Entropy 21 (11), 1107

Hypergraph Contextuality

Mladen Pavici¢*
Center of Excellence for Advanced Materials and Sensors CEMS,
Photonics and Quantum Optics Unit, Ruder Boskovi¢ Institute, Zagreb, Croatia.
(Dated: November 10, 2019)

Quantum contextuality is a source of quantum computational power and a theoretical delimiter

between classical and quantum structures.

It has been substantiated by numerous experiments

and prompted generation of state independent contextual sets, i.e., sets of quantum observables
capable to reveal quantum contextuality for any quantum state of a given dimension. There are
two major classes of state-independent contextual sets: the Kochen-Specker ones and the operator-
based ones. In this paper, we present a third, hypergraph-based class of contextual sets. Hypergraph
inequalities serve as a measure of contextuality. We limit ourselves to qutrits and obtain thousands
of 3-dim contextual sets. The simplest of them involves only 5 quantum observables, thus enabling
a straightforward implementation. They also enable establishing new entropic contextualities.

I. INTRODUCTION

Recently, quantum contextuality found applications in
quantum communication [1, 2], quantum computation
[3, 4], quantum nonlocality [5], and lattice theory [6, 7].
This has prompted experimental implementation with
photons [8-19], classical light [20-23], neutrons [24-26],
trapped ions [27], solid state molecular nuclear spins [28],
and superconducting quantum systems [29].

Quantum contextuality, the aforementioned citations
refer to, precludes assignments of predetermined values
to dense sets of projection operators and in our approach
we shall keep to this feature of the considered contex-
tual sets. Contextual theoretical models and experimen-
tal tests involve additional subtle issues, such as the pos-
sibility of classical noncontextual hidden variable models
that can reproduce quantum mechanical predictions up
to arbitrary precision [30] or a generalization and redef-
inition of noncontextuality [31, 32]. These elaborations
are outside of the scope of the present paper, though,
since it is primarily focused on contextuality which finds
applications within quantum computation vs. noncon-
textuality which is inherent in the current classical bi-
nary computation. That means that we consider clas-
sical models with predetermined binary values, that can
be assigned to measurement outcomes of classical observ-
ables, which underlie the latter computation, vs. quan-
tum models that do not allow for such values and under-
lie quantum computation. As for a direct relevance of
our results for quantum computation we point out that
the hypergraph presented in Fig. 2 of [3], from which the
contextual “magic” of quantum computation has been de-
rived, is a kind of hypergraph contextual sets we present
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in this paper. However, the hypergraph is from a 4-dim
Hilbert space, so, we will not elaborate on it in the paper.

We give a pedestrian overview of our approach, meth-
ods, and results as well as their background in the last
few paragraphs of this Introduction, describing the orga-
nization of the paper.

A class of state-independent contextual (SIC) [33] sets
that have been elaborated on the most in the literature
are the Kochen-Specker (KS) sets [34-48]. They boil
down to a list of n-dim vectors and their n-tuples of or-
thogonalities, such that one cannot assign definite binary
values to them.

Recently, different SIC sets has been designed and/or
considered by Yu and Oh [49], Bengtsson, Blanchfield,
and Cabello [33], Xu, Chen, and Su [50], Ramanathan
and Horodecki [51], and Cabello, Kleinmann, and Bu-
droni [52]. They all make use of operators defined by
vectors that define their sets. You and Oh construct
rather involved expression of state/vector defined 3 x 3
operators that eventually reduces to a multiple of a unit
operator while the other authors make use of projectors
whose expressions also reduce to a multiple of a unit op-
erator. Therefore we call their sets the operator-based
contextuality sets and assume that they form an operator
contextuality class. All the sets make use of a particu-
lar list of 3-dim vectors and their orthogonal doublets
and triplets such that a given expression of definite bi-
nary variables has an upper bound which is lower than
the one of a corresponding quantum expression. The last
two Refs. [51, 52] also provide us with the necessary and
sufficient condition for being a SIC set in any dimension.

The difference between the KS contextuality and the
operator contextuality is that KS statistics includes mea-
sured values of all vectors from each n-tuple, while the
statistics of measurements is built on values obtained via
operators defined by possibly less than n vectors from
each n-tuple.
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In this paper, we blend the two aforementioned contex-
tualities so as to arrive at a hypergraph one. We consider
hypergraphs with 3-dim vectors in which some of those
vectors that belong to only one triplet are dropped, as
in the observable approach, and generate smaller hyper-
graphs from them, such that one cannot assign definite
binary values to them, as in the KS approach. We call
our present approach the McKay-Megill-Pavici¢ hyper-
graph (MMPH) approach. MMPH non-binary sets di-
rectly provide us with noncontextual inequalities. On
the other hand, via our algorithms and programs we ob-
tain thousands of smaller MMPH sets which can serve
for various applications as, e.g., to generate new entropic
tests of contextuality or new operator-based contextual
sets.

The smallest MMPH non-binary set we obtain is a
pentagon with five vectors (vertices) cyclically connected
with 5 pairs of orthogonality (edges). It corresponds to
the pentagram from Ref. [53], implemented in [15, 20, 23].
The difference is that the pentagram inequality is state
dependent, while the MMPH pentagon inequality is state
independent. More specifically, in Ref. [53], one obtains
a nonclassical inequality by means of projections of five
pentagram vectors at a chosen sixth vector directed along
fivefold symmetry axis of the pentagram. By our method,
one gets a nonclassical inequality between the maximum
sum of possible assignments of 1, representing classical
measurement clicks, and the sum of probabilities of ob-
taining quantum measurement clicks.

Entropic test of contextuality for pentagram/pentagon
has been formulated in Ref. [54] following Ref. [55]. It
can be straightforwardly reformulated for other MMPH
non-binary sets we obtained.

The paper is organized as follows.

In Sec. ITA we present the hypergraph formalism and
define n-dim MMPH set and n-dim MMPH binary and
non-binary sets as well as filled MMPH set. We explain
how vertices and edges in an n-MMPH set correspond to
vectors and their orthogonalities, i.e., m-tuples (2 < m <
n) of mutually orthogonal vectors, respectively.

In Sec. II B we give the KS theorem and a definition of
a KS set and prove that a KS set is a special non-binary
set. In Def. I1.3 we define a critical KS set, i.e., the one
which would stop being a KS set if we removed any of
its edges. Then we introduce known KS sets to compare
them with operator defined sets. In particular, we start
with Conway-Cohen, Bub, Peres, and original Kochen-
Specker’s sets. We show that the number of vectors they
are characterised with in the original papers and most
of the subsequent ones as well as in books, i.e., 31, 33,
33, and 117, respectively, are not critical. That, actually,
enables the whole approach presented in this paper. We
show that the aforementioned authors dropped the vec-
tors that are contained in only one triplet. If we took
all the stripped vectors into account, i.e., if we formed
filled sets, we would get 51, 49, 57, and 192 vectors, re-
spectively. These sets are critical and the majority of
researchers assumed that their stripped versions are crit-

ical too and so they did not try to use them as a source
of smaller non-classical 3-dim sets.

Next, we connect and compare KS sets with operator-
based sets, in particular YU-Oh’s 13 vector set whose
filled version has 25 vectors and 16 triplets—we denote it
as 25-16. In Fig. 1 we show Yu-Oh’s 25-16 as a subgraph
of Peres’ 57-40. In Fig. 2 we show how 25-16 can be
stripped of vectors contained in only one triplet, so as to
a arrive at the original Yu-Oh’s 13-16 set. Egs. (1)-(6)
and their comments explain how Yu and Oh defined their
operators with the help of the 13 vectors and how they
used them to arrive, via Eq. (4), at the inequality defined
by Eq. (6). We then used the operator expression given
by Eq. (4) to test 50 sets smaller and bigger than the
13-16 but did not obtain an analogous result. Some of
the sets are shown in Fig. 3.

