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Quantum 
ontextuality is a sour
e of quantum 
omputational power and a theoreti
al delimiter

between 
lassi
al and quantum stru
tures. It has been substantiated by numerous experiments

and prompted generation of state independent 
ontextual sets, i.e., sets of quantum observables


apable to reveal quantum 
ontextuality for any quantum state of a given dimension. There are

two major 
lasses of state-independent 
ontextual sets: the Ko
hen-Spe
ker ones and the operator-

based ones. In this paper, we present a third, hypergraph-based 
lass of 
ontextual sets. Hypergraph

inequalities serve as a measure of 
ontextuality. We limit ourselves to qutrits and obtain thousands

of 3-dim 
ontextual sets. The simplest of them involves only 5 quantum observables, thus enabling

a straightforward implementation. They also enable establishing new entropi
 
ontextualities.

I. INTRODUCTION

Re
ently, quantum 
ontextuality found appli
ations in

quantum 
ommuni
ation [1, 2℄, quantum 
omputation

[3, 4℄, quantum nonlo
ality [5℄, and latti
e theory [6, 7℄.

This has prompted experimental implementation with

photons [8�19℄, 
lassi
al light [20�23℄, neutrons [24�26℄,

trapped ions [27℄, solid state mole
ular nu
lear spins [28℄,

and super
ondu
ting quantum systems [29℄.

Quantum 
ontextuality, the aforementioned 
itations

refer to, pre
ludes assignments of predetermined values

to dense sets of proje
tion operators and in our approa
h

we shall keep to this feature of the 
onsidered 
ontex-

tual sets. Contextual theoreti
al models and experimen-

tal tests involve additional subtle issues, su
h as the pos-

sibility of 
lassi
al non
ontextual hidden variable models

that 
an reprodu
e quantum me
hani
al predi
tions up

to arbitrary pre
ision [30℄ or a generalization and redef-

inition of non
ontextuality [31, 32℄. These elaborations

are outside of the s
ope of the present paper, though,

sin
e it is primarily fo
used on 
ontextuality whi
h �nds

appli
ations within quantum 
omputation vs. non
on-

textuality whi
h is inherent in the 
urrent 
lassi
al bi-

nary 
omputation. That means that we 
onsider 
las-

si
al models with predetermined binary values, that 
an

be assigned to measurement out
omes of 
lassi
al observ-

ables, whi
h underlie the latter 
omputation, vs. quan-

tum models that do not allow for su
h values and under-

lie quantum 
omputation. As for a dire
t relevan
e of

our results for quantum 
omputation we point out that

the hypergraph presented in Fig. 2 of [3℄, from whi
h the


ontextual �magi
� of quantum 
omputation has been de-

rived, is a kind of hypergraph 
ontextual sets we present

∗
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in this paper. However, the hypergraph is from a 4-dim

Hilbert spa
e, so, we will not elaborate on it in the paper.

We give a pedestrian overview of our approa
h, meth-

ods, and results as well as their ba
kground in the last

few paragraphs of this Introdu
tion, des
ribing the orga-

nization of the paper.

A 
lass of state-independent 
ontextual (SIC) [33℄ sets

that have been elaborated on the most in the literature

are the Ko
hen-Spe
ker (KS) sets [34�48℄. They boil

down to a list of n-dim ve
tors and their n-tuples of or-
thogonalities, su
h that one 
annot assign de�nite binary

values to them.

Re
ently, di�erent SIC sets has been designed and/or


onsidered by Yu and Oh [49℄, Bengtsson, Blan
h�eld,

and Cabello [33℄, Xu, Chen, and Su [50℄, Ramanathan

and Horode
ki [51℄, and Cabello, Kleinmann, and Bu-

droni [52℄. They all make use of operators de�ned by

ve
tors that de�ne their sets. You and Oh 
onstru
t

rather involved expression of state/ve
tor de�ned 3 × 3
operators that eventually redu
es to a multiple of a unit

operator while the other authors make use of proje
tors

whose expressions also redu
e to a multiple of a unit op-

erator. Therefore we 
all their sets the operator-based


ontextuality sets and assume that they form an operator


ontextuality 
lass. All the sets make use of a parti
u-

lar list of 3-dim ve
tors and their orthogonal doublets

and triplets su
h that a given expression of de�nite bi-

nary variables has an upper bound whi
h is lower than

the one of a 
orresponding quantum expression. The last

two Refs. [51, 52℄ also provide us with the ne
essary and

su�
ient 
ondition for being a SIC set in any dimension.

