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Abstract The set of 60 real rays in four dimensions derived from the vertices of a
600-cell is shown to possess numerous subsets of rays and bases that provide basis-
critical parity proofs of the Bell-Kochen-Specker (BKS) theorem (a basis-critical
proof is one that fails if even a single basis is deleted from it). The proofs vary con-
siderably in size, with the smallest having 26 rays and 13 bases and the largest 60
rays and 41 bases. There are at least 90 basic types of proofs, with each coming in
a number of geometrically distinct varieties. The replicas of all the proofs under the
symmetries of the 600-cell yield a total of almost a hundred million parity proofs of
the BKS theorem. The proofs are all very transparent and take no more than simple
counting to verify. A few of the proofs are exhibited, both in tabular form as well as
in the form of MMP hypergraphs that assist in their visualization. A survey of the
proofs is given, simple procedures for generating some of them are described and
their applications are discussed. It is shown that all four-dimensional parity proofs of
the BKS theorem can be turned into experimental disproofs of noncontextuality.
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1 Introduction

In a recent paper ([1], the suggestion that the 600-cell could be used to prove the
BKS theorem was first made in [39]) two of us showed that the system of 60 rays
derived from the vertices of a 600-cell could be used to give two new proofs of the
Bell-Kochen-Specker (BKS) theorem [2, 3] ruling out the existence of noncontextual
hidden variables theories. A later work [4] presented several additional proofs based
on the same set of rays. The purpose of this paper is to add to the store of proofs in [4],
but, even more than that, to convey a feeling for the variety and flavor of the proofs
(both through the examples presented here and the far more extensive listing on the
website1) and to show interested readers how many of the proofs can be obtained by
simple constructions based on the geometry of the 600-cell. There are two aspects
of the present proofs that make them noteworthy. The first is that they are all “parity
proofs” (this term is explained in Sect. 2) whose validity can be checked by simple
counting. And the second is that there are about a hundred million of them in this
60-ray system. While many of the proofs are just replicas of each other under the
symmetries of the 600-cell, the number of distinct proofs, in terms of size and other
characteristics, is still fairly large (we used a random exhaustive generation of proofs
to obtain over 8,000 proofs, most of which turned out to be parity proofs [5]). The
sheer profusion and variety of parity proofs contained in the 600-cell is unmatched
by that in any other system we are aware of and motivated us to study this system in
detail, both for its geometric interest as well as for its possible applications.

A brief survey of earlier proofs of the BKS theorem may be helpful in setting
the present work in context. After Kochen and Specker [3] first gave a finitary proof
of their theorem using 117 directions in ordinary three-dimensional space, a number
of authors gave alternative proofs in three [6–10], four [6, 11–17] and higher [18–
21] dimensions. Some of the proofs in higher dimensions are much simpler than the
three-dimensional proofs and, in fact, are examples of the “parity proofs” we discuss
throughout this paper. In recent years there has been a resurgence of interest in the
BKS theorem as a result of the fruitful suggestion by Cabello [22, 23] of how it might
be experimentally tested. Cabello’s basic observation is that many proof of the BKS
theorem based on a finite set of rays and bases can be converted into an inequality that
must be obeyed by a noncontextual hidden variables theory but is violated by quan-
tum mechanics. Experimental tests of Cabello-like inequalities have been carried out
in four-level systems realized by ions [24], neutrons [25], photons [26] and nuclear
spins [27], and violations of the inequalities have been observed in all the cases.
Still other inequalities, some state-dependent and others not, that must be satisfied
by noncontextual theories have been derived for qutrits [28], n-qubit systems [29]

1http://users.wpi.edu/~paravind/BKS600-cellDisplay.html (this site has a link to an excel file that lists
many examples of the parity proofs in Table 3 and also a link to a Web Application that shows many of
these proofs in an easily visualized tabular form).

http://users.wpi.edu/~paravind/BKS600-cellDisplay.html
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and hypergraph models [30]. It has been argued in [31] that contextuality is the key
feature underlying quantum nonlocality. A wide ranging discussion of the Kochen-
Specker and other no-go theorems, as well as the subtle interplay between the notions
of contextuality, nonlocality and complementarity, can be found in [32]. Aside from
their foundational interest, proofs of the BKS theorem are useful in connection with
protocols such as quantum cryptography [33], random number generation [34] and
parity oblivious transfer [35].

This paper is organized as follows. Section 2 reviews the BKS theorem and ex-
plains what is meant by a “parity proof” of it. An explanation is also given of the
notion of a “basis-critical” parity proof, since only such proofs are presented in this
paper. Section 3 introduces the system of 60 rays and 75 bases derived from the 600-
cell that is the source of all the proofs presented in this paper. A notation is introduced
for the ray-basis sets underlying the parity proofs, and an overview is given of all the
parity proofs we were able to find in the 600-cell. The algorithm we used to search for
the proofs is described, and a few of the proofs are displayed in a tabular form so that
the reader can see how they work. An equivalent McKay-Megill-Pavicic (MMP) hy-
pergraph representation [4, 15, 36] is used to give the reader a graphical visualization
of some of the proofs. In an MMP hypergraph vertices correspond to rays and edges
to tetrads of mutually orthogonal rays (see Figs. 1 and 2). Section 4 summarizes the
general features of the parity proofs and also points out their relevance for quantum
key distribution and experimental disproofs of noncontextuality. The Appendix re-
views some basic geometrical facts about the 600-cell and shows how they can be
used to give simple constructions for some of the parity proofs in Table 3. Space
prevents us from discussing more than a handful of examples, but the ones chosen
may help to convey some feeling for the rest. Some virtues of the treatment in the
Appendix are (a) that it allows many of the proofs to be constructed “by hand” with-
out the need to look up a compilation, (b) that it allows the number of replicas of a
particular proof under the symmetries of the 600-cell to be determined, and (c) that it
reveals close connections between different proofs that might otherwise appear to be
unrelated. However the treatment in the Appendix is not needed for an understanding
of the main results of this paper and can be omitted by those not interested in it.

This paper is written to be self-contained and can be read without any knowledge
of our earlier work [1, 4] on this problem.