In Sec. IIC we give a historical background of strip-
ping the aforementioned vectors that are contained in
only one triplet and explain what was behind that “in-
complete triplets” issue. Then we give MMPH strings
of Conway-Kochen’s 31-37, Bub’s 33-36, Peres’ 33-40,
and Kochen-Specker’s 117-118 non-critical but still non-
binary non-classical MMPH sets and take them as our
master sets from which we generate smaller non-binary
critical MMPH sets in the next section. However, we
stress that any set we obtain by stripping some other
number of vertices contained in only one edge from any
one of the original four KS sets can serve us as a master
set. We give a Peres’ 40-40 set as an example.

In Sec. ITD we start with Def. I1.4 of a critical MMPH
non-binary set which differs from the one of a critical KS
set. If we strip more and more edges from a critical KS
set we shall never come to a KS set again. This is not so
with MMPH non-binary sets. MMPH non-binary critical
sets might properly contain smaller MMPH non-binary
critical sets whose number of edges is smaller than the
original critical set for at least 2 edges.

Via our algorithms and programs, we obtain thousands
of critical sets from our master sets, whose distributions
are shown in Fig. 4. We say that a collection of MMPH
non-binary subgraphs of an MMPH master form its class.

Next we define measurements which can distinguish
contextual from non-contextual MMPH sets, i.e., non-
binary from binary ones. Similarly as with operator-
based contextual measurements, dropped vertices are
not considered, i.e., clicks obtained at their correspond-
ing out-ports are not taken into account when obtain-
ing the statistics of collected data. So, measurements
of MMPH non-binary sets are carried out as for KS sets
with triplets, i.e., with the 1/3 probability of detection at
each out-port, and via calibrated detections of a particle
or a photon at out-ports of a gate representing a doublet
with the 1/2 probability of getting a click at each of the
two considered ports, while ignoring the third one. When
a vertex shares a mixture of triplet and doublet edges the
probability of detection is 1/p, where 1/3 <p < 1/2. We
call detections at all ports notwithstanding whether we
include them in our final statistics or not, uncalibrated
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detections—they simply have 1/3 probability of detec-
tion at every port.

To obtain contextual distinguishers of an MMPH set
we consider the sum of probabilities of getting clicks for
all considered vertices and call it a quantum hypergraph
index. We distinguish a calibrated quantum hypergraph
index, which we denote as HI; and an uncalibrated one,
which we denote as HI; ,n.. On the other hand, each
MMPH set allows a maximal number of 1s assigned to
vertices so as to satisfy the two conditions from Def. I1.2.
We call the number classical hypergraph index and de-
note it as HI.. Our weak contextual distinguisher is the
inequality: HI, > HI. and the strong one is the inequal-
ity Hlg—une > HI.. Yu-Oh, Bub, Conway-Kochen, and
Peres” MMPH non-binary sets as well as others given in
the section, like, e.g., 13-10, satisfy both inequalities.

We present several small critical MMPH sets in Figs. 5
and 6 and discuss their features. We also calculate Yu-
Oh’s inequalities for several sets different from Yu-Oh’s
13-16 set. Nomne of the 50 tested sets satisfy the inequal-
ity.

In Sec. IIT we discuss and reexamine the steps and
details of our approach.

II. RESULTS

We consider a set of quantum states represented by
vectors in a 3-dim Hilbert space # grouped in triplets
of mutually orthogonal vectors. We describe such a
set by means of a hypergraph which we call a McKay-
Megill-Pavicié hypergraph (MMPH). In it, vectors them-
selves are represented by vertices and mutually orthog-
onal triplets of them by edges. However, an MMPH
itself has a definition which is independent of a possi-
ble representation of vertices by means of vectors. For
instance, there are MMPHs without a coordinatization,
i.e., MMPHs for whose vertices vectors, one could assign
to, do not exist. Also, edges can contain less than 3 ver-
tices, i.e., 2, and form doublets. When a coordinatization
exist, that does not mean that a doublet belongs to a 2-
dim edge, but only that we do not take an existing third
vertex/vector into account.

A. Formalism

Let us define the hypergraph formalism.

A hypergraph is a pair v-e where v is a set of elements
called vertices and e is a set of non-empty subsets of e
called edges. Edge is a set of vertices that are in some
sense related to each other, in our case orthogonal to each
other.

The first definition of MMPH was given in [58] where
we called them, not hypergraphs, but diagrams. In [46]
we gave a definition of an n-dim MMP hypergraph which
required that each edge has at least 3 vertices and that
edges that intersect each other in m-2 vertices contain

at least n vertices. The definition of MMPH is slightly
different.

Definition II.1. An MMPH is an n-dim hypergraph in
which

1. Every vertex belongs to at least one edge;
2. Every edge contains at least 2 vertices;

3. Edges that intersect each other in m — 2 vertices
contain at least m vertices, where 2 <m < n.

Then, in [47] we presented a hypergraph reformulation
of the Kochen-Specker theorem [59] from which we derive
the following definition of an MMPH non-binary set.

Definition I1.2. n-dim MMPH non-binary set, n > 3, is
a hypergraph whose each edge contains at least two and
at most n vertices to which it is impossible to assign 1s
and Os in such a way that

1. No two vertices within any of its edges are both
assigned the value 1;

2. In any of its edges, not all of the vertices are as-
signed the value 0.

An MMPH set to which it is possible to assign 1s and
0s so as to satisfy the above two conditions we call an
MMPH binary set.

An MMPH non-binary set with edges of mixed sizes to
which vertices are added so as to make all edges of equal
size each containing n vertices is called filled MMPH set.

A coordinatization of an MMPH non-binary set means
that the vertices of its filled MMPH denote n-dim vectors
in ", n >3 and that its edges represent orthogonal n-
tuples, containing vertices corresponding to those mutu-
ally orthogonal vectors. Then the vertices of an MMPH
set with edges of mixed sizes inherit its coordinatization
from the coordinatization of its filled set. In our present
approach a coordinatization is automatically assigned to
each hypergraph by the very procedure of its generation
from master MMPHs as we shall see below.

In the real 3-dim Hilbert space edges form loops of
order five (pentagon) or higher as we proved in [35]. For
complex vectors our calculations always confirmed this
result but we were unable to find an exact proof. Loops
of order two are precluded by Def. IL.1(3).

MMPH are encoded by means of printable ASCII char-
acters organized in a single string, and within it in edges,
which are separated by commas; each string ends with
a period. Vertices are denoted by one of the follow-
ing characters: 1 2 ... 9AB ... Zab ...z! "
BS % & ()*- /i —>7 @[\]" _{|}"
[35]. When all of them are exhausted one reuses them
prefixed by ‘47, then again by ‘++’, and so forth. An
MMPH with k vertices and [ edges we denote as a k-I
set. In its graphical representation, vertices are depicted
as dots and edges as straight or curved lines connecting
orthogonal vertices. In its ASCII string representation
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(used for computer processing) each MMPH is encoded
in a single line followed by assignments of coordinati-
zation to k vertices. We handle MMP hypergraphs by
means of algorithms in the programs SHORTD, MMP-
STRIP, MMPSUBGRAPH, VECFIND, STATES01, and
others [6, 39, 58, 60-62].

B. KS vs. operator contextuality

Let us start with the Kochen-Specker theorem and KS
sets. Then we shall connect them with the vectors and

operators of one type of operator-based contextuality in-
troduced by Yu and Oh.

Theorem II.1. (Kochen-Specker [59, 63, 64]) In ",
n > 3, there are sets of n-tuples of mutually orthogonal
vectors to which it is impossible to assign 1s and Os in
such a way that

1. No two orthogonal vectors are both assigned the
value 1;

2. In any group of n mutually orthogonal vectors, not
all of the vectors are assigned the value 0.

The sets of such vectors are called KS sets and the vectors
themselves are called KS vectors.

There is a one-to-one correspondence between KS n-
tuples of vectors and MMPH edges when they are all
of their maximal size, as established in [35, 46-48], and
between KS vectors and MMPH vertices with coordina-
tization within an MMPH with maximal edges.

Theorem II1.2. An n-dim MMPH non-binary set with
a coordinatization whose each edge contains n vertices,
is a KS set.

