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ABSTRACT. The notion of repeatability of quantum spin 
measurements carried out on individual quantum systems ~s 

reconsidered. It is shown that a YES-NO measurement of 
the first kind of an arbitrary spin can be considered 
repeatable if and only if a particular physically 
meaningful function exhibits a jump-discontinuity for 
just one end point of a closed interval . The result 
serves to formulate a difference between the Copenhagen 
and the statistical interpretation within quantum 
formalism . 

I. INTRODUCTION 

In quantum mechanics an op~n~on prevails that "a pure state 

provides a complete and exhaustive description of an i ndividual system 
I) 

(e . g., an· electron)," and that "the system ... does ... have a 

value for any observable ... for which the state is an eigenvector . "!) 

Such a view is supported by the Copenhagen interpretation . The v~ew ~s, 

however, opposed by "the statistical interpretation, according to which 

a pure state provides a description of certain statistical properties 

of an ensemble of similarly prepared systems, but need not provide a 

complete description of an individual system . "!) 

Arguments so far advanced i n favour of one or the other view have 

been formulated outside the quantum formalism (e . g. , by Ballentine, I) 
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2) 3) 
Park, and Margenau ) since it had been taken for granted that a 

difference between the interpretations could not be formulated 
. h. . 4) w1t 1n 1t. 

The purpose of this article is to formulate a difference between 

the views within the quantum formalism and to show that they do not 

coincide within it, although both are compatible with it. 
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To this end, an expression (given by Eq. (6)) is constructed which 

1s a function of the relative frequency of measured data as well as of 

the corresponding theoretical probability and which has a well defined 

physical mean1ng. According to the Copenhagen interpretation the 

function exhibits a sudden jump at the end points of the closed 

interval [0, I]. According to the statisti.cal interpretation the 

function is continuous on the whole interval. While a difference 1n 

experimental v~lues of the function on the open interval (0,1) as 

opposed to the closed interval [0,1] cannot be expected to be 

measurable, an important physical contribution of this result 1s that 

the assumption of the repeatability of YES-NO measurements carried out 

on individual quantum systems implies an actual jump in the value of a 

well defined function for just one mathematical point of an interval. 

As for the repeatability hypothesis, it has recently been shown 

that non-discrete observables do not satisfy it.
5

) It has also been 

shown that in the presence of a conservation law even discrete 

observables are only approximately measurable.
6

) Thus, both kinds of 

observables allow a value from their spectra to be a result of a 

measurement, but the value cannot be ascribed to a particular property 

of the measured individual system 1n a particular state. As opposed to 

this s i tuation, when individual systems are subjected to YES-NO 

measurements of a discrete observable, unrestricted by any conservation 

law, the eigenvalue of the measured observable (projector) can always 

be taken to correspond to a particular property of the ensemble of 

individual systems. Thus, for repeated YES-NO measurements of an 

unrestricted discrete observable a YES-event occurs with certainty, 

1.e . with probability equal to unity, and from a statistical point of 

v1ew such measurements can always be considered as repeatable . However, 



442 

in looking at individual events we face the following dilemma. 

We can take a view that a YES-event with probability one always 

occurs . In this case a measurement is considered repeatable in both 

senses: statistical and individual . An individual system is considered 

to have a particular property. 

The other possibility is to assume that a YES-event with probability 

equal to unity need not always occur. In this case the repeatability 

is not admitted so far as individual events are concerned. 

The latter view is attractive because it suggests a unification of 

descriptions of quantum measurements in the sense that the 

approximately repeatable measuring process might be a model of 

measurements in quantum mechanics, not only for continuous and 

restricted discrete observables, but also for unrestricted discrete 

observables. The "measure" for the (non)occurence of a YES-event with 

probability one provided in this paper will hopefully contribute to 

such an elaboration, e.g. 1n the recently proposed measurement 

statistics interpretation of quantum mechanics. 7) 

The paper is organized as follows. In Sec. 2 some properties of the 

relative frequency of individual events in Bernoulli trials are 

formulated in the form of lemmas. In Sec. 3 we define an expression, 

Eq. (6), which includes a difference between a frequency and the 

appropriate probability, but which does not vanish as the number of 

experiments approaches infinity. This expression enables us to consider 

the extreme values of probability, i.e. those equal to unity and zero, 

for which a distinction between the statistical and the Copenhagen 

interpretation can be expressed within the quantum formalism . A 

discussion of the obtained result is carried out in Sec. 4. 