2 Parity Proofs of the BKS Theorem; Basis Critical Sets

The BKS theorem asserts that in any Hilbert space of dimension d ≥ 3 it is always
possible to find a finite set of rays2 that cannot each be assigned the value 0 or 1 in

2We explain some aspects of our terminology for readers unfamiliar with the BKS theorem. By a “ray”
we mean an equivalence class of quantum states that differ from each other only by an overall phase. Only
orthogonalities between states play a role in the BKS theorem, and since orthogonalities are unaffected
by a change of phase, it is rays rather than states that are of relevance for the BKS theorem. The bases
are related to the projective measurements that one can carry out on the system. The projectors on to the
rays in a basis form a set of commuting operators, and a joint measurement of these projectors causes
the system to collapse into the ray associated with one of them, with the eigenvalue 1 being returned for
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such a way that (i) no two orthogonal rays are both assigned the value 1, and (ii) not
all members of a basis, i.e. a set of d mutually orthogonal rays, are assigned the
value 0. The proof of the theorem becomes trivial if one can find a set of R rays in d

dimensions that form an odd number, B , of bases in such a way that each ray occurs
an even number of times among those bases. Then the assignment of 0’s and 1’s to
the rays in accordance with rules (i) and (ii) is seen to be impossible because the total
number of 1’s over all the bases is required to be both odd (because each basis must
have exactly one ray labeled 1 in it) and even (because each ray labeled 1 is repeated
an even number of times). Any set of R rays and B bases that gives this even-odd
contradiction furnishes what we call a “parity proof” of the BKS theorem.

Let us denote a set of R rays that forms B bases a R-B set. A R-B set that yields
a parity proof of the BKS theorem will be said to be basis-critical (or simply critical)
if dropping even a single basis from it causes the BKS proof to fail. Basis-criticality
is not to be confused with ray-criticality, which takes all orthogonalities between
rays into account and not just those in the limited set of bases considered. We focus
on basis-criticality because it is more relevant to experimental tests of the Kochen-
Specker theorem. Such tests typically involve projective measurements that pick out
whole sets of bases, and performing a test that corresponds to a basis-critical set is an
efficient strategy because it involves no superfluous measurements. The only parity
proofs exhibited in this paper are those that correspond to basis-critical sets.

3 Overview of Parity Proofs Contained in the 600-cell

Table 1 shows the 60 rays derived from the vertices of the 600-cell and Table 2 the 75
bases (of four rays each) formed by them. Each ray occurs in exactly five bases, with
its 15 companions in these bases being the only other rays it is orthogonal to. Thus
Table 2 (or the “basis table”) captures all the orthogonalities between the rays and is
completely equivalent to their Kochen-Specker diagram.

The rays and bases of the 600-cell make up a 60-75 set ( i.e., one with 60 rays
and 75 bases). This set does not give a parity proof, but contains a large number of
subsets that do. A R-B subset of the 60-75 set that yields a parity proof must have
each of its rays occur either twice or four times among its bases (these being the only
possibilities for the 600-cell). It is easy to see that the number of rays that occur four
times is 2B − R, while the number that occur twice is 2R − 2B .

Table 3 gives an overview of all the parity proofs we have found in the 600-cell.
The smallest proof is provided by a 26-13 set (in which all 26 rays occur twice each
among the bases) and the largest by a 60-41 set (in which 38 rays occur twice each
and 22 rays four times each among the bases). Moving one step to the left in any row
of Table 3 causes the number of rays that occur four times to go up by one and the
number that occur twice to go down by two.

this projector and 0 for the others. This explains why a hidden variables theory attempting to simulate
quantum mechanics is required to assign a 1 to one projector and 0’s to the others. The rays and bases in
our theoretical discussion correspond to states and compatible sets of projective measurements in an actual
experiment.
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Table 1 The 60 rays of the
600-cell. The numbers following
each ray are its components in
an orthonormal basis, with
τ = (1 + √

5)/2, κ = 1/τ , a bar
over a number indicating its
negative and commas being
omitted between components.
The entries can also be regarded
as coordinates of 60 of the
vertices of a 600-cell, located on
a sphere of radius 2 centered at
the origin. The other 60 vertices
are the antipodes of these

1 = 2000 2 = 0200 3 = 0020 4 = 0002

5 = 1111 6 = 1111 7 = 1111 8 = 1111

9 = 1111 10 = 1111 11 = 1111 12 = 1111

13 = κ0τ1 14 = 0κ1τ 15 = τ1κ0 16 = 1τ0κ

17 = τκ01 18 = 10κτ 19 = κτ10 20 = 01τκ

21 = 1κτ0 22 = τ01κ 23 = 0τκ1 24 = κ10τ

25 = τ01κ 26 = 0τκ1 27 = 1κτ0 28 = κ10τ

29 = 0κ1τ 30 = τ1κ0 31 = κ0τ1 32 = 1τ0κ

33 = τκ01 34 = 01τκ 35 = 10κτ 36 = κτ10

37 = τ01κ 38 = 0τκ1 39 = 1κτ0 40 = κ10τ

41 = τ1κ0 42 = 0κ1τ 43 = 1τ0κ 44 = κ0τ1

45 = 01τκ 46 = τκ01 47 = κτ10 48 = 10κτ

49 = κ0τ1 50 = 0κ1τ 51 = τ1κ0 52 = 1τ0κ

53 = 10κτ 54 = τκ01 55 = 01τκ 56 = κτ10

57 = τ01κ 58 = 1κτ0 59 = κ10τ 60 = 0τκ1

Table 2 The 75 bases formed by the 60 rays of the 600-cell, with the rays numbered as in Table 1

A B C D E

A′
1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52

5 6 7 8 38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21

9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14 34 19 48 54

B′
13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4

17 18 19 20 50 36 10 37 30 59 45 7 48 5 32 58 11 38 49 33

21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6

C′
25 26 27 28 55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16

29 30 31 32 2 48 22 49 42 11 57 19 60 17 44 10 23 50 1 45

33 34 35 36 20 9 41 59 37 56 14 5 7 13 54 38 58 43 12 18

D′
37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16 20 5 51 28

41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57

45 46 47 48 32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30

E′
49 50 51 52 19 30 39 4 10 48 27 16 45 11 15 28 32 17 3 40

53 54 55 56 26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9

57 58 59 60 44 33 5 23 1 20 38 29 31 37 18 2 22 7 36 42

Most of the sets in Table 3 were discovered through a computer search. The search
algorithm is exhaustive, and quite simple: it starts from an arbitrary basis in Table 2
and adds one basis at a time in an attempt to obtain a target parity proof, R-B . Because
every ray must appear two or four times in the proof, a ray appearing once or thrice
among the bases already chosen is selected, and one of the (at most four) other bases
containing that ray is added to the proof at each iteration. The algorithm explores all
these possible bases-choices in a branching fashion, and saves computational time by
skipping all branches in which the target R is exceeded before B bases have been
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Table 3 Overview of basis-critical parity proofs in the 600-cell. Each row shows all the R-B parity proofs
for a fixed value of B and variable R (R = number of rays, B = number of bases)