Proof. 1t follows straightforwardly from the KS theorem,
its definition of a KS set and the aforementioned corre-
spondences between its vectors and MMPH vertices. [

In 1988 Asher Peres presented a simple proof of the
KS theorem in a 3-dim Hilbert space using real vectors
[65]. He implicitly made use of 57 vectors/rays and 40
triplets of mutually orthogonal vectors but seemed to
have dropped 24 vectors that appear in only one triplet
and called his proof a “33 vector [ray| proof.” How-
ever, he admitted the role of the remaining vectors: “It
can be shown that if a single ray is deleted from the
set of 33, the contradiction disappears. It is so even
if the deleted ray is not explicitly listed in table 1.”
[65, L176, bottom paragraph|. From [65, Table 1] we
can reconstruct the 33 vectors within their 40 triplets
together with the “non-explicit” 24 vectors and repre-
sent them in our MMPH notation, obtaining an MMPH
non-binary set with 57 vertices (vectors) and 40 edges
(triplets), i.e., a 57-40 KS set. We did so in two dif-
ferent ways with two resulting (but isomorphic) hyper-
graphs in [6, Fig. 4] and [46, Fig. 19]. Here we give

a third MMPH representation (isomorphic to the previ-
ous two) which contains the so-called full scale Yu-Oh
set 123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,
5LF,JPD,JM7,30B,HN9. we elaborate on below. The
representation is carried out via our programs SUB-
GRAPH and LOOP [47].

Peres’ 57-40 MMPH KS set reads:

123,345,567,789,9AB,BCD,DEF ,FGH,HI1,1JK,KLA,
JM7,3B0,HON, JPD,FL5,QRS,STA,AUV,VWX,XY0,0Za,
abc,cdC,CeQ,Sha,QgX,Vfc,bg9,qmU,Nnq,Bij, jku,
k1N,ur8,8st,iqt,Tpk,Tot ,uvU.

Its graphical representation is given in Fig. 1(a).

FIG. 1. (a) Peres’ KS set 57-40 in the MMPH representation
and containing the full scale Yu-Oh set (drawn in red); (b)
The full scale Yu-Oh non-KS set 25-16; Vertices (vectors) that
share only one edge (triplet) are given as gray dots. See text.

Notice that gray dots 8,D,N,O in Fig.1(b) are not gray
in Fig.1(a) and therefore the representation of the orig-
inal full scale 57-40 Peres KS set (with all gray dots in-
cluded) by means of the three original Yu-Oh non-KS
sets (with gray vertices dropped), as depicted in Fig. 1
of [66], apparently does not work. Also, as verified with
our program SUBGRAPH, Yu-Oh’s set is not a subgraph
of Peres’ 33-40 set (with all gray dots dropped). On the
other hand, Yu-Oh’s set cannot be a subgraph of Peres’
57-40 because it lacks gray dots. The full scale Yu-Oh’s
set 25-16 shown Fig.1(b) is, of course, a subgraph of the
full-scale Peres’ 57-40 set as shown in Fig.1(a) an con-
firmed by SUBGRAPH.

The arguments that all vertices are indispensable for
an experimental implementation of a KS set can be found
in [67, In particular Table on p. 804], [68, pp. 1583 top,
1588 bottom, and top 1589], and [69, p. 332, end of the
1st par.]. In essence, every n-tuple from the KS Theorem
I1.1 should contain no less than n vectors.

Below, the coordinatization of Peres’ 57-40 set is ob-
tained via VECFIND [47] from the vector components
0,+1,v/2 (the component —/2, used by Peres in [65] is
not needed):
1={1,v/2,-1},3={0,1v/2},5={-1,/2,-1},7={~/2,1,0},
8:{'17\/570}a9:{0;07l}aA:{O;]-;O}?B:{]-;O;O};
C:{Oa\/571}aD:{Ofla\/i}aF:{la\/i;]-LH:{\/ia'l;O};
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J={-1,v2,1} K={1,0,1},L={1,0,-1},N={1,v2,0},
O:{O;\/E;'l}aQ:{'la']w\/5}78:{\/570;1}7’1‘:{'170;\/5};
U:{l,O,\/Q},V:{\/5,0,—1},)(:{1,1,\/i},a:{—l,l,\/i},
b:{l,l,O},c:{l,—l,\/Q},g:{1,—1,0},i:{0,1,—1},j:{0,1,1},
k:{ﬂa_lal}aq:{ﬁa_la_l}at:{\/57171}711:{\/5717_1}

The aforementioned Peres’ statement “if a single ray is
deleted from the set of 33, the contradiction disappears”
amounts to a coarse definition of a vertex-critical KS set:
“A KS [set] is termed critical iff it cannot be made smaller
by deleting the [vertices]” [70]. However, in KS sets, there
are edges whose removal does not remove any vertex (but
nevertheless cause a disappearance of the KS property)
and, on the other hand, no vertex can be removed from a
KS set without removing at least one edge as well, in the
sense that all edges/n-tuples should contain n mutually
orthogonal vertices/vectors.

Therefore, we adopt a definition of an edge-critical KS
set [6, 46, 61] (MMPH sets will require a redefinition of
critical sets, as we shall see later on):

Definition IL.3. KS sets that do not properly contain
J

1 (Y 11
lyi)=—0| 1|, lh2) = —=|-1],
=7 Ve

Vectors serve Yu and Oh to define the following oper-
ators

A =1-2[i)i| (2)

The operators can be combined in the following way:
123:
i

where I';; = 1 whenever corresponding vectors 4,j are
orthogonal to each other and I';; = 0 when they are not;
also I';; = 0. The value 25/3 is curious since it is also
the sum of probabilities of detecting photons in the full
scale setup 25-16 shown in Fig. 1(b). That may be purely
accidental. Also L25 is not diagonal. Yu and Oh consider
neither vectors |i) nor operators A; fori=14,...,25
The fact that each A; has the spectrum { 1,1,1}
prompted Yu-Oh to calculate the upper bound of a cor-

»-lkll—'

13 13 A 25 .
22T i Aidy = 5 1=831 (4)
i J

any KS subset, meaning that if any of its edges were re-
moved, they would stop being KS sets, are called critical
KS sets.

Hence, the set 13,35,57,79,9AB,BD,DF,FH,H1,1JK,
KLA,5LF,JD,J7,3B,H9. Yu and Oh obtained in [49] can-
not be a KS set since it is a subgraph of a critical KS set
(Peres’ set) and therefore cannot provide a proof of the
KS theorem contrary to the claim in the title of [49], as
we also show in some detail in [46, Sec. XII|. But, in [49],
Yu and Oh do define a new kind of contextuality which
we shall analyse and which we sumarize as follows.

Consider the MMPH of the Yu-Oh representation of
the MMPH Peres’ subgraph, from Fig. 1(b), shown in
Fig. 2. They removed all the vertices that share only one
edge and which are depicted as gray dots in Fig. 2(a).
Then they define operators by means of the remaining
vertices/vectors/rays/states which serve them to define
filters either for preparation or for detection of arbitrary
input or output states, respectively. The procedure goes
as follows.

Some of the vectors from Fig. 2(a) are represented as

0 1 2
|23) (1) ; |N):% —11 (1)

where ¢ = 1,...,13 correspond to y7,¥s5,...,23 and we
add i = 14,...,25 corresponding to gray dots in Fig. 2(a).
For instance, for 7 = 1,8,13, 20, corresponding to vectors
from Eq. (1), we have:

100\ -122
Ais=101 0], Ay==[2 21 (3)
00 -1 ~2 12

responding expression for 13 classical variables with pre-
determined values -1 and 1:

1 13 13
Cls—Zaz——ZZFuazaJ@ (5)
The inequality
(L) > Maz[C] (6)

has been verified experimentally [16, 21] and also im-
proved theoretically by changing the coefficients in
Eqgs. (4) and (5) [71, 72]. However, no other set, apart
from Yu-Oh’s 13-16 itself, with such properties has been
found since.



Mladen Pavici¢, Hypergraph Contextuality

Entropy 21 (11), 1107

011=y, 100=z 011=y; iz

(d)  Kochen & Specker
notation

A (A)
0

equivalent
*—o—0
Z3 o.r/o\.