2. SOME PROPERTIES OF THE RELATIVE FREQUENCIES OF QUANTUM YES-NO EVENTS 

The first basic feature of any quantum YES-NO measurement of the 

first kind is that particular individual events are completely 

independent . The second basic feature of such measurements is 
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that trials form an exchangeable sequence. Taken together, the trials 

are Bernoulli trials, i.e. they form Bernoulli sequences. Thus we can 

estimate ideal (quantum) fre?uencies, i.e. frequencies of an infinite 

number of individual YES-NO experiments, by means of (quantum 

theoretical) probabilities as elaborated below. 

Let us call the event X.=1 a success on the ith trial. The 
l 

frequency with which the result I is obtained is 

f 
1 

N N 

N 
L X . = N+ 

. 1 l l= 

where N is the number of successes in the first N trials. 
+ 

The probability that the ith trial gives the result 1 (as g1ven by 

the quantum theory) is denoted as P(X.=I)E [0,1] . The expectation of 
l 

the frequency is 

N 
<f> N L P(X.=I) 

i= 1 l 

The exchangeability: P(X
1
=1) = = P(XN=1) =: p then g1ves <f> = p. 

The probability that the ith trial and the jth trial give the 

result 1 is P(X . =1,X.=1)E [0, 1]. Since the independence of individual 
l J 

events can be expressed as P(X.=1,X.=1) = P(X.=1)P(X.=1) = p 2
, for i~j 

l J l J 
and since P(X . =I,X.=1) = p, the expectation of the square of the 

l l 

frequency 1s 

N N 
2 I <f > = -2 

N 
L L P(X.=I,X.=I) 

i=l j=l l J 

Thus the appropriate standard deviation 1s 

6p 

where q : = 1 - p. 

By the Markov theoremS) we obtain that the frequency f = N /N 
+ 

(I ) 

II ' b b'l' II d ~ S) • f 1 converges to p 1n pro a 1 1ty an by Levy theorem 1t then ol ows 

tha t f =N /N converges top almost certainly (a . c . ) , in symbols 
+ 

N /N 
+ 

a. c . 
p, which means 
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N 
P ( lim __:t-= p) 

N-+ooN 

(Note that N+ 1s actually a function of probability ~nd of the 

number of trials: N = N (p, N) and that the lemmas below apply to p 
+ + 

from the open interval 0 < p < I.) 

(2) 

However, on which minimal set and 1n which way does the frequency 

N+/N converge to p? 

We answer this question 1n the form of the following lemmas . 

Lemma 1. Let p, N , and N be defined as above. If 0 < p < I, 
+ 

-
112 < k < - 1/g' 0 < y < 00 , and 0 < n < 00 , then 

Proof. As g1ven 1n Ref. 9 . 0 

Lemma 2 . Let p, N, N, y, and n be defined as above . If n<- 1h 
+ 

then 

Proof . As g1ven 1n Ref . 9 . 0 

Lemma 3. Let p, N+, N, y, and n be defined as above . Then 

1/ 
where £ = n(pq)y- 2 

0 

Proof . As given 1n Ref . 9 . 0 

The lemmas put together state that the convergence of the frequency 

N /N to probability p takes place on a set defined as 
+ 

where k and n (specified above) are arbitrarily close to - 1h . This 

means that a frequency N /N which converges to an appropriate 
+ 
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probability p is "improperly" Gaussian-like distributed so far as only 

arbitrary large N's, instead of the ones approaching infinity, are 

considered; i.e. an arbitrary narro~ strip is "cut out" from the middle 

of the Gaussian. (The lenunas remain "almost unchanged" when N is only 

"sufficiently large" instead of approaching infinity.) 
. ._ 

When N tends to infinity we can hardly speak about a distribution, 
y k 

because (pq) N ---+ 0, but we can express the result by saying that N +/N 

acqu~res a value which is strictly equal to p by probability zero: 

N 
lim P(__± = p) = 0 

N-+oo N 
(3) 

The ~quation shows that the values of the frequency never cluster 

strictly at p but only around p, and puts forward an interesting 

characterization of the stochasticity of frequencies of the Bernoulli 

trials. In this case, the above statement that N /N is not "properly" 
+ 

Gaussian-like distributed means that a line centered at p is "cut out" 

from an infinitely narrow strip to which the Gaussian "shrinks." 