B R

13 26

15 30

17 32 33 34

19 36 37 38

21 38 39 40 41 42

23 40 41 42 43 44 45 46

25 42 43 44 45 46 47 48 49 50

27 44 45 46 47 48 49 50 51 52 53 54

29 46 47 48 49 50 51 52 53 54 55 56

31 48 49 50 51 52 53 54 55 56 57 58

33 51 52 53 54 55 56 57 58 59 60

35 53 54 55 56 57 58 59 60

37 55 56 57 58 59 60

39 58 59 60

41 60

chosen or those in which more than 2B − R rays appear three or four times or those
in which any ray appears five times. This ensures that the search is exhaustive, and
keeps the number of necessary iterations well below the upper bound of 4B . If any
branch leads to a R-B set, then it is necessarily a parity proof, while if no branch
produces one then the 600-cell contains no parity proofs of the target size R-B . The
search becomes slower with increasing values of R and/or B , and also as the number
of rays occurring four times in the target set increases, and so we were not able to
carry out the search exhaustively for all values of R and B . Additional calculations
were done after the initial search to eliminate sets that corresponded to duplicate or
non-critical proofs.

We now give a couple of examples of parity proofs. A first example is given in
Table 4. It shows two 30-15 proofs that are complementary to each other in the sense
that they have no rays in common. There are exactly 120 such pairs of complemen-
tary proofs, and a simple construction for them is given in the Appendix. Figure 1
shows an alternative representation of the two proofs in Table 4 by means of MMP
hypergraphs [36]. The skeleton for each of the hypergraphs is a decagon whose alter-
nate sides are bases from a single column of Table 4. The skeleton is then completed
by five loops crisscrossing the figure that pick out the bases in the remaining column
of Table 4.

A second example of a parity proof is given in Table 5. This table shows a 40-30
set containing a 34-17 and a 26-13 parity proof within it. MMP hypergraph repre-
sentations of these proofs are shown in Fig. 2. The 34-17 proof has a decagonal loop
of bases for its skeleton and the 26-13 proof an octagonal loop, with the remaining
bases in both cases straddling different parts of the skeleton. Constructions for the
parity proofs in Tables 4 and 5 based on the geometry of the 600-cell are given in the
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Table 4 Two complementary 30-15 parity proofs, one in plain type and the other in bold

A B C D E

A′
1 2 3 4 22 60 39 28 57 23 27 40

18 47 33 55 36 53 20 46

9 10 11 12

B′
13 14 15 16 34 12 51 40 9 35 39 52

30 59 45 7 48 5 32 58

21 22 23 24

C′
25 26 27 28

29 30 31 32 42 11 57 19 60 17 44 10

37 56 14 5 7 13 54 38

D′
58 36 15 4 33 59 3 16

41 42 43 44

45 46 47 48 49 8 26 17 19 25 6 50

E′
49 50 51 52

53 54 55 56 6 35 21 43 24 41 8 34

1 20 38 29 31 37 18 2

Fig. 1 MMP hypergraphs [36] for the two 30-15 proofs shown in Table 4. The one on the left corresponds
to the bold bases in Table 4 and the one on the right to the bases in regular type. Although these two
hypergraphs have the same structure, the 30-15 sets they describe are geometrically distinct for the reason
discussed in Sect. 4(ii)

Appendix. Several other examples of parity proofs, together with their constructions,
can also be found there.

4 Discussion

We have pointed out the existence of a large number of R-B (i.e., Ray-Basis) sets
within the 600-cell that provide parity proofs of the BKS theorem. Some general
observations can be made about these sets:
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Table 5 All 30 bases shown are those of a 40-30 set, and all the bold bases (plain bold, bold italic and
bold underlined) are those of a 34-19 set. The two parity proofs are provided by a 34-17 set (whose bases
are the plain bold and bold underlined ones) and a 26-13 set (whose bases are the plain bold and bold
italic ones)

A B C D E

A′
22 60 39 28 57 23 27 40

5 6 7 8 38 24 58 25 59 26 37 21

9 10 11 12

B′
34 12 51 40 9 35 39 52

17 18 19 20 50 36 10 37 11 38 49 33

21 22 23 24

C′
25 26 27 28

42 11 57 19 60 17 44 10

33 34 35 36 20 9 41 59 58 43 12 18

D′
37 38 39 40 7 18 27 52 20 5 51 28

41 42 43 44

49 8 26 17 19 25 6 50

E′
49 50 51 52

6 35 21 43 24 41 8 34

57 58 59 60 44 33 5 23 22 7 36 42

Fig. 2 MMP hypergraphs for the 34-17 (left) and 26-13 (right) proofs shown in Table 5

(i) All the sets listed in Table 3 are basis-critical (as defined in Sect. 2). We checked
this by means of a computer program.

(ii) Although Table 3 lists only 90 critical sets, the actual number is much larger, for
two reasons. The first reason is that many of the sets in Table 3 come in a number
of distinct varieties that are not equivalent to each other under the symmetries
of the 600-cell. One example of this is provided by the 30-15 sets, of which
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there are six different varieties. In addition to the two different varieties shown
in Table 4 (which are really different, despite their structurally identical MMP
diagrams), a third type is shown in Table 6 and there are three further types that
we have not exhibited here. The differences between these types can be brought
out by calculating the inner products of vectors in each of them, whereupon it
will be found that the patterns of the inner products are not the same. These
differences are experimentally significant, because the unitary transformations
needed to transform the standard basis into the bases of each of these types are
different. A few sets, such as the 26-13 set, come in only one variety, but the vast
majority come in a number of different varieties. The second reason is that each
of the geometrically distinct critical sets for a particular set of R and B values
has many replicas (typically in the thousands) under the symmetries of the 600-
cell. The combined effect of both these factors is to increase the total number of
distinct parity proofs to somewhere in the vicinity of a hundred million.

(iii) We have limited our discussion in this paper only to critical sets that provide
parity proofs of the BKS theorem. However the 600-cell has a large number
of critical sets that provide non-parity proofs of the theorem. These proofs are
not as transparent as the parity proofs, but they are just as conclusive. We ex-
plored them in part in Ref. [4] and will analyze and generate them extensively
in Ref. [5].