MMPH notation

FIG. 2. (a) An MMPH subgraph of Peres’ KS MMPH; (b) Yu-Oh’s reduction of (a); (c) Yu-Oh’s Fig. 2 from [49]; (d) Yu and
Oh adopted a mixture of Kochen & Specker notation [59]; Cf. [46, Fig. 19] (the triangles in (c¢)) and MMPH notation (the circle

in (c)).

We tested 50 sets and found that L of MMPHs with-
out left right symmetry mostly do not have diagonal ma-
trices, although some do, and that Ls of the majority
of symmetric MMPHs are also not diagonal; when they
are, they are often not multiples of I; for the ones whose
Ls are multiples of I we found that they satisfy either
(L) < Maz[C] or at most (L) = Maz[C], i.e., we have
not found instances of Eq. (6) being satisfied. We give
some examples below.

We should stress here that our definition of a subgraph
differs from a standard one. The standard definition as-
sumes that a subgraph is a hypergraph contained in a
bigger hypergraph as is. In contradistinction, we shall
assume that a subgraph might also be a hypergraph ob-
tained from a bigger hypergraph by taking out some
edges and connecting the remaining edges together, or
simply by taking out some vertices. The latter subgraph
we denote as subgraph. For instance 123,345,567.
is a standard subgraph of 123,345,567,781., while
123,345,561. and 13,345,567,781. are its subgraphs.
Yu-Oh’s 13-16 set is a subgraph of Peres’ full scale 57-40
set. It is not a subgraph of either Peres’ 57-40 or Peres’
33-40.

For a symmetric Kochen & Specker’s divided hexagon
[35, Fig. 6(ii)] MMPH 8-7, a subgraph of the KS set 117-
118 [59], shown in Fig. 3(a), we obtain (Lg) = Maxz[Cs] =
9/2. The contextuality of the set has previously been
considered in [73].

From Peres’ original KS set, using our programs
STATESO01, LOOP, and VECFIND we can generate ar-
bitrary many subsets. Most of them are asymmetric and
their Ls are non-diagonal. Also, many of highly symmet-
ric ones, as, e.g., 16-15 shown in Fig. 3(b) with L given
in Eq. (7), are not diagonal.

(5T 44
Lig==[4 54 3 (7)
4 3 60

_ An example of a non-symmetric 13-11 with a diagonal
L is given in Fig. 3(c). It has (L13) = 7.5 and Max[C13] =

7.75, i.e., (L) < Maz[C].
We might try to construct a symmetric MMPH, e.g.,
the 16-13 one given in Fig. 3(d). For it we obtain

(L1s) = 9.5 and Maz[Cis] = 9.75, ie., again (L) <
Max[C]. However, the main problem with such con-
structed MMPHs is that the probability of coming across
their filled (full scale) versions with coordinatizations
and therefore belonging to the 3-dim Hilbert space is
minute, i.e., negligible even via automated construction
and search on a supercomputer. The full scale version
(23-13) of the aforementioned 16-13 apparently does not
have a coordinatization, either.

We give more examples of (L) vs. Maz[C'] calculations
for other MMPHs in Sec. IID.

C. MMPH masters

There are several facts we would like to stress as start-
ing points of our elaboration on the MMPH non-binary
sets.

(i) Peres wrote: aALJIt can be shown that if a single
ray is deleted from the set of 33, the contradiction
disappears. It is so even if the deleted ray is not
explicitly listed in table 1.4A1 [65, L176, bottom
paragraph]|

Ad (i) The first sentence is wrong because MMPH
33-40 set 123,345,47,79,92A,AC,C4,AF,5F,HJ,
HL,H7M,NCO,0OPQ,QRL,RT,TJ,JPV,VX,XR,Va,La,
ce,cTl,cg,FXM,Mhi,ijg,jl,le,ehn,np,pj,nN,
gN,t9,t10,t5,apl,1M0. is not critical as verified
by STATESO1. It is also not a KS set but only
an MMPH non-binary set. The second sentence is
conditionally correct because the full scale MMPH
57-40, 123,345,467,789,92A,ABC,CD4, AEF,5GF,
HIJ,HKL,H7M,NCO.0PQ,QRL,RST,TUJ,JPV,VWX,
XYR,VZa,Lba,cde,cT1,cfg,FXM,Mhi,ijg, jk1,
lme,ehn,nop,pqj,nrN,gsN,tu9,t10,tv5,apl,
1MO. is a critical KS set but only if assume that
with the deleted ray we also delete the edge/triplet
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FIG. 3. (a) Hexagon MMPH from the KS set 192(117)-118 [35, Fig. 6(ii)] where it appears in 15 instances; (b) a symmetric
subgraph of Peres’ MMPH with a non-diagonal L; (¢) an asymmetric subgraph of Peres’” MMPH with a diagonal L and
(L) < Maz[C]; (d) a constructed symmetric MMPH with a diagonal L and (L) < Maxz[C] but whose full scale version does

not have a coordinatization.

it belonged to. (This instance of Peres’ 57-40
KS set is isomorphic to the one given above;
the sequence of characters is different due to a
reshuffling by automated tools we used to obtain
33-40 as a subgraph of 57-40.

(i) Yu and Oh write: “The KS value assignments to
the 13-ray set [13-16] are possible; i.e., no logical
contradiction can be extracted by considering con-
ditions 1 and 2 [of Theorem II.1].” [49, p. 3, left
column, top]

Ad (i) The claim is provisionally correct, but not because
“no logical contradiction can be extracted by con-
sidering conditions 1 and 2"—it can be extracted:
in 13-16 it is impossible to assign 1s and Os in such a
way that conditions 1 and 2 are satisfied—and not
because “value assignments to the 13-ray set are
possible”—they are not possible: one cannot assign
1s and Os to its rays in such a way that conditions
1 and 2 are satisfied—but because the 13-16 set is
not a set of triplets and therefore does not satisfy
the first part of the KS theorem.

The “incomplete triplets” issue reappears in many pa-
pers and books. For instance in Karl Svozil’s book [74] in
Sec. 7.4 there is an excellent symmetric figure of Peres’
33-40 set [Fig.7.12], we, actually, made use of to write
down MMPH 57-40 set, but we had to add 24 vertices
that were not there; 33 vectors and their correspond-
ing logical proposition were explicitly given, but the re-
maining 24 vectors were not mentioned. In the original
Kochen-Specker paper [59] the triplets (edges with 3 ver-
tices) were depicted as triangles and doublets (triplets
from which one vertex was dropped) as straight lines—
all together 117 vertices of 192 ones contained in 118
triplets. Their triangles are shown in [35, Fig. 6(ii)]. The
same triangles are used in the Yu-Oh’s set and are shown
in Fig. 2(d). This triangle notation is a source of some
confusion in the literature and research, though. For in-
stance, in [52] on p. 4, Fig. 1 (b), where one line from
one of the triangles from Yu-Obh’s set is deleted, we read:
“(b) Gyo minus one edge.” However, the lines in the

triangle are not edges. The whole triangle is an edge
(triplet) as shown in Fig. 2(d). The lines within a triangle
are orthogonalities and a removal of one of them means
splitting the triplet into two doublets, i.e., increasing the
number of edges in the set. So, the set in Fig. 1(a) of
[52] has 16 edges, while the set in Fig. 1(b) has 17 edges.
In any case the set (b) is not a subgraph of (a) nor is
(a) a subgraph of (b). Of course, a removal of one of the
orthogonalities must also be accompanied by a switch to
a new coordinatization of the whole set.

In the The Kochen-Specker Theorem article in the
Stanford Encyclopedia of Philosophy only 117 vertices
were considered. “[W]hat KS have shown is that a set
of 117 yes-no observables cannot consistently be assigned
0-1 values” [75]. Jeffrey Bub writes: “This yields a total
of 49 rays and 36 orthogonal triples. Now the only rays
that occur in only one orthogonal triple are the 16 rays
with a 5 as component. Removing these 16 rays from the
49 rays yields the following set of 33 rays that cannot be
colored.” [76]. However, 49 rays also cannot be colored
and the 49-36 is critical, while 33-36 is not.