The di�eren
e between the KS 
ontextuality and the

operator 
ontextuality is that KS statisti
s in
ludes mea-

sured values of all ve
tors from ea
h n-tuple, while the

statisti
s of measurements is built on values obtained via

operators de�ned by possibly less than n ve
tors from

ea
h n-tuple.
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In this paper, we blend the two aforementioned 
ontex-

tualities so as to arrive at a hypergraph one. We 
onsider

hypergraphs with 3-dim ve
tors in whi
h some of those

ve
tors that belong to only one triplet are dropped, as

in the observable approa
h, and generate smaller hyper-

graphs from them, su
h that one 
annot assign de�nite

binary values to them, as in the KS approa
h. We 
all

our present approa
h the M
Kay-Megill-Pavi£i¢ hyper-

graph (MMPH) approa
h. MMPH non-binary sets di-

re
tly provide us with non
ontextual inequalities. On

the other hand, via our algorithms and programs we ob-

tain thousands of smaller MMPH sets whi
h 
an serve

for various appli
ations as, e.g., to generate new entropi


tests of 
ontextuality or new operator-based 
ontextual

sets.

The smallest MMPH non-binary set we obtain is a

pentagon with �ve ve
tors (verti
es) 
y
li
ally 
onne
ted

with 5 pairs of orthogonality (edges). It 
orresponds to

the pentagram from Ref. [53℄, implemented in [15, 20, 23℄.

The di�eren
e is that the pentagram inequality is state

dependent, while the MMPH pentagon inequality is state

independent. More spe
i�
ally, in Ref. [53℄, one obtains

a non
lassi
al inequality by means of proje
tions of �ve

pentagram ve
tors at a 
hosen sixth ve
tor dire
ted along

�vefold symmetry axis of the pentagram. By our method,

one gets a non
lassi
al inequality between the maximum

sum of possible assignments of 1, representing 
lassi
al

measurement 
li
ks, and the sum of probabilities of ob-

taining quantum measurement 
li
ks.

Entropi
 test of 
ontextuality for pentagram/pentagon

has been formulated in Ref. [54℄ following Ref. [55℄. It


an be straightforwardly reformulated for other MMPH

non-binary sets we obtained.

The paper is organized as follows.

In Se
. II A we present the hypergraph formalism and

de�ne n-dim MMPH set and n-dim MMPH binary and

non-binary sets as well as �lled MMPH set. We explain

how verti
es and edges in an n-MMPH set 
orrespond to

ve
tors and their orthogonalities, i.e., m-tuples (2 ≤ m ≤
n) of mutually orthogonal ve
tors, respe
tively.

In Se
. II B we give the KS theorem and a de�nition of

a KS set and prove that a KS set is a spe
ial non-binary

set. In Def. II.3 we de�ne a 
riti
al KS set, i.e., the one

whi
h would stop being a KS set if we removed any of

its edges. Then we introdu
e known KS sets to 
ompare

them with operator de�ned sets. In parti
ular, we start

with Conway-Cohen, Bub, Peres, and original Ko
hen-

Spe
ker's sets. We show that the number of ve
tors they

are 
hara
terised with in the original papers and most

of the subsequent ones as well as in books, i.e., 31, 33,

33, and 117, respe
tively, are not 
riti
al. That, a
tually,

enables the whole approa
h presented in this paper. We

show that the aforementioned authors dropped the ve
-

tors that are 
ontained in only one triplet. If we took

all the stripped ve
tors into a

ount, i.e., if we formed

�lled sets, we would get 51, 49, 57, and 192 ve
tors, re-

spe
tively. These sets are 
riti
al and the majority of

resear
hers assumed that their stripped versions are 
rit-

i
al too and so they did not try to use them as a sour
e

of smaller non-
lassi
al 3-dim sets.