(iv) The parity proofs of this paper can be used to devise experimental tests of non-
contextuality of the sort proposed by Cabello [22, 23]. We recall how such
a test works. For a R-B set yielding a parity proof, let Ai

j = 2|ψi
j 〉〈ψi

j | − 1

(i = 1, . . . ,B, j = 1, . . . ,4), where |ψi
j 〉 is the normalized column vector corre-

sponding to the j -th ray of the i-th basis (note that two or more of the ψi
j with

different values of i and/or j can be identical because the same ray generally
occurs in several different bases). Each observable Ai

j has only the eigenvalues
+1 or −1. Cabello’s argument implies that any noncontextual hidden variables
theory (NHVT) obeys the inequality

B∑

i=1

−〈Ai
1A

i
2A

i
3A

i
4〉 ≤ M, (1)

where the averages 〈〉 above are to be taken over an ensemble of runs and M is
an upper bound. Quantum mechanics predicts that (1) holds as an equality with
M = B , but NHVTs predict (see next paragraph) that the above inequality holds
with M equal to B − 2 at most. This is the contradiction between a NHVT and
quantum mechanics that can be put to experimental test.

We now give the argument leading to the maximum value of M , namely,
B − 2. According to a NHVT, each observable Ai

j has the definite value of +1
or −1 in any quantum state, independent of the other observables with which
it is measured. Consider the expression on the left side of (1), but without the
averaging 〈〉 over many runs, and denote it by F . The maximum value of F in
any run is B , and it is achieved when each term in it has the value of +1. Let
us see how the values of the various Ai

j can be chosen so that this maximum is
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achieved. Clearly, one or three of the Ai
j ’s in each term of F must be equal to

−1 for this to happen. Let the number of terms with one Ai
j equal to −1 be n

and the number with three Ai
j ’s equal to −1 be m. Then, if we choose the values

of the Ai
j ’s in such a way that n + m = B , we can guarantee that F = B . But

an obstacle looms that prevents us from reaching this goal. The total number of
−1’s occurring over all the bases is n + 3m = B + 2m (since n + m = B). The
difficulty now is that B + 2m is required to be both odd and even (odd because
B is odd, and even because the number of −1’s in all the bases is required to
be even for the parity proof to be valid). This contradiction shows that a NHVT
theory cannot make the value of F equal to B . The best it can do is to make all
but one of the terms in F equal to +1, and this limits the maximum value of F

to B − 2. Averaging the value of F over a large number of runs could make the
quantity on the left side of (1) dip below the upper bound of B − 2, according to
a NHVT.

For any basis-critical parity proof, quantum mechanics predicts that (1) holds
as an equality with M = B whereas a NHVT predicts that M = B − 2 (since
value assignments can always be found that make B − 1 of the terms on the left
of (1) equal to 1 and one term equal to −1). A 18-9 parity proof thus leads to the
ratio of 7/9 for the bounds due to NHVTs and quantum mechanics. This bound
can be improved slightly by considering all 1800 26-13 parity proofs within the
60-75 set. Of the 75 terms on the left side of (1), at least 9 must then contribute
−1 to the sum, causing the previous ratio to dip to 57/75, which is very slightly
less than 7/9. Whether a further improvement can be effected by simultaneous
consideration of a larger number of parity proofs is an open question.

It is worth stressing that the contradiction we have demonstrated between
NHVTs and quantum mechanics generalizes in a straightforward manner to any
parity proof in any even dimension greater than or equal to 4. Parity proofs of the
type we are considering are not possible in odd dimensions, so a similar conflict
cannot be demonstrated in this case.

(v) Any parity proof of the BKS theorem (or even a non-parity proof) can be turned
into a scheme for quantum key distribution, as pointed out in [33]. The idea
is simple: since there are no hidden variables that model the observables in a
BKS proof, there is no data in the transmitted particles to be stolen while the
key is being established; the key comes into being only after sender and receiver
exchange messages to determine the cases in which they used the same bases to
encode and decode their particles. The preferred bases in such a scheme, when
they exist, are a maximal set of mutually unbiased bases. A maximal set of five
mutually unbiased bases does indeed exist in four dimensions, and has been
proposed for use in key distribution schemes based on four-state systems [37].
However, any set of bases leading to a BKS proof, such as the ones in this paper,
can also be used. They may not be as efficient as schemes based on mutually
unbiased bases, but they may be advantageous in some situations and would
therefore seem to be worth exploring further.
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Appendix A

The purpose of this Appendix is to show how special geometrical features of the 600-
cell can be exploited to give simple rules for generating many of the parity proofs in
Table 3. We first review some basic geometrical facts about the 600-cell and then
show how they can be used to arrive at the rules. Readers wanting a more detailed ac-
count of the geometrical properties of the 600-cell can consult the classic monograph
by Coxeter [38].

The 600-cell is a regular polytope with 120 vertices distributed symmetrically on
the surface of a four-dimensional sphere. The vertices come in antipodal pairs, and
the 60 rays are the unoriented directions passing through antipodal pairs of vertices.
If the vertices are taken to lie on a sphere of radius 2 centered at the origin, then
the coordinates of 60 of the vertices can be chosen as in Table 1 and the remaining
vertices are the antipodes of these.

A.1 Facets of the 600-cell

Any finite subset of rays of the 600-cell will be termed a facet. There are several
facets that will play an important role in the constructions below. We now define
these facets and depict them by their Kochen-Specker (KS) diagrams in Fig. 3. In a
KS diagram, rays are represented by dots and dots corresponding to orthogonal pairs
of rays are joined by lines.

The simplest type of facet is a single ray, which we will also term a point.
Rays/points will be referred to by the numbers assigned to them in Table 1.

Four mutually orthogonal rays make up a basis. The KS diagram of a basis can be
taken as four dots at the corners of a square, with all the edges and diagonals of the
square drawn in. A basis will be denoted by four numbers separated by spaces, e.g.,
7 18 27 52, just as in Table 2.