These facts offer the following approach, though. The
aforementioned conditions 1 and 2 are also contained in
the Def. I1.2 of an MMPH non-binary set and Peres’ 33-
40, Yu-Oh’s 13-16, Bub’s 33-36, Conway-Kochen’s 31-37,
and Kochen-Specker’ 117-118 sets all violate the condi-
tions 1 and 2, thus confirming that these sets are MMPH
non-binary sets. Moreover, they actually enable us to get
many smaller MMPH non-binary sets from them because
none of these sets is critical. And they are all equipped
with at least the coordinatization they inherit from their
full scaled versions 57-40, 25-16, 49-36, 51-37, and 192-
118, respectively, but often with even simpler ones.

The MMPH strings of the last three sets are:

Bub’s 33-36 (derived from the full scale 49-36 [46,
Fig. 19]): 12,134,156,67,48,9AB,CDE, 6B, 4E, 2FG, 2HI ,
EG,GB,8I,I7,AJ,AK,C7L,MN9,HON,N3P,PL,NFQ,QL,
M5R,RD,DO,STC,JHT, T5U,S3K, SFV, VW, 98W, WU, X9C.
Conway-Kochen’s 31-37 (derived from the full scale 51-37
[46, Fig. 19]): 123,245,26,57,89A,BCD, 5D, 3EF, 3G,DF,
FA,9H4,871,9J,CK,CL,LM,HN,M1N,KO, 10P,Q6R,QGH,BQS,
PR,PJ,S4J,SET,NT,TI,RI,UV8,VGK,U6L,4V,UE, 18B.
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and the Kochen-Specker’s 117-118 (derived from the orig-
|

inal full scale 192-118 [46, Fig. 19]):

12,234,45,56,678,81,9A,ABC,CD,DE,EFG,G9,HI, IJK,KL,LM,MNO,0H,PQ,QRS, ST, TU,UVW,WP, 1X,XYZ,Za,ab,bcd,
dl,ef,fgh,hi,ij,jkl,le,mn,nop,pq,qr,rst,tm,uv,vwx,xy,yz,z!","u,#$,$%&, &>, (, O*x,x#t,e-,-/:,15,;<,
<=>,>e,70,0[\,\1,1","_¢,¢?,{l, [}, +1,+1+2,+2+3+4 ,+4{ ,+5+6 ,+6+7+8,+8+9,+9+A , +A+B+C, +C+5,+D+E,
+E+F+G,+G+H,+H+I,+I+J+K,+K+D, ?+L, +L+M+N,+N+0,+0+P,+P+Q+R,+R?,37,BF ,JN,RV,Yc,gk,os,w!,%) , /=, [_,
}+3,+7+B,+F+J,+M+Q,95e ,HDe,PLe,aTe,mi?,uq?,y’ 7, ; #7,{]11,+5+11,+D+91,+0+H1, 1e?.

All of them have coordinatizations and none of them
is critical. They will be our MMPH non-binary master
sets we shall get smaller MMPH non-binary critical
sets from, in Sec. IID. Here we want to stress that
we have chosen the above sets to be our masters for
historical reasons. But any set we obtain by stripping
the original four KS sets from some other number of
vertices being contained in only one edge can serve us
as a master set. For instance, by stripping not 24 but
17 such vertices from Peres’ 57-40 KS set, we obtain
the following set which we can also use as our master
set—Peres’ 40-40 (derived from the full scale 57-40 [46,
Fig. 19]): 123,345,467,78,829,9A,A4,9B,5B,CD,CE,
C7F,GAH,HIJ, JKE,KLM,MND,DIO,OPQ,QRK,O0ST,ET,UVW,
UM1,UX,BQF,FYZ,ZaX,ab,bW,WYc,cd,da,cG,XG,e8,
ebH,e5,Td1, 1FH.

We present two smaller critical MMPH non-binary sets
35-27 and 38-30, obtained from this 40-40 set, in Ap-
pendix A 3 because they are bigger than Peres’ 33-40 and
they are critical, while Peres’ 33-40 is not. Also, criticals
with 33 or less vertices we obtained from Peres’ 33-40
and from Peres’ 40-40 coincide. The difference is only
in criticals with 34 to 38 vertices which we, of course,
cannot obtain from Peres’ 33-40 set.

D. Classes of MMPH non-binary sets, their
implementation, and their inequalities

From the MMPH non-binary master sets given in
Sec. IIC we obtain smaller MMPH non-binary critical
sets via STATESO1. There is a principal difference in the
feature of criticality between these sets and the full scale
KS sets, though.

If we removed any of the edges of a full scale KS critical
set, the remaining set would not be a KS set any more
(see Def. I1.3). If we then continued to strip further edges
from the remaining set, we would never arrive at a KS
set again. This is not so with an MMPH non-binary
critical set. When we remove any of its edges it does
stop being an MMPH non-binary set, but if we removed
further edges from the obtained set, it would often turn
into a smaller MMPH non-binary critical set. Therefore
we introduce:

Definition I1.4. An MMPH non-binary set is called an
MMPH non-binary critical sets if a removal of any of its
edges would turn the remaining set into an MMPH binary
set. MMPH non-binary critical sets might properly con-

tain smaller MMPH non-binary critical sets whose num-
ber of edges is smaller than the original critical set for at
least 2 edges.

Bub and Conway-Kochen’s master sets share the coor-
dinatization while Peres and Kochen-Specker’s ones have
different ones mutually and with respect to the former
two sets. Therefore, also the classes of smaller MMPH
non-binary critical sets we obtain from them will be
structurally different.

From these master sets we generated classes of smaller
MMPH non-binary critical sets by means of our programs
[35, 47|, although the algorithms and programs should be
redesigned and rewritten for an automated generation.
MMPH sets generated from a master set we call a class
of MMPH sets. So, we shall talk about Bub, Conway-
Kochen, Peres, and Kochen-Specker’s classes. Distribu-
tions of their criticals are shown in Fig. 4. The criti-
cals are mostly the standard subgraphs of their masters
obtained via our automated algorithms and programs,
except for a limited number of smaller subgraphs we ob-
tained via new algorithms which are still under develop-
ment. Most subgraphs have a parity proof unlike most
of the standard subgraphs of which only a very few have
a parity proof.

Notice that the biggest critical sets in Fig. 4(a,c) have
the same number of vertices as their master sets, but 9,12
edges less, respectively.

A possible experimental implementation of MMPH
non-binary sets might be made in analogy to the exper-
imental implementation of KS sets carried out in [12].
The difference is that the latter sets contain only triplets,
while the former ones contain triplets and doublets, simi-
larly to the Yu-Oh’s 13-16 set, or even only doublets as in
the 5-5 set. To carry out measurements on KS sets means
that we have to verify that the probability of detecting
a particle or a photon at each out-port of a gate repre-
senting an edge (triplet) is 1/3. Yu-Oh’s implementation
rely on gates defined via Egs. (2) and (4) by means of 13
vertices/vectors/rays/states and the gates representing
12 dropped vertices are not considered. Measurements
on MMPH non-binary sets might be carried out as for
KS sets with triplets (with the 1/3 probability of detec-
tion at each out-port) and via calibrated detections of a
particle or a photon at out-ports of a gate representing a
doublet with the 1/2 probability of detecting a particle
at each of the two considered ports. When a vertex share
a mixture of triplet and doublet edges the probability of
detection is 1/p, where 1/3 <p <1/2. The data obtained



Mladen Pavici¢, Hypergraph Contextuality

Entropy 21 (11), 1107

@l [ Bub's MMPH (d)
10—8 criticals 5—
15

) o 0o I
vertices (] 20

(b) 1|o 33 —"100 8o
12—@q 15

"y
Conway—-Kochen’s ""' 2|5

MMPH criticals 30 =

Peres’

I'I I 2|8
L
[ MMPH criticals 33 — "0

Kochen-Specker's MMPH
| criticals

39
50— g |
54 —%e

FIG. 4. (a) Distribution of MMPH non-binary critical sets generated from Bub’s MMPH non-binary master set; (b) Conway-
Kochen’s criticals; (c¢) Peres’ criticals; (d) Kochen-Specker’s criticals.

at the out-ports corresponding to the dropped third ver-
tices are discarded or we simply do not measure them
at all as in Yu-Oh’s experiments [16, 21, 71]. To assure
an equal distribution of outcomes at each port, the in-
puts to doublet gates should be scaled up with respect to
the full triplet ones by 3/2 and this is why we call them
calibrated.

