. 
MA3. 
MA4. 

r-Mo(A-+B)-+(oA-+ oB) 
r-Mo oA-+oA 
r-MoA-+oooA 
r- MoooA-+oA 

Rules of inference. 

MRl. 
MR2. 

f-MA => f- MoA 
f-MO oA-+o oB&r-Mo oB-+oA=>f- MO oB-+o oA 

We define the embedding of quantum logic UQL (i), i = 1, ... ,5 into 
M - by means of the following translation taken over from Goldblatt 
(1974). 

32 See the introductory discussion of this section; Notice that the latter translation of the 
conjuction reduces to the former in both Dishkant's (1977) Br + and in our M- (defined below) . 
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Definition 4. 

Pic : = o o qk (k = 1,2, .. . ) 
( 1 A) • : = o 1 A • 
(A/\ B) • : = A • 1\B • , 

where pk and qk are elementary propositions from UQL(i), i = 1, ... ,5 
and M- , respectively; 1\ in (A/\B) • is the conjunction connective from 
UQL(i), i = 1, ... ,5 ; 1\ in A • 1\B • is the conjunction connective from 
M- , etc. 

In order to prove the soundness of the embedding we shall first 
prove two lemmas and define a relation of equivalence. 

Lemma 4. Any A • EM 0
, where AEQ 0

, is of the form o o A 0 , 

where A 0 EM 0
. 

Proof The proof is carried out by induction on the construction 
of A. For p •, pa = qk; for ( l A) • , from the induction hypothesis it fol­
lows that ( kl J\.) • = o l o o A 0 and therefore ( l A) 0 = l o A 0

; 

for (A 1\ B) • , A • 1\ B • = o o A o 1\ o o B o = o ( o A o 1\ o 
B 0 ) = o o o ( o A 0 1\ o B 0 ) by MA3, MA 4, and f-- M o (A/\B)- ( o 
A 1\ o B) (which is valid in any normal modal system) , and therefore 
(A 1\ B) o = o ( o A o 1\ o B o ). Q.E.D. 

We define the equivalence relation on Q 0 as follows . 

Definition 5. A -B: =A • - B• . 

It can be easily proven that it is really a relation of equivalence, 
i.e. that it is reflexive and transitive. Also, on account of easily prova­
ble theorems from M- , it follows that it is a relation of congruence. 
Thus we can consider a natural morphism e: -.S:>iZ' ,_. -.S:>it'/==, where -.S:>iZ' 

is the algebra of propositions (see Sec. 3). 

Lemma 5. The algebra -.S:>if'/= is an orthomodular lattice. 

Proof Let a= e(A), b = e(B) , and c = e(C) . We have to check Ll-L7 
from Sec. 3. 

Ad Ll & L2. Obvious . 
Ad L3. f-- M A • - A • can be written, according to Lemma 4, as 

f-- M o o A 0 -A • and on the account of MA3 and MA4 we obtain 
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f- M o -, o -,A + ++A + i.e. f- M (-, -,A) + ++ A +. Hence, a l..t = a. 
Ad L4. MA2 reads: f- M l o o A + V l o lA +. By Lemma 4, 

MA3, and MA4 we obtain f-M (•A +V l o lA +). From this, by us­
ing elementary theorems of classical logic we get f- M 

( lA +V l o lA+) ++ ( lB+V l o lB+). By applying RM: f-M A--+ 
B ~ f- M o A --+ o B, and RM o : f- M A --+ B ~ f- M o A --+ 0 B, 
which hold in any normal system, of modal logic we arrive at: 
f- M o 0 ( lA+V l o lA+) ++ o 0 ( lB + V l o lB+). From De£. 
4, DeMorgan's law gives (AVB) + = o o (A +VB +), since R: f-M 

( oAt\ o B) ++ o (At\ B) holds in any normal system33 • Hence, a U a j_ 
= bUb1.. Analogously, anal. = bnbj_. 

AD L5. f- M A + t\ o 0 (A + VB +) --+ A + is obvious. Lemma 4 and 
elementary theorems of classical logic give f- M A+ --+ 
o 0 A + V o o B +. Since f- M o A V o B --+ o (A VB) is valid in any nor­
mal system, this expression can, with the help of theorems from classi­
cal logic, be easily reduced to f- M A + ++ A + t\ o o (A + VB+). Hence, 
a n(aUb) = a. 