Any three rays will be said to form a line if the coordinates of one of them can be
expressed as a linear combination of those of the other two. For example, the points 3,
8 and 10 form a line, which we will denote (3 8 10). Two lines are said to be the duals
of each other if every point (ray) on one is orthogonal to every point on the other. The
lines (3 8 10) and (16 17 24) are the duals of each other and will be termed a dual

Fig. 3 The Kochen-Specker diagrams of a basis (left), a dual line pair (DLP) (center) and a dual pentagon
pair (DPP) (right)
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line pair (DLP) and denoted (3 8 10) + (16 17 24). The KS diagram of a DLP takes
on a simple form if the points of the dual lines are arranged at the alternate vertices of
a hexagon; then the orthogonalities between the rays are represented by the six edges
and three diameters of the hexagon. The geometry of the 600-cell is such that any set
of six points having this KS diagram represents a dual line pair; the requirement that
the points at the alternate vertices satisfy the conditions for a line need not be added
because it turns out to be satisfied automatically.

A pentagon is any set of five rays with the property that five pairs among them
have an absolute inner product of τ and the remaining five an absolute inner prod-
uct of κ . The points 1, 15, 30, 47 and 56 form a pentagon, which we will denote
(1 15 30 47 56). Two pentagons will be said to be the duals of one another if every
point of one is orthogonal to every point of the other. The pentagons (1 15 30 47 56)
and (4 14 29 45 55) are the duals of each other and will be said to be a dual pen-
tagon pair (DPP). A symbol for a DPP will be introduced in the next subsection.
If the points corresponding to a dual pair of pentagons are arranged at the alternate
vertices of a decagon, then the KS diagram of the DPP takes on a very simple form:
it consists of the ten edges and five diameters of the decagon, together with ten of its
diagonals (see Fig. 3). Again, it turns out that any set of ten points possessing this KS
diagram constitutes a DPP, with the conditions for the points at alternate vertices to
form pentagons being automatically satisfied.

The most complex facet of interest to us is a Reye’s configuration (RC), which is
a set of 12 “points” and 16 “lines” with the property that three “points” lie on every
“line” and four “lines” pass through every “point”. If the terms “points” and “lines”
in this definition are taken to be identical with the points and lines defined above, it
is easy to check that points 1 through 12 form a RC with the 16 lines being given by
(1 5 9), (1 6 10), (1 7 11), (1 8 12), (2 5 10), (2 6 9), (2 7 12), (2 8 11), (3 5 11),
(3 6 12), (3 7 9), (3 8 10), (4 5 12), (4 6 11), (4 7 10) and (4 8 9). An equivalent
definition of a RC is that it consists of the rays in three mutually unbiased bases (i.e.
bases with the property that the magnitude of the inner product of any normalized ray
of one with any normalized ray of the other is always the same). In the case of the
600-cell this latter definition guarantees that the 12 rays in the three bases form 16
lines, with one point of each line coming from each of the three bases. In the example
of the RC just given, the three (mutually unbiased) bases are 1 2 3 4, 5 6 7 8 and 9 10
11 12.

The above discussion has been carried out in projective or ray space. However,
many of the facets correspond to familiar figures in four-dimensional Euclidean space
if one recalls that each point in projective space corresponds to a pair of mutually
inverse points in Euclidean space. Then a basis corresponds to a 16-cell (or cross
polytope), a pair of mutually unbiased bases to a 8-cell (or hypercube), and three
mutually unbiased bases (or a RC) to a 24-cell. These three figures are all convex
regular polytopes in four dimensions (just like the 600-cell), and their bounding cells
consist of 16 tetrahedra, 8 cubes and 24 octahedra, respectively.

A.2 Tilings of the 600-cell by Its Facets

A particular type of facet (e.g. bases) will be said to tile the 600-cell if the union of
several mutually disjoint specimens of that type yields all 60 rays of the 600-cell. The
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600-cell has many tilings by its bases, DLPs, DPPs and RCs. We now discuss these
tilings one by one.

First consider the bases. The 600-cell has 75 bases in it, which are shown in Ta-
ble 2. The three bases in any block make up a RC, and the 5 × 5 array of blocks
shows the 25 different RCs in the 600-cell. The five RCs in any row or column of
the array give a tiling of the 600-cell. There are exactly ten such tilings, one associ-
ated with each row or column of the array. These tilings were first discovered by the
Dutch geometer P.H. Schoute [38], who observed that the 600-cell has five mutually
disjoint 24-cells inscribed in it in ten different ways. The letters in Table 2 help in
reconstructing these tilings from the 24-cells: if each RC (or 24-cell) is labeled by
a pair of letters, a primed one and an unprimed one, then arranging the RCs so that
all the RCs in a row (or column) share a primed (or unprimed) letter reproduces the
tilings. The tilings by bases are a trivial consequence of the tilings by RCs: each of
the latter gives rise to a tiling by 15 bases.

Next consider the DLPs. The 600-cell has 100 DLPs in it and they are arranged in
a 10 × 10 array in Table 10. The ten DLPs in any row or column of this array give
a tiling of the 600-cell, there being 20 such tilings in all. Finally consider the DPPs.
There are 36 DPPs in the 600-cell and they are arranged in a 6 × 6 array in Table 11.
The six DPPs in any row or column of this array give a tiling of the 600-cell, there
being 12 such tilings in all. For later reference we will label the DPPs in Table 11
from 1 to 36, proceeding from left to right and top to bottom. Thus, the DPP in the
third row and second column will be referred to as DPP14 and the one in the last row
and fifth column as DPP35.

The basis table, DLP table and DPP table are closely related in several ways. As
one example of this, we show how the basis table can be reconstructed from any row
or column of the DPP table. Any two DPPs from the same row or column of Table 11
can be “mated” to produce five bases, with half the rays of each basis coming from
each of the DPPs. Since there are 15 pairings of the DPPs in a row or column, each
of which gives rise to five bases, the total number of bases that can be produced in
this way is 75, which are all the bases of the 600-cell. The rows and columns of the
DPP table allow the basis table to be recovered in 12 different ways.

A.3 Deletion of Rays; Isogonal Subsets of the 60-ray System

By deletion of a set of rays from a R-B set, we will mean dropping all bases involving
any of these rays from this set to obtain a new set, R′-B ′, with R′ < R and B ′ <

B . Deletion of rays is a crucial step in the construction of all the critical sets to be
presented below.