The inequalities to be experimentally verified for the
MMPH non-binary sets can be defined as for the other
two kinds of sets. For instance, for Yu-Oh’s 13-16 set
we verify their inequality given by Eq. (6): 8.3 > 8.
Let us consider the set as shown in Fig. 1(b) (exclud-
ing the gray dots). This set contains 4 triplets and 12
doublets. Vertices A,K,L share only triplets, so the prob-
ability of having a click along them is 1/3. Vertices
3,7,D,H share only doublets and the probability of get-
ting clicks along them is 1/2. Vertices 1,5,9,B,F, J share
a triplet and two doublets, each, what yields the probabil-
ity (1/2+1/2+1/3)/3=4/9. Altogether, the probabilities
for 13 vertices sum up to 3x1/3+4x1/2+6x4/9=17/3.
Let us call this sum a quantum hypergraph index of an
MMPH set and denote it as HI,. On the other hand, the
set 13-16 allows at most four 1s. This is a classical upper
bound for getting classical detection clicks. Let us call
this classical upper bound, i.r., the maximal number of
1s we can assign to vertices of a MMPH non-binary set so
as to satisfy the two conditions from Def. I1.2, a classical
hypergraph index HI.. Hence, we obtain the inequality
HI,[13-16] = 17/3 = 5.6 > HI.[13-16] = 4. Notice, that
even uncalibrated probabilities give us HI; ync[13-16] =
13/3 = 4.3 > HI.[13-16] = 4. We obtain uncalibrated
probabilities by measuring all vertices in all edges in
Fig. 1(b), meaning with gray dots included. With each
vertex in every edge we have a probability of getting a
click, i.e., of assigning 1 to it, being equal to 1/3. If
we now selected the 13 red-dot vertices, we would get

13/3 = 4.3 which is also greater than HI.[13-16] = 4. No-
tice also that the maximal number of 1s we can assign to
vertices in the full scale 25-16 set is 11 and that gives us
the inequality H1I,[25-16] = 25/3 = 8.3 < HI.[25-16] = 11
which is yet another proof that 25-16 is not a KS set.

It is interesting that three of four considered mas-
ters also satisfy the uncalibrated inequality HIl;_yne >
HI.. Bub’s 33-36: HI, yn.[33-36] = 11 > HI.[33-36] =
10, Conway-Kochen’s 31-37: HI, y,[31-37] = 10.3 >
HI.[31-37] = 8, and Peres’ 33-40 HI; yn[33-40] = 11 >
HI.[33-40] = 6.

Let us now present several smaller MMPH criticals
from each class, consider their properties, and calculate
Yu-Oh-like expressions and values for some of them.

The smallest Bub’s critical subgraph with coordina-
tization we found is the pentagon 5-5 12,23,34,45,51
(with the gray dots excluded) shown in Fig. 5(a). The
full scale hypergraph 10-5 162,273,384,495,5A1 is also
shown Fig. 5(a) (with the gray dots included).

As we proved in [35], the smallest loop edges can
form in a 3-dim space with vertices endowed with a
real coordinatization is a pentagon. We could not
find (with Mathematica) a complex coordinatization
of any smaller MMPH, either. We conjecture that the
filled pentagon MMPH 10-5 is the smallest MMPH
with a coordinatization in the 3-dim Hilbert space.
Its coordinatization is, e.g.,, 1={0,0,1},2={0,1,0},
3:{]-70v1}74:{]-7]-v']-},5:{1v']-vO}v6:{1v070}77:{170v'1}7
8={-1,2,1},9={1,1,2},A={1,1,0}. It, of course, includes
the coordinatization of 5-5. As we can easily check,
the maximal number of 1s assignable to vertices of
5-5, satisfying the two aforementioned condition, is
2. Thus we have the following contextual inequality
HI,[5-5] = 5x1/2 =25> HI.[55] =2. Yu-Oh’s ap-
proach does not offer us such a contextual distinguisher

since for L and C of Egs. (4), (5), and (6) we get
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FIG. 5. Criticals generated from Bub’s master: (a) subgraph pentagon 5-5; (b) subgraph 10-9; (c) standard subgraph 14-11;

Critical generated from Peres’ master: (d) 13-11.

ilO = 2.51 and 010 < 2.5. Hence, (fqo) = Max[C’lo].
MMPH non-binary subgraph 5-5 can actually be gener-
ated in all four MMPH classes, but we have not shown
them for Conway-Kochen and Peres’ classes in Fig. 4.
The pentagon 5-5 has a parity proof.

Subsequent small Bub’s critical subgraphs we ob-
tained, are 9-9 and 10-9. The latter is shown in
Fig. 5(b). Its MMPH string can be easily read off
from the figure: 12,23,34,456,67,78,89,9A1,A5.
Its possible coordinatization is: 1={0,0,1},2={1,1,0},
3:{]-7'1a]-}74:{07]-a]-}’5:{2a'1a]-}’6:{1717'1}77:{17(),1},
8={1,2,-1},9={2,-1,0},A={1,2,0}.  Vector component
‘2’ is here because the set of 1-A vertex coordinates
is a subset of the 1-H set of coordinates of the filled
set 17-9. As for the contextuality verification, we have
HI,[10-9] = 6 x (1/2+1/3)/2+4x1/2 =9/2 = 4.53 >
HI.[10-9] = 4. On the other hand, we have Lo = 5.51
and C1p < 5.5. Hence, (f)lo) = Max[C1p]. The set has a
parity proof.

The first standard subgraph in the Bub’s class we
found is 14-11 shown in Fig. 5(c). Its coordinatization is
1:{270a1}72:{'17']-,2}’3:{1a']-aO}’4:{]-,171}75:{27'17'1}7
6:{07]-a']-}77:{27]-a]-}’8:{'1a]-a]-}’9:{17170}7A:{1a'1a2}a
B:{Z,O,-l},C:{].,0,2},D:{O,I,O},E:{-1,0,2}-
HI,[14-11] =4 x1/3+10x (1/2+1/3)/2 = 11/2 = 5.53 >
HI.[14-11] = 5. The Yu-Oh approach gives: Lip =851
and Cyp < 8.75. Hence, (f/14) < Max[C14]. The set is
one of the few standard subgraphs that have a parity
proof. The only other Bub’s criticals with a parity proof
we found are 14-13, 18-15, 24-19, and 28-23.

Another critical with L = ¢I (¢ is a constant) we
found is 14:13: 12,23,34,45,56,67,789,9A,AB,BC,CD,
DE1,E8. (L14> =7.5< Max[014] =7.75.

Yu-Oh’s 13-16 is from the Peres’ class but the
only other critical with L = ¢I we found in Peres’
class is the subgraph 13-11 shown in Fig. 4(d):
12,234,56,678,89,94,ABC,CD,D1,35,4B7.  (Li3) =
7.5 < Maz[Ci3] 7.75, The coordinatization is
1-{1,1,v/2},2={0,v/2,-1},3-{0,1,/2}, 4={1,0,0},
5:{1,\/5,-1},6:{\/5,—1,0},7:{0,0,1},8:{1,\/5,0},
9:{\/57'1a]-}7A:{170a'\/§}’B:{071a0}70:{\/§a071}a

10

D—{1,1-v/2}. The components +v/2 come from the co-
ordinatization of the filled set 20-11 which requires the
components +v/2,3, i.e., more than Peres’ master set it-
self. This is because 13-11 is a subgraph and not a stan-
dard subgraph of the master set. HI,[13-11] = 5.53 >
HI.[13-11] = 5. The critical 13-11 has a parity proof.
We found no standard subgraph of Peres’ master with a
parity proof, though.

In Fig. 4(b), only critical standard subgraphs obtained
via automated generation are shown. Hence, they are
all subgraphs of Conway-Kochen’s master but we shall
explain how one can generate subgraphs from them.