Ad L6. Let us start with f-M l o ( o l A +V o l B +) ++ 
o(oA +t\OB +). 

By Lemma 4, MA3, MA4, R (see «Ad L4»), and elementary trans­
formations from classical logic we obtain: f- M 

o l o o(o lA +vo lB +) ++ (A+f\B+). Hence, by De£. 4 and the 
expression for (A VB)+ (see «Ad L4») we get L6. 

Ad L7. In order to transform the premises of RM2 we shall use 
R 0 : f- 0 (A VB) ++ ( 0 A V 0 B) and a derivative of it R 0 ': f- M 0 (A 
--+ B) ++ ( o A --+ 0 B)34 • We shall also use MR3: f- M 0 A --+ 0 B <* 

f- M o o A --+ o o B, which is valid in M-, as can be easily proved by 
using RM (see «Ad L4») for the right to left direction of the' metaimpli­
cation and by RM 0 (see «Ad L4»), MA3, and MA4 for the other direc­
tion. Now, by using elementary trasformations of classical logic we can 
write MR2 as follows: 
MR2'. f- M D 0 B ++ ( D 0 A v D 0 B) & f- M ( D 0 B v l D 0 B) ++ 
( o Av l o o B) ~ f- M o o A ++ ( o o Avo o B). 

By using R o ' we can write MA2 as f- M o ( o B --+ B) and there­
fore, the second premise of MR2' can be written as f- M o ( o l BVB) 
++ 0 (AV l D 0 B). 

With the help of MR3, R o, MA3, MA4, Lemma 4, and the rules 

33The designations RM, RM <>, and R are taken over from Chellas (1980) , Ch. 4. 
34 See Chellas (1980) , pp. 114·123. 
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from classical logic, and by using MR2' we get: 
1-M B + - o o(A · vB +) & 1-- Mo o(( lB) +vB • ) -

o o(A•v( lB) •)::? 1- M A • - o o(A •vB •). 
Thus, aUb = b & aUb_j_ = 1 ::? aUb =a. Hence, L7 holds, since a 

:::;; b ¢> aU b = b is valid in any ortholattice35 • Q.E.D. 
Since the rest of the proof of the soundness remains the same 

as in Pavicic (1989), i.e. in Dishkant (1977), we have thereby 
proved: 

Theorem 3. I- A ::} I- M A +. 
To prove the completeness of the embedding we shall also refer 

to Pavicic (1989) and Dishkant (1977). 
Theorem 4. I- M A • ::? I- A 
Proof. The proof remains the same as in Pavicic (1989) except that 

we have to prove MA4 within Lemma 8 of Pavicic (1989). This means 
that we have to prove a If- o o o A ~ o A. By Lemma 7 of Pavicic we 
can use (v)-part of Lemma 6 of Dishkant (1977) by taking [ o A] instead 
of [ o q] used there36 • This proves the lemma and at the same time the 
theorem. Q .E.D. 

Thus we have proved that quantum logic can be embedded in a 
modal logic which is not characterized by either a reflexive or a sym­
metric relation of accessibility. Namely, MA2 corresponds to the fol­
lowing condition on the relation of accessibility R37 : 

Vw
1 

3w
2 

[w
1
Rw

2 
& Vw

3
(w

2
Rw

3 
::? w

1
Rw)] 

which is satisfied by any reflexive R, while MA3 corresponds to38 : 

Vw
1 

Vw
2
[w

1
Rw

2 
::? 3 w

3
(w

2
Rw

3 
& V w

4
(w

3
Rw

4 
::? w

1
Rw

4
))] 

which is satisfied by any symmetric R. On the other hand, T: I- M o A 
~ A and B: I- M A ~ o o A correspond to reflexivity and symmetry 
of R respectively. Since no axiom of M- contains a non-modal propo­
sition and since no rule of inference enables us to infer a non-modal 
proposition from a modal one, it is obvious that neither T nor B can 
be inferred in M-. This proves our claim. 