Let us now consider the particular cases of probability equal to 

unity. Theorems concerning Bernoulli trials, our lemmas included, do 

not say anything about the strict value p = 1. It follows from Lenuna 

that N+ (p ,N) /N-+ 1 when p-+ 1 and N -+oo. Thus we are tempted to expect to 

have strictly N+(l,N) =N. However, as we show in the next section, so 

far as the quantum YES-NO measurements are concerned, we should be 

tempted to expect just the opposite. 

J . SPIN NEASliXEMENTS ON INDIVIDUAL ~U.-\J.'ITIJN SYSTENS 

Let us consider sp~n preparation-detection measurements for sp~n~s 

particles. Quantum systems are prepared, one by one, by a preparation 

device (a Stern-Gerlach device) and detected, one by one, by a 

detection device (another Stern-Gerlach device) deflected at an angle 

a relative- to the preparation. In a word, we carry out quantum YES-NO 

measurements on individual systems. Quantum mechanics then predicts 

that the relative frequency N+/N of the number N+ of detections of the 
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prepared property (spin projection m - prepared in the statistical 

sense of the word) on the systems among Ehe total number N of the 

prepared systems, approaches probability p =p(s)(a) = (ds (a)) 2 (where 
nun nun 

ds (a) is a diagonal element of the rotation matrix) as N approaches nun 
infinity . Si nce (ds (a)) 2 = (ds (a)) 2 in the sequel we shall consider 

-m-m nun 
only m ~ 0 . Diagonal elements of the rotation matrix are in this case 

defined as follows : IO) 

s-m k 
ds (a) = (s+m)!(s-m)! 

mm 
\ (-1) a 2s-2k . a 2k 
L (s+m-k)!(s-m-k)!(k!)2(cos2) (s~~) . (4) 

k=O 

B f b . 1 . 1 II) . d y means o Jaco ~ po ynom~a s th~s can be expresse as 

s a 2m (0 2m) 
d (a) = (cos-

2 
) P ' (cosa). 

mm s-m 

From the functional form of ds (a) as given by Eq . (4) it is 
nun 

obvious that there is always such a =a 1 that p = ( ds (a) r is a 
nun 

continuous monotonic decreasing function defined on [O,a1J and 

differentiable on (O,a 1) . Hence 

function a=as (p) =a(p) is also 
nun -1 

P l =p(a1) - and da/dp = (dp/da) 

it is invertible and its inversion 

differentiable- on (p 1, 1) where 

holds. 12 ) 

Therefore, in the definition of the absolute value of the 

derivative 

lim la(p+h) - a(p) I 
h-+0 h 

(5) 

we are allowed to replace h by a particular net or series converg~ng 

to zero and we shall do so us~ng a particular expression, which will 

eventually serve to ascribe values of the frequency N /N to p+h and to 
+ 

obtain the function (6) , which includes a difference between the 

frequency and the appropriate probability but which does not vanish as 

the number of experiments aP'proaches infinity. This function will then 
' serve us as a "measure" of difference between the statistical and the 

Copenhagen interpretation of the quantum formalism . 

As a candidate for the above-mentioned expression which is to be 

substituted for h in Eq . (5) the lenunas from Sec . 2 single out 
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X(N) (pq) YNS, where 0 < lx(N) I < oo, 0 < y < oo, and -oo < S < 0. Let us proceed 

along this line. 

The points p ± I X (N) I (pq) y NS are the end points of the interval 

[p - lx(N) I (pq)yNS, p + lx(N) I (pq)yNS] and, according to Lenunas I and 2, 

we can accomplish the ascript}on of X(N)(pq)yNS to h ~n (5) only when 

S = -~. For, according to Lenuna 2, the frequency N /N almost never 
+ 

acquires a value on the interval when the latter is defined by S < -~ 

and, according to Lenuna I, the frequency N /N has almost all values on 
+ 

the interval, but perhaps none at its end points when the interval is 

defined by S > -~ • 

. On the other hand, according to Lenuna 3, for y > lo;z the frequency 
y -~ y -~ N+/N finds its values on the interval [p -n(pq) N , p + n(pq) N ] with 

a probability which is arbitrary close to zero, no matter which 

confidence coefficient n is chosen, when p approaches unity - and this 

is the case in which we are in teres ted. When y < ~ and p approaches 

unity the frequency again has almost all values on the interval, but 

perhaps none at its end points. 