Let us consider Conway-Kochen’s critical 13-10
shown in Fig. 6(a): 12,234,45,56,678,89,9A1,ABC,
3B7,CD5. Its coordinatization is: 1={1,1,0},2={-1,1,1},
3:{]-70a1}74:{]-72a'1}’5:{0a172}76:{17'271}77:{17(),'1}7
8:{]-7]-a]-}79:{17'1aO}’A:{ana1}7B:{07170}7C:{1a0a0}7
D={0,2,-1}., after taking into account the filled 17-10 set.
Similarly to Yu-Oh’s set, the 13-10 set exhibits both con-
textual indices: HI,[13-10] = 4.94 > HI.[13-10] = 4 and
HI, yne[13-10] = 13/3 = 4.3 > HI.[13-10] = 4. If we take
out the vertex D (the gray dot in Fig. 6(a)) the result-
ing subgraph 12-10 is critical too, which also shows that
vertex-criticality is not consistent. Unlike Yu-Oh’s set,
neither 13-10 nor 12-10 have L = ¢l satisfied. L3 is not
diagonal and Ly is diagonal but it is not a multiple of the
unit matrix. The set 12-10 does not exhibit both contex-
tual distinguishers: HI,[12-10] = 4.754 > HI.[12-10] = 4
but HIj yn[12-10] =12/3 =4 = HI.[12-10] = 4. It is, of
course, due to the lower number of vertices, since the ge-
ometrical structure of the MMPHs, yielding the classical
index 4, remains the same.

We find similar features within Kochen-Specker’s
MMPH class. Let us take two MMPH criticals from the
middle of the distribution shown in Fig. 4(d). 32-25a:
45,5P7,76,6Q9,98,8V2,2UI,IHA,AB,BC,CG,GDK,KL],
JYF,F3,3E,EWN,NMO,0R4,123,DE,STL,UTC,XMF, ZHG.
and 35-25b: 12, 2TJ,JK,KQM,ML,LDF,FG,GZ3,34,4U6,
65,5X7,78,8W9,9A,AV1,BC,DE,HI,NO,PO,RPI,SNH,
YEC,0LB. Their coordinatizations are too long to be
given here. Neither of them nor any other standard
subgraph in the Kochen-Specker’s class we obtained in
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(b)

FIG. 6. (a) Conway-Kochen’s MMPH non-binary critical set 13-10; (b) Kochen-Specker’s 35-25a critical with uncalibrated
contextuality; the outer loop is a 19-gon; (c) Kochen-Specker’s 35-25b critical without uncalibrated contextuality; the outer

loop is a 16-gon; See text.

Fig. 4(d) has a parity proof.

Their different geometrical structure yield different
classical hypergraph indices: HI.[35-25a] = 11 and
H1I.[35-25b] = 12. However, the number of vertices and
therefore the quantum uncalibrated hypergraph indices
of both MMPHs are the same: HI, y,.[35-25] = 35/3 =
11.6. That means that 35-25a exhibits contextuality even
for uncalibrated measurement outcomes, while 35-25a
does not. Their calibrated indices are: HI,[35-25a] =
12.4 > HI.[35-25a] = 11 and HI,[35-25b] = 13.75 >
H1I.[35-25b] = 12. Pentagons in 35-25b in Fig. 6(c) are
subgraphs of Kochen-Specker’s master unlike the pen-
tagon 5-5 (without gray dots) in Fig. 5, which is a
subgraph. If we removed all gray dots, the resulting set
25-25 will not be critical any more, but if we leave S and
R in the red pentagon, the resulting 27-25 set will be crit-
ical. This cannot be achieved with the green pentagon:
leaving Y as the only gray dot in the 26-25 set will not
make it critical. L of the double pentagon is not diagonal.

In Appendix A we give chosen MMPH non-binary crit-
ical sets which are standard subgraphs of the four MMPH
master sets.

ITII. DISCUSSION

In the last half a century a vast number of con-
structive proofs of quantum contextuality were obtained
in even dimensional Hilbert spaces, but only a very
few in odd dimensional ones. In particular, in the 3-
dim space: Bub, Conway-Kochen, Peres, and Kochen-
Specker’s KS sets, Yu-Oh contextual set, and Klyachko-
Can-Binicioglu-Shumovsky’s pentagram /pentagon state-
dependent set. All together 6 sets.

In this paper we present n-dim hypergraph contextu-
ality which consists in generating sets which preclude bi-
nary assignments of values 0 and 1 to vertices of a hyper-
graph, such that 1 is assigned to only one of the vertices
in each edge of the hypergraph, where an edge can con-
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tain less than n mutually orthogonal vertices. Such a set
which we call an n-dim MMPH non-binary set, is defined
by Def. I1.2. We stay with n = 3, i.e., we deal with qutrits
only, although the method can be extrapolated to any di-
mension. The method serves us to distinguish classical
models with predetermined binary values, that can be as-
signed to measurement outcomes of classical observables
underlying classical computation, from quantum models
that do not allow for such values and that underlie quan-
tum computation.

Let us make use of a graphical representation of an n-
dim MMPH to describe the method. Vertices within an
MMP hypergraph are drawn as dots and edges contain-
ing mutually orthogonal vertices are drawn with the help
of straight or curved lines connecting these “orthogonal
dots” as shown in Figs. 1, 2, 3, 5, and 6. There can be
a different number of vertices/dots in edges. Our pro-
gram then verifies whether a chosen MMPH k-] violates
or obeys the 0,1 assignment rules from Def. I1.2. Edges
in MMPH k-l might contain 3 or 2 vertices. We then
consider a filled MMPH £~/ in which we add a vertex to
each edge which contains only 2 vertices and try to find
a coordinatization for it. If successful, we make a one-to-
one correspondence between vertices and vectors in the
n-dim Hilbert space, i.e., for the MMPH k’-[ set. The
MMPH k-l set inherits the coordinatization from from
the MMPH k’-I set. If we implemented the MMPH £'-
l, each edge would be a gate with n outcomes and the
probability of detecting an outcome would be 1/n.

Now, our approach consists in discarding the outcomes
corresponding to chosen vertices which share (are con-
tained in) only one edge from chosen edges and consider-
ing outcomes only of the remaining vertices. In the 3-dim
Hilbert space, that means that some of the edges/gates
should be taken as doublets and the others as triplets.
Our programs can handle such MMPHs because they
are written for edges of mixed sizes. Measurements on
MMPH non-binary sets might then be carried for triplets
in a standard manner, i.e., with the probability of 1/3 of
obtaining a click (value 1) at each of the three ports, at
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a gate corresponding to an edge/triple, and via a cal-
ibrated detection at out-ports of a gate representing a
doublet with the probability of 1/2. For vertices that
share triplet and doublet edges, the probability would be
equal to 1/p, where 1/3 < p < 1/2. Calibration consists in
sending three input particles to a doublet gate for each
two sent to a triplet gate, i.e., the ratio of doublet to
triplet inputs should be 3/2.

To obtain a measure of quantum contextuality of an
MMPH non-binary set we define hypergraph indices. A
classical hypergraph index HI. is the maximal number
of 1s we can assign to vertices within edges of an MMPH
so as to obey the 0,1 assignment rules from Def. I1.2. A
(calibrated) quantum hypergraph index HI, is the sum
of calibrated probabilities for all k£ vertices of the afore-
mentioned k-l MMPH. An uncalibrated quantum hyper-
graph index H I, ync is the sum of 1/3-probabilities for
all k" vertices of the aforementioned k’-] MMPH. A ba-
sic measure of quantum contextuality of an MMPH non-
binary set is the inequality H1, < H1,. If it were satisfied,
the MMPH would be contextual. If not, it wouldn’t. A
stronger measure of quantum contextuality of an MMPH
non-binary set is the inequality HI. < HIl; ync. Some
of the considered MMPHs do satisfy both inequalities.
For instance, Yu-Oh’s set 13-16, MMPH 13-10 shown in
Fig. 6(a), MMPH 35-25a shown in Fig. 6(b), and the
MMPH master sets considered in Sec. IID. Other consid-
ered critical non-binary MMPHs satisfy only calibrated
inequalities but that is sufficient for experimental verifi-
cation of contextuality and possible applications.