Next, we 
onne
t and 
ompare KS sets with operator-

based sets, in parti
ular YU-Oh's 13 ve
tor set whose

�lled version has 25 ve
tors and 16 triplets�we denote it

as 25-16. In Fig. 1 we show Yu-Oh's 25-16 as a subgraph

of Peres' 57-40. In Fig. 2 we show how 25-16 
an be

stripped of ve
tors 
ontained in only one triplet, so as to

a arrive at the original Yu-Oh's 13-16 set. Eqs. (1)-(6)

and their 
omments explain how Yu and Oh de�ned their

operators with the help of the 13 ve
tors and how they

used them to arrive, via Eq. (4), at the inequality de�ned

by Eq. (6). We then used the operator expression given

by Eq. (4) to test 50 sets smaller and bigger than the

13-16 but did not obtain an analogous result. Some of

the sets are shown in Fig. 3.

In Se
. II C we give a histori
al ba
kground of strip-

ping the aforementioned ve
tors that are 
ontained in

only one triplet and explain what was behind that �in-


omplete triplets� issue. Then we give MMPH strings

of Conway-Ko
hen's 31-37, Bub's 33-36, Peres' 33-40,

and Ko
hen-Spe
ker's 117-118 non-
riti
al but still non-

binary non-
lassi
al MMPH sets and take them as our

master sets from whi
h we generate smaller non-binary


riti
al MMPH sets in the next se
tion. However, we

stress that any set we obtain by stripping some other

number of verti
es 
ontained in only one edge from any

one of the original four KS sets 
an serve us as a master

set. We give a Peres' 40-40 set as an example.

In Se
. II D we start with Def. II.4 of a 
riti
al MMPH

non-binary set whi
h di�ers from the one of a 
riti
al KS

set. If we strip more and more edges from a 
riti
al KS

set we shall never 
ome to a KS set again. This is not so

with MMPH non-binary sets. MMPH non-binary 
riti
al

sets might properly 
ontain smaller MMPH non-binary


riti
al sets whose number of edges is smaller than the

original 
riti
al set for at least 2 edges.

Via our algorithms and programs, we obtain thousands

of 
riti
al sets from our master sets, whose distributions

are shown in Fig. 4. We say that a 
olle
tion of MMPH

non-binary subgraphs of an MMPH master form its 
lass.

Next we de�ne measurements whi
h 
an distinguish


ontextual from non-
ontextual MMPH sets, i.e., non-

binary from binary ones. Similarly as with operator-

based 
ontextual measurements, dropped verti
es are

not 
onsidered, i.e., 
li
ks obtained at their 
orrespond-

ing out-ports are not taken into a

ount when obtain-

ing the statisti
s of 
olle
ted data. So, measurements

of MMPH non-binary sets are 
arried out as for KS sets

with triplets, i.e., with the 1/3 probability of dete
tion at

ea
h out-port, and via 
alibrated dete
tions of a parti
le

or a photon at out-ports of a gate representing a doublet

with the 1/2 probability of getting a 
li
k at ea
h of the

two 
onsidered ports, while ignoring the third one. When

a vertex shares a mixture of triplet and doublet edges the

probability of dete
tion is 1/p, where 1/3 ≤ p ≤ 1/2. We


all dete
tions at all ports notwithstanding whether we

in
lude them in our �nal statisti
s or not, un
alibrated

2
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dete
tions�they simply have 1/3 probability of dete
-

tion at every port.

To obtain 
ontextual distinguishers of an MMPH set

we 
onsider the sum of probabilities of getting 
li
ks for

all 
onsidered verti
es and 
all it a quantum hypergraph

index. We distinguish a 
alibrated quantum hypergraph

index, whi
h we denote as HIq and an un
alibrated one,

whi
h we denote as HIq−unc. On the other hand, ea
h

MMPH set allows a maximal number of 1s assigned to

verti
es so as to satisfy the two 
onditions from Def. II.2.

We 
all the number 
lassi
al hypergraph index and de-

note it as HIc. Our weak 
ontextual distinguisher is the
inequality: HIq >HIc and the strong one is the inequal-

ity HIq−unc > HIc. Yu-Oh, Bub, Conway-Ko
hen, and

Peres' MMPH non-binary sets as well as others given in

the se
tion, like, e.g., 13-10