We would like to stress here that it is also possible to embed quan­
tum logic in the system M- by using Dishkant's (1977) translation in­
stead of Goldblatt's translation, given by De£. 4, as proved in PaviCic 
(1989b) . 

I 
35 An ortholattice is a lattice which satifies the conditions 11-16. It is meant that a n b 

= a~ aU b = b is satisfied in any ortholattice. • 
36 Notice that Dishkant (1977) uses A to designate an elementary proposition. 
37 Lemmon (1977), p. 67. 
38 Hughes & Cresswell (1984), p. 38 . 
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5. Discussion 

The difficulties one faces when trying to establish semantics for 
quantum logic, e.g. the absence of a valuation function,the absence of 
first-order conditions for the usual reflexive and symmetric rela~ion of 
accessibility, etc., induced many authors to conclude that quantum logic, 
as opposed to classical logic, is more an empirical calculus for quantum 
YES-NO measurements than a proper "a priori" logic . However, the 
result presented in Sec. 2 seems to indicate that apparently just the op­
posite is the case, i.e. that classical logic is "more empirical" than quantum 
logic . This claim can receive the following elaboration. 

In Sec. 2 we found out that the expression la(N )N) -
a(p)IN1i2 = G/L never vanishes as N approaches infinity on the open in­
terval 0 < p < 1. To be able to compare a classical with a quantum in­
terpretation of the expression, let us take an example for which both 
interpretations are possible, e.g. electrons subjected to an experiment 
of the kind descibed in Sec. 2. The quantum interpretation then boils 
down to the quantum Malus law and the probability function is p = 
cos2(a/2), 0:Sa:S7r. Therefore, Gq)p) = 1, for O<p<l. The classi­
cal interpretation gives39 p = (7r-a)/a, 0 :Sa :S 1r Therefore, 
Gcm(p) = 7r[p(1-p)] l/2 = [a(7r-a)]1i2, for O<p< 1, i.e. for 0<a<7r. We 
see thatlim G )p) = 1 as opposed to lim Gcm(p) = 0. 

p~ l q p~l 

In other words, quantum logical propositions are not likely to be 
confirmed by individual YES-NO measurements in a direct way but only 
by means of their statistics. Quantum logic itself, therefore, turns out 
to be not an empirical but rather an a priori calculus underlying not quan­
tum measurements themselves but quantum mechanical formalism, which 
is in turn confirmed by the statistics of quantum YES-NO measurements. 
Can this calculus, i.e . quantum logic be considered a proper logic? 

Quantum logic does satisfy the minimal semantic condition of be-
ing a proper logic, that is it has an algebraic semantics. Notably, it has 
an orthomodular lattice as its model. It was disturbing, however, that 
is seerped as if five structurally different quantum logics existed due to 
five different operations of implication. In Sec. 3 we showed, by con-
structing unified quantum logic, that these logics are not structurally 
different. Actually, their multiplicity only means that the equivalence I 
class of the operation of implication can be expressed 'in five different 

39 Peres (1978). 
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ways by means of the operation of disjunction (conjunction) and the oper­
ation of negation. Correspondingly, the equivalence class of the opera­
tion of disjunction (conjunction) can be expressed in four different ways 
by means of the operation of implication and the operation of negation. 

Thus, if a unique operation of implication is at all needed for the 
formulation of a "proper" logic underlying quantum mechanical formal­
ism, it can apparently be singled out only by adding some new axioms, 
perhaps just the ortho-arguesian axiom, to quantum logic. This also me­
ans that we perhaps should not rely too heavily on the properties of 
the Hilbert space while investigating quantum logic further, i.e. while 
investigating its semantics. In particular, it seems that the modal semantic 
characterization of quantum logic with the help of a reflexive and sym­
metric relation of accessibility should be reconsidered. To this end, in 
Sec. 4 we carried out an embedding of quantum logic in a modal system 
which is characterized neither by a reflexive nor by a symmetric rela­
tion of accessiblity. What remains to be proved or disproved is the ex­
istence of the relation on quantum logic and the possibility of charac­
terizing an appropriate frame by means of fitst-order conditions on the 
relation. 
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