We get thousands of MMPH non-binary sets as fol-
lows. For the time being, we start with the previously
found KS sets: Bub 49-36, Conway-Kochen 51-37, Peres
57-40, and Kochen-Specker’s 192-118 which are all criti-
cal, i.e., if we took out any edge from any of them they
would stop being KS [46, Def. 3]. However, when we
strip all the vertices contained in only one edge we ob-
tain Bub 33-36, Conway-Kochen 32-37, Peres 33-40, and
Kochen-Specker’s 117-118 master sets, none of which is
critical. This enables us to generate thousands of new
smaller MMPH critical sets from them via our programs.
Their distributions are shown in Fig. 4. Chosen MMPHs
critical sets are given in Sec. IID and Appendix A and
shown in Figs. 5 and 6. They can be easily implemented,
in particular the smaller ones.

The large number of obtained sets can also be used for
an automated testing of Yu-Oh’s operators and inequal-
ities along the examples we gave in Secs. IIB and IID.
For that we are developing new algorithms and programs.
This is a work in progress.

Next, one can make use of the obtained MMPHs to
formulate new entropic tests of contextualities following
Kurzynski, Ramanathan, and Kaszlikowski [54]. In 2012
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they only had one pentagram /pentagon set [53] at their
disposal. The pentagon 5-5 set is the simplest MMPH
set we obtained (see Fig. 4) and many other generated
small sets can now serve the purpose.

Also, the methods of evaluating conditions for being a
SIC set developed in [51, 52] and the methods of Cabello-
Severini-Winter graph-theoretic approach to quantum
correlations [56] require samples of hypergraphs and that
is what our method offers—a constructive probabilistic
generation of arbitrary MMPH sets when coupled with
automated vector generation algorithms we developed in
[47].

Finally, we stress that the MMPH constructive gen-
eration of non-binary quantum sets from operationally
chosen vectors out of all possible ones within such sets
contribute to our understanding of the physical origin of
quantum correlations since they represent a new MMPH
scenario for getting “quantum correlations from simple
assumptions” presented in [57].

IV. METHODS

The methods we use to handle quantum contextual
sets rely on algorithms and programs within the MMP
language: VECFIND, STATES01, MMPSTRIP, MMP-
SHUFFLE, SUBGRAPH, LOOP, and SHORTD devel-
oped in [6, 38, 39, 58, 60, 61, 77, 78]. They are freely
available at http://goo.gl/xbx8U2. MMPHs can be vi-
sualized via hypergraph figures consisting of dots and
lines and represented as a string of ASCII characters.
The latter representation enables processing billions of
MMPHs simultaneously via supercomputers and clusters.
For the latter elaboration, we developed other dynamical
programs specific program to handle and parallelize jobs
with arbitrary number of MMP hypergraph vertices and
edges.
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Appendix A: ASCII strings from MMPH non-binary classes

Below we give several chosen standard subgraphs from the four classes of critical MMPH sets shown in Fig.4. The
first number in each line is m of the biggest m-gon loop for the MMPH in the line. The second and third numbers
are the numbers of the MMPH vertices and edges, respectively. Three commas “,,,” denote the end of a loop and *
behind an ASCII symbol means that the symbol belongs to the loop.

1. Bub’s class

10-v18-e13 213,36,6GC,CDB,BH8,89,914,45,5EA,A2,,,73%,9%2% ,FD*7.

11-v21-e16  213,3A,AHG,GFE,E57,76,6KL,LD8,89,9IC,C2,,,45%,B3* ,D*2% , JF*B ,H*8%4.

14-v24-e18 12,2L3,34,4KG,GHI,I85,56,6B,BC,CA,A9,9FE,ED,DO1,,,78% , JH*F* ,MN7 ,ND*Cx* .

13-v27-e20 213,3L4,45,5B,BC,CMN,NOE,E6F,FD9,9A,AJI,IHG,GP2,,,6%7,87 ,D*3* ,KL*H*,QR0*,0%82* ,RD*Bx*.

17-v30-e23 543,3PC,CB,BA,AON,NJ6,67,7KL,L2S,SRI,IH,HTM,MGD,DE,E9,98,8Q5,,, 12*3* ,FG*, J*x5x*,
Px0*Mx* ,US*Q* , N*xF2x* .,
17-v33-e26 45,5CL,L7E,EF,FG,GBH,HIJ,JN,NRS,SW0,06P,PMQ,QA2,2V8,89,9TU,U34,,, 12%3*,6%7* ,A*xBx*,

CxD,KL*H* ,G*D ,M*J* ,0*H*3% , XU*¥Rx* .

2. Conway-Kochen’s class

8vl15-ell 12,2E7,78,8D3,34,4C6,65,5F1,,,9AB,B7*6% ,A3*1x%.

12-v22-e16  67,7GF,FB,B5D,D3,3ME,EC,CK8,89,9HI,I2A,AL6,,, 12%3% ,45% , A*xB*Cx*, J42%.

14-v26-e19 312,2F,FMN,NL5,596,67,70J,J1E,EB,BA,APD,DC,CQH,H3,,,45%3%,89%,G2*%, KL*G,I*H*8.

15-v29-e22 12,2RH,HQ3,34,47M,MT9,9A,AJE,ED,DIF,FG,GC,CB,B5N,NS1,,,5%6,7*8 ,H*xI* ,KL8,LD*6,0PG*,
PN*Mx .

17-v30-e24 12,2TD,DH,HRO,087,76,65,5P4,43,3SJ,JK,K9L,LIM,MQN,NCE,EB,BU1,,,8%9% , AB* ,C*D* ,FG, I*G,
PxGA, QxJ*F.

3. Peres’ class

10-v15-e12 12,2A,AC8,87,7D5,56,6B9,94,43,3E1,,, EXC*B*x ,FExD*,

14-v19-el6 12,23,34,4E,EGA,A9,9HB,BC,CFD,D8,87,716,65,51,,, I*G*F*, JI*Hx*,

14-v27-e19 12,2QD,DE,E3I,IJK,KM5,56,6L8,87,7PG,GHF,FAB,BC,CR1,,,3*4,9A% ,ExCx ,NJ*x9, OH*4.

20-v35-e27 213,3G,GLM,MNE,EF,FVX,XYU,UP5,51,1T7,78,89,956,6J,JZQ,QHA,AB,BKD,DC,CR2,,,45%6%,
H* I ,Fx3% , 0P*Kx* , VkQ*Lk , T*S*2% , WX*Rx* .

22-v38-e30 345,55U,UTH,HI,IR2,2cZ,ZFa,aJW,WVX,XQG,G7,76,6LC,CB,BMD,DE,EYA,A9,98,80N,NbK,KP3,,,
12%3% ,FxG* , J*x5% , JxIx JKkEx ,P*Q*L* ,R*S*xMx* , axY*0x*,

4. Kochen-Specker’ class

7-v12-e9 12,23,34,456,6A9,987,7C1,,,5%1%,B8*3*.
12-v19-e14 12,2IA,AB,BC8,87,7E5,56,6D4,43,3FG,GOH,HJ1,,, 9%A* ,H*xD*Cx.

16-v30-e21 312,2E,EMN,NL8,8RC,CD,D7,76,6GH,HP9,9SA, AB,BQ4,45,51J,J03,,,8%9%3% ,F2* ,KL*F , TO*B*
UP*D*.

18-v38-e27 34,4VD,DE,ETG,GF,Fc0,0N,NHJ, JK,KSC,CB,BZ5,56,6Y9,9A,AX7,78,8W3,,,12,H*I,LM,PQ,RQ,
UMI,aR2,bP1,QN*L.

18-v46-e33 56,6a8,87,7e9,9A,AcC,CB,BdD,DE,EbG,GF,FiP,PQ,QYX,XT,THJ, JK,Kh5,,,12,34 ,H*I,LM,NO,
RS, T*US,VU,WU,ZRO,£I4,gM3, jW2,kV1, T*NL.

12-v54-e39 78,80V, VW,WgX,XY,YZ,ZfU,UT, TpA,A9,9Ps,sN7,,,12,34,56 ,BC,DE,FG,HI, JK,LM,Nx0,PxQ,RS,

ab,cb,dcS,eaR,hkK2,iI1, jM6,k0G,10Q5,mC4,nE3,qY*D,rbB,s*LH,s*JF.
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