Thus, we are left with 13=-~ and y=~, our points boiling down to 

p +x(N)6p, where 6p is given by Eq. (I). In other words, only for these 

values of S and y is the convergence of N /N to p assured (on the 
+ 

minimal set from Sec. 2). 

According to Lenuna 3, for every N, for n ~ lx(N) I large enough, 

a lmost all (i.e. with a probability approaching one) values of N /N, 
+ 

a s well as of p +X(N)6p, lie within the interval [p -n6p, p +n6p]. On 

the other hand, for n' ~ lx(N) I small enough, almost all values of N+/N 

as well as of p +X(N)6p, lie outside the interval [p -n'6p, p +n'6p] . 

Besides, according to Lenuna 2 and Eq . (3) the probability of N /N 
+ 

being strictly equal to p is zero. 

Hence, for every N there is almost certainly such X(N), so as to 

make p + x(N)6p equal to N /N and X(N)6p converging to zero 
+ 

(without making it strictly equal to zero) as N approaches 

infinity. 

In Eq . (5) we can , therefore, choose h =X (N) 6p and substitute N /N 
+ 

fo r p + h, thus obtaining 
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1~;1 
~ 

lim la.(N+/N) -a.(p) IN2 = lddapl-1 

N-+oo lxCN) IIP<i 

After a rearrangement it gives (for Pl <p< I) 

G(p) := L-l lim (la(N /N) -a(p) IN~) = lpqlddp,-l =: H(p) 
N-+oo + a 

where L = lim lxCN) I is a bounded (0 < L < oo) random (stochastic) 
N -+oo 

(6) 

variable which does not have a definite value, in the same way 1n 

which, e.g., -1 :S:: limsinx:S:: I does not have a definite value. However, 
X -+oo 

the - randomness of Lis matched by the randomness of the other limit 1n 

Eq. (6), so that G(p) turns out to be a continuous nonvanishing 

function on (p1,l). The last statement can receive the following 

elaboration. 

From Eq. (6), for Pl < p < 1, where p 1s defined as above, we get 

G(p) H(p) = 
dds 

2 mm 
da. 

The derivation from the denominator can be written as 

-m d ( (I +cosa)m P ~~~2m) (cosa)) 
= - 2 sina-----~____;~-----

d(cosa) 

h . h h . h 11 ) w 1c toget er w1t 

_i_ p(0,2m) (x) 
dx s-m 

I ( I ) p ( I , 2m+ I ) ( ) -
2 

s+m+ 
1 

x 
s-m-

g1ves 

dds (a) 
mm 

da 
. a a 2m-l( (0 2m) 2 a (I 2mf-l) ) 

= -s1n-::-
2

(cos-
2

) mP ' (cosa.) + (s+m+l )cos -
2 

P ' 
1 

(cosa) 
· s-m s-m-

By us1ng the expression (4) for ds (a) and writing explicitly the 
mm 

terms for k = 0 and k = 1 the expression I - ds can be written as follows 
mm 
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a. 2s 2 2 a. 2s-1 . a. 2 - (cos-) + (s -m )(cos-) (s1~) - ••• 2 . 2 2 

where the dots represent terms containing higher powers of siui. With 

the help of cos28 =I - 2sin28 and sin28 = 2sin8cos8 one obtains 

2 2 . 2a. 2a. a. 2s-l ••• + 4(s -m )s1n 7COS -(cos-) 4 4 2 
- •• 1) 

where the dots denote terms containing higher powers of si~. 
Taken together we obtain 

. a. { ( 2 2 2a. a. 2s-1 ) ( a 2m (0 2m) ) }~ s1ur s+(s -m )cos 4 ccos4) +· • • l+(cos-z) P s-~ (cosa.) 

H(p) = . a. a. a. 2m-](. (0 2m) 2a. (I 2m+l) ) . 
2s1~os4(cos2) mP s-~ (cosa.) + (s+m+l )cos 2 P s-~-l (cosa.) 

where the dots denote terms containing sina. 1n the numerator. 

S . II) p(~,v)(l) (n+~)l f s>m 1nce = 
1 1 

, or we get 
n n . ~ . 

(7) 

For s = m we get lim H(p) = (2s) -~. Since the former expression 
p+l (s ) 2 (· s )2 

(7) boils down to the latter for s = m and since d (a.) = d (a.) -m-m mm 
we finally obtain that the expression (7) holds for m = -s, ... , +s. 