The 600-cell, as well as the 60-75 system of rays and bases derived from it, is
isogonal (or vertex/ray-transitive) in the sense that there are symmetry operations
that take any vertex (or ray) into any other vertex (or ray) while keeping the structure
as a whole invariant. It turns out that the 60-75 set has a number of isogonal subsets
within it, which may be obtained by deleting any number of DPPs (from one to five)
from an arbitrary row or column of Table 11. Deletion of one, two or three DPPs
from any row or column of Table 11 from the 60-75 set reduces it to a 50-50, 40-30
or 30-15 set, respectively. The basis tables of these sets are decimated versions of



896 Found Phys (2011) 41: 883–904

Table 2, with 25, 35 or 45 bases dropped, respectively. The number of different 50-
50, 40-30 and 30-15 sets is 36, 180 and 240, respectively. These smaller isogonal sets
are interesting because they each contain a large number of critical sets and can be
searched far more easily for these sets than the full 60-75 set. We will ignore the sets
obtained by deleting four or more DPPs from a row or column of Table 11 because
they do not contain any critical sets.

A.4 Constructions for some Critical Sets

We now use the ideas and tools developed in the previous subsections to give con-
structions for some of the parity proofs in Table 3.

A.4.1 30-15 Set (Type-1)

A somewhat involved construction for this set was given in [1], based on the deletion
of DLPs. However a much simpler procedure is to delete any three DPPs from the
same row or column of Table 11 from the 60-75 set. It was pointed out in Sect. A.3
that this procedure gives rise to 240 isogonal 30-15 sets. Inspection of these sets
shows that they all provide parity proofs of the BKS theorem! An interesting feature
of these sets is that they come in 120 complementary pairs, with the members of each
pair having no rays in common. The two members of a pair are obtained by deleting
distinct triads of DPPs from the same row or column of Table 11. For example, for
the complementary pairs shown in Table 4, the one in bold is obtained by deleting
DPPs 1, 2 and 3 and the one in plain type by deleting DPPs 4, 5 and 6. Alternatively,
the former set is obtained by keeping all bases involving only the rays in DPPs 4, 5
and 6 and the latter by keeping all bases involving only the rays in DPPs 1, 2 and 3.
These sets have been termed Type-1 because they are geometrically distinct from the
Type-2 30-15 sets to be presented a little later.

The MMP hypergraphs of Fig. 1 have a nice interpretation in terms of DPPs. The
points at the vertices of each decagon represent a DPP, with alternate vertices repre-
senting its two component pentagons. The two points within each edge in an alternat-
ing set of edges of the decagon also represent a DPP, there being two such DPPs. For
each of the latter DPPs, the two points on an edge come from dual pentagons, and
again the points alternate between the pentagons as one goes around the loop. It was
pointed out in Sect. A.2 that any two DPPs mate to produce five bases, with two rays
in each of the bases coming from each of the DPPs. This explains how the 15 bases
arise in each of the hypergraphs: the bases corresponding to the edges arise from the
matings between the distinguished DPP (corresponding to the decagon vertices) and
each of the others, while the bases that straddle the figure arise from the matings of
the other two DPPs with each other.

A.4.2 34-17 Set

This set can be constructed as follows:

(i) Pick a 40-30 set by deleting any two DPPs from the same row or column of
Table 11. For example, deleting DPPs 1 and 2 gives the 40-30 set shown in
Table 5.
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(ii) Delete any DLP from this 40-30 set to get a 34-19 set. For example, deleting
the DLP (5 24 57) + (8 23 58) leads to the 34-19 set in Table 5 whose bases are
shown in plain boldface, italic boldface and underlined boldface.

(iii) The 34-19 set has 8 rays that each occur thrice in it and 26 rays that each occur
twice. The 8 rays that each occur thrice form two bases made up of just them-
selves; these are the italic boldface bases in Table 5. Dropping these bases from
the 34-19 set gives a 34-17 set.

The number of 34-17 sets that can be constructed in this way is the product of the
number of 40-30 sets that can be picked in step (i) (= 180) and the number of DLPs
that can be deleted in step (ii) (= 20), or 3600.

A.4.3 26-13 Set

A 26-13 set can be constructed by modifying the above procedure slightly. One keeps
steps (i) and (ii), but replaces (iii) by the following alternative step:

(iii′) Write the two italic boldface bases in Table 5 (that were dropped in getting the
34-17 set) horizontally, one below the other, in such a way that each vertical
pair of rays can be augmented by two additional rays to form a basis. This is
done below, with the eight added rays indicated in boldface. The eight added
rays (which are always unique) lead to six new bases, four along the columns
of the array and two more along its last two rows. These six new bases are all
present in Table 5 and are the underlined boldfaced ones. Dropping these bases
from the 34-19 set gives a 26-13 set.

9 35 39 52
12 34 40 51
10 36 37 50
11 33 38 49

It might appear that the number of 26-13 sets that can be constructed in this way
is the same as the number of 34-17 sets, or 3600. However it turns out that every
26-13 set is obtained twice by this method, so that their true number is 1800. As an
illustration of this, the 26-13 set in Table 5 can also be constructed by first deleting
DPPs 21 and 24, then deleting the DLP (3 19 56) + (4 17 54) and finally truncating
the resulting 34-19 set in the manner described in step (iii′).

A.4.4 38-19 Set

The procedure for constructing this set is as follows:

(i) Choose a 50-50 set by deleting an arbitrary DPP. For example, deleting DPP1
leads to the 50-50 set shown in Table 6.

(ii) This 50-50 set (like all 50-50 sets) has 50 DLPs in it. Define the separation of
two DLPs as the number of orthogonalities of rays between the two. It turns out
that any 50-50 set has exactly 100 pairs of DLPs of separation 12. Deleting any
such pair from a 50-50 set will lead to a 38-21 set. In the example of Table 6,
deleting the DLPs (5 19 46) + (6 20 48) and (7 34 53) + (8 36 54) leads to the
38-21 set whose bases are the ones shown in plain boldface, italic boldface and
underlined boldface.
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Table 6 All 50 bases are those of a 50-50 set and all the bold bases (plain bold, bold italic and bold
underlined) are those of a 38-21 set. The two parity proofs are provided by a 38-19 set (whose bases are
the plain bold and bold underlined ones) and a 30-15 set (whose bases are the plain bold and bold italic
ones)

A B C D E

A′
31 42 51 16 22 60 39 28 57 23 27 40

5 6 7 8 38 24 58 25 36 53 20 46 59 26 37 21

9 10 11 12 13 32 50 41 34 19 48 54

B′
43 54 3 28 34 12 51 40 9 35 39 52

17 18 19 20 50 36 10 37 48 5 32 58 11 38 49 33

21 22 23 24 25 44 2 53 46 31 60 6

C′
25 26 27 28 46 24 3 52 8 53 39 16

2 48 22 49 42 11 57 19 60 17 44 10

33 34 35 36 20 9 41 59 7 13 54 38 58 43 12 18

D′
37 38 39 40 7 18 27 52 33 59 3 16 20 5 51 28

41 42 43 44 54 23 9 31 35 2 13 57

32 21 53 11 49 8 26 17 19 25 6 50

E´

49 50 51 52 10 48 27 16 32 17 3 40

26 12 46 13 6 35 21 43 24 41 8 34

57 58 59 60 44 33 5 23 31 37 18 2 22 7 36 42

(iii) The 38-21 set has 8 rays that each occur thrice in it and 30 rays that each occur
twice. The 8 rays that each occur thrice form two bases made up of just them-
selves; these are the italic boldface bases in Table 6. Dropping these bases from
the 38-21 set gives a 38-19 set.

The number of 38-19 sets that can be constructed by this method is the product of
the number of 50-50 sets that can be picked in the first step (= 36) and the number
of pairs of DLPs of separation 12 that can be deleted in the second step (= 100), or
3600.

A.4.5 30-15 Set (Type 2)

This set can be obtained from a 38-21 set in a manner similar to that in which a 26-13
set is obtained from a 34-17 set. After carrying out steps (i) and (ii) for the 38-19 set
just discussed, replace step (iii) by the following alternative step:

(iii′) Write the two italic boldface bases in Table 6 (that were dropped in getting the
38-19 set) horizontally, one below the other, in such a way that each vertical
pair of rays can be augmented by two additional rays to form a basis. This is
shown below, with the eight added rays indicated in boldface.

37 38 39 40
59 58 60 57
21 24 22 23
26 25 28 27
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Table 7 Two 50-25 parity proofs, one in plain type and the other in boldface, both involving the same 50
rays but having no bases in common

A B C D E

A′
1 2 3 4 31 42 51 16 44 29 15 52

38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21

9 10 11 12 13 32 50 41 43 49 30 14

B′
13 14 15 16 34 12 51 40 9 35 39 52

17 18 19 20 50 36 10 37 11 38 49 33

8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6

C′
55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16

29 30 31 32 42 11 57 19 60 17 44 10

33 34 35 36 20 9 41 59 58 43 12 18

D′
37 38 39 40 58 36 15 4 33 59 3 16

41 42 43 44 14 60 34 1 35 2 13 57

32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30

E′
49 50 51 52 19 30 39 4 32 17 3 40

26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9

57 58 59 60 1 20 38 29 31 37 18 2

The eight added rays (which are unique) lead to six new bases, four along the
columns of the array and two more along its last two rows. These six new bases are
all present in Table 6 and are the underlined boldfaced ones. Dropping these bases
from the 38-21 set gives a Type-2 30-15 set. The number of such sets is the same as
the number of 38-21 sets, or 3600. Note that we have called this 30-15 set a Type-2
set to distinguish it from the one constructed in Appendix A.4.1 These two types of
30-15 sets are geometrically distinct in that the rays of one cannot be made to pass
into those of the other by any rotation in four-dimensional space.

A.4.6 50-25 Set

This set can be constructed by deleting an arbitrary DPP from the 60-75 set to obtain
a 50-50 set and then dividing the latter (in 291 ways) into a pair of 50-25 sets. The
two 50-25 sets that are obtained in this way involve the same 50 rays but have no
bases in common. The sets shown in Table 7 were obtained by deleting DPP10 and
then partitioning the bases.

The total number of 50-25 sets that can be constructed in this way is the product
of the number of 50-50 sets that can be picked in the first step (= 36) and the number
of 50-25 sets into which each can be divided (= 2 × 291), or 20,952.

A.4.7 54-27 Set

The construction of this set is similar to the last, but with a small twist. This time one
deletes an arbitrary DLP from the 60-75 set to get a 54-54 set and then divides the
latter (in 368 ways) into two 54-27 sets. The sets shown in Table 8 were obtained by
deleting the DLP (5,19,46)+(6,20,48) and then partitioning the bases. The number of
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Table 8 Two 54-27 parity proofs, one in plain type and the other in boldface, both involving the same 54
rays but having no bases in common

A B C D E

A′
1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52

38 24 58 25 18 47 33 55 59 26 37 21

9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14

B′
13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4

50 36 10 37 30 59 45 7 11 38 49 33

21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26

C′
25 26 27 28 21 47 51 4 8 53 39 16

29 30 31 32 60 17 44 10 23 50 1 45

33 34 35 36 7 13 54 38 58 43 12 18

D′
37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16

41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57

32 21 53 11 49 8 26 17 10 55 24 30

E′
49 50 51 52 45 11 15 28 32 17 3 40

53 54 55 56 24 41 8 34 47 14 25 9

57 58 59 60 31 37 18 2 22 7 36 42

Table 9 A 36-19 parity proof (bases in plain type and bold) and a 32-17 parity proof (bases in plain type
and bold italics). Each proof has two rays that occur four times each (rays 25 and 29 in both cases), with
all the remaining rays occurring twice each

A B C D E

A′
1 2 3 4 44 29 15 52

38 24 58 25 36 53 20 46

13 32 50 41

B′
13 14 15 16 9 35 39 52

8 57 29 47 25 44 2 53 46 31 60 6

C′
46 24 3 52 8 53 39 16

29 30 31 32

33 34 35 36 20 9 41 59

D′
33 59 3 16

19 25 6 50

E′
19 30 39 4

24 41 8 34 47 14 25 9

57 58 59 60 1 20 38 29

54-27 sets that can be constructed in this way is the product of the number of 54-54
sets that can be picked in the first step (= 100) and the number of 54-27 sets into
which each can be divided (= 2 × 368), or 73,600.
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Table 10 The 100 dual line pairs (DLPs) of the 600-cell. The DLPs in any row or column provide a tiling
of the 600-cell. The letters at the beginning of each row and column help identify the pair of 24-cells
in which each line of a DLP originates. For example, the line (1 5 9) originates in AA’ and DB’, while
(14 20 23) originates in AB’ and DA’