Turning our attention to the probability equal to one we see from 

the obtained expression for H(p) that H is not defined for the 

probability equal to one: H(l) = ~ . However, its limit exists and is 

given by expression (7). Thus a continuous extension of H to (p1,l] 

exists and is giv.en byH, where H(p) :=H(p) for pE(pl,l) andH(l) is 

equal to the right-hand side of Eq. (7). 

The function G, on the other hand, cannot be approached in the 

same way because we do not know whether G(l) is well defined and if it 

is, we do not know which values it should be ascribed. Namely, the 

statistical and the Copenhagen interpretation differ in this point, 

the latter demanding G(I)=O. Thus we are left with the following 

three possibilities: 

1. G(p) is continuous at I . A necessary and sufficient condition 

for that is G( I) 

N (I ,N) = N since 
+ 

= lim _G(p). In this case we cannot strictly have 
p+l 

then G( I)= 0 -:f lim G(p) obtains a contradiction. 
p+I 
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2. G(I) is undefined. In this case we also cannot haveN (I,N) =N 
+ 

since the latter equation makes G(I) defined, i.e. equal to zero. 

3 . G(I) =0. In this case we must haveN (I,N) =N. And vice versa: 
+ 

if the latter equation holds we get G(I) =0. 

Hence, a YES-NO measurement of a discrete sp1n observable s can be 

considered repeatable with respect to individual measured systems, if 

and only if G(ps ), defined by Eq. (6), exhibits a jump-discontinuity 
nnn 

for ps =I in the sense of point 3 above. 
nnn 

4. DISCUSSION 

The result we obtained 1n the previous section states that the 

difference la(N+/N) -a(p)l between the angle a(N+/N), measured by 

"counting" individual detections, and the angle a(p), measured by a 
/ ~ 

macroscopic device, multiplied by N , i . e. the expression 
~ 

la(N +/N) - a(p) IN\ never vanishes as N approaches infinity. 

For the strict value p =I we, however, face a dilemma . 

Shall we assume that the difference in question suddenly drops 

to zero for p being strictly equal to unity, thus adopting the 

Copenhagen interpretation of quantum mechanics and the repeatability 

of YES-NO measurements? 

Or shall we assume the continuity of G(p) and the validity of 

Eq. (3) for p =I as well, thus adopting the statistical interpretation 

and banishing repeatable measurements on individual systems from 

quantum mechanics altogether? 

By adopting the former interpretation we cannot but assume that 

nature differentiates open intervals from closed ones, 1 . e . 

distinguishes between two infinitely close points. One could try to 

object that this consequence of the obtained result is overemphasized 

and try to argue that for a's which are infinitely close to zero, i . e . 

for p's infinitely close to unity, the expression la(N /N) -a(N)IN~ 
+ 

approaches zero for an arbitrary large N. However, such an argument 
N 

does not hold water since p=(N+) and whenever p is not strictly equal 

to one, N - being an integer - cannot be greater than N- I . Therefore , 
+ 
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p simply cannot be left infinitely close to without first N being 

infinitely large. And we have shown in Sec. 3 that 

lim
1 

lim (la(N /N) -a(p) IN) :f.O. Nand p cannot simultaneously tend to 
p+ N+oo + 

infinity and one, respectively, either, since the existence of such a 

simultaneous limit implies the existence and equality of the 

appropriate successive limits. As one of the successive limits turned 

out not to exist, a simultaneous limit cannot exist either. 

By adopting the latter interpretation, we allow but a bare 

statistical meaning to quantum probabilities, including those ones 

which are equal to unity and zero, and deny them a unique experimental 

meaning with which all individual systems would comply. 

Since the consideration of an experiment which would differentiate 

between the two interpretations is rather beyond the scope of the 

present paper, we shall close the discussion by comparing the obtained 

result with a possible classical one. 

Had, e.g., electrons obeyed a classical "linear" probability law, 

the deflection angle under consideration would have been expressible 

as a =n(l-p). 
13

) In this case Eq. (6) gives G(p) =nvpq, which is, as 

opposed to the quantum case, well defined for pE[O,I] and we meet no 

problems for p =I. Thus, for a classical probability the assumption 

N (I,N) =N invokes no dilemma since G(l) =H(I) =0. 
+ 

Now, for spins high enough we should expect quantum objects to 

behave almost classically. And really, our result provides us with 

such a limit since from the expression (7) we obtain 

lim lim G(ps ) = 0. 
S+oop+l mm 

* * * 
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