A A A A B B B C C D

B C D E C D E D E E

A′ B′ 3 16 2 13 1 14 4 15 25 28 35 36 31 29 32 30 33 34 27 26

8 17 7 18 5 20 6 19 45 47 42 43 38 37 39 40 41 44 46 48

10 24 12 22 9 23 11 21 51 50 58 57 56 54 55 53 60 59 49 52

A′ C′ 2 25 3 28 4 27 1 26 24 22 17 20 16 15 13 14 18 19 23 21

6 31 5 32 7 30 8 29 42 41 38 40 45 48 47 46 39 37 43 44

9 35 11 33 10 36 12 34 56 55 51 49 58 59 60 57 50 52 53 54

A′ D′ 1 38 4 39 3 40 2 37 17 18 16 14 24 21 22 23 13 15 20 19

7 42 8 41 6 43 5 44 31 32 25 27 35 34 33 36 28 26 30 29

11 45 9 47 12 46 10 48 58 60 56 53 51 52 50 49 55 54 57 59

A′ E′ 4 51 1 50 2 49 3 52 16 13 24 23 17 19 18 20 22 21 14 15

5 56 6 55 8 53 7 54 35 33 31 30 25 26 28 27 32 29 36 34

12 58 10 60 11 57 9 59 38 39 45 46 42 44 41 43 47 48 40 37

B′ C′ 15 28 14 25 13 26 16 27 3 2 10 9 8 6 7 5 12 11 1 4

20 29 19 30 17 32 18 31 37 40 47 48 43 41 44 42 45 46 39 38

22 36 24 34 21 35 23 33 57 59 54 55 50 49 51 52 53 56 58 60

B′ D′ 14 37 15 40 16 39 13 38 8 7 3 1 10 11 12 9 2 4 5 6

18 43 17 44 19 42 20 41 36 34 29 32 28 27 25 26 30 31 35 33

21 47 23 45 22 48 24 46 54 53 50 52 57 60 59 58 51 49 55 56

B′ E′ 13 50 16 51 15 52 14 49 10 12 8 5 3 4 2 1 7 6 9 11

19 54 20 53 18 55 17 56 29 30 28 26 36 33 34 35 25 27 32 31

23 57 21 59 24 58 22 60 43 44 37 39 47 46 45 48 40 38 42 41

C′ D′ 27 40 26 37 25 38 28 39 9 11 6 7 2 1 3 4 5 8 10 12

32 41 31 42 29 44 30 43 15 14 22 21 20 18 19 17 24 23 13 16

34 48 36 46 33 47 35 45 49 52 59 60 55 53 56 54 57 58 51 50

C′ E′ 26 49 27 52 28 51 25 50 6 5 2 4 9 12 11 10 3 1 7 8

30 55 29 56 31 54 32 53 20 19 15 13 22 23 24 21 14 16 17 18

33 59 35 57 34 60 36 58 48 46 41 44 40 39 37 38 42 43 47 45

D′ E′ 39 52 38 49 37 50 40 51 1 4 11 12 7 5 8 6 9 10 3 2

44 53 43 54 41 56 42 55 21 23 18 19 14 13 15 16 17 20 22 24

46 60 48 58 45 59 47 57 27 26 34 33 32 30 31 29 36 35 25 28

A.4.8 36-19 and 32-17 Sets

In all the above proofs, each ray occurred twice among the bases. Table 9 shows two
parity proofs, a 36-19 proof and a 32-17 proof, that both involve two rays occurring
four times each.
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Table 11 The 36 Dual-Pentagon-Pairs (DPPs) of the 600-Cell. The DPPs in any row or column provide a
tiling of the 600-cell

1 4 2 3 5 7 6 8 9 10 11 12

15 14 16 13 18 20 17 19 24 23 22 21

56 55 54 53 59 58 57 60 50 52 51 49

47 45 46 48 38 37 39 40 44 41 43 42

30 29 32 31 36 33 34 35 27 25 26 28

2 3 1 4 6 8 5 7 11 12 9 10

43 44 41 42 47 46 45 48 40 38 37 39

33 35 36 34 26 25 27 28 29 32 30 31

17 18 19 20 24 21 22 23 13 15 16 14

52 49 51 50 53 55 54 56 58 57 60 59

5 6 7 8 9 12 10 11 1 3 2 4

21 23 24 22 13 14 15 16 17 20 19 18

31 32 29 30 34 35 33 36 28 26 27 25

50 51 49 52 56 54 53 55 59 60 58 57

40 37 39 38 43 41 42 44 46 45 47 48

7 8 5 6 10 11 9 12 2 4 1 3

26 27 25 28 32 30 29 31 36 35 33 34

16 13 15 14 19 17 18 20 21 22 24 23

41 42 43 44 45 48 46 47 39 37 40 38

57 59 60 58 49 50 51 52 56 53 54 55

9 11 10 12 1 2 3 4 5 8 6 7

19 20 18 17 22 23 21 24 16 14 13 15

38 39 40 37 44 42 41 43 47 48 45 46

28 25 26 27 31 29 30 32 34 33 36 35

53 54 56 55 57 60 58 59 49 51 52 50

10 12 9 11 3 4 1 2 6 7 5 8

34 36 33 35 27 28 25 26 30 31 29 32

58 60 57 59 51 52 49 50 54 55 53 56

22 24 21 23 15 16 13 14 18 19 17 20

46 48 45 47 39 40 37 38 42 43 41 44

A.4.9 Basis-Complementary Parity Proofs

The proofs in Tables 7 and 8 are particular instances of a phenomenon we term “ba-
sis complementarity”, which is of interest because it forges a link between many
pairs of proofs in Table 3 that might otherwise appear to be unrelated. Any R-B set,
with B even, in which each ray occurs four times can potentially house many basis-
complementary parity proofs within it. The 50-50 sets obtained by a deleting a DPP
and the 54-54 sets obtained by deleting a DLP are both examples of such sets. If there
is a R-B parity proof contained in either of these sets, the remaining N − B bases,
which involve N − 2B + R distinct rays (with N = 50 or 54), automatically yield
another parity proof that we will term the “basis-complementary” proof to the origi-
nal one. The basis-complementary proof has 2R − 2B rays that occur twice each and
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N −R rays that occur four times each. In general the proof complementary to a given
proof might not be basis-critical, in which case it would be left out of Table 3. Only
if both members of a basis-complementary pair are basis-critical would they both
be included in Table 3. Three examples of basis-complementary (and basis-critical)
parity proofs within a 50-50 set are 36-19/48-31, 39-21/47-29, and 42-21/50-29 and
three examples within a 54-54 set are 37-19/53-35, 41-21/53-33 and 44-23/52-31.
We hope to make several examples of such proofs available on the interactive web-
site (see footnote 1).
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15. Pavičić, M., Merlet, J.P., McKay, B.D., Megill, N.D.: J. Phys. A 38, 1577 (2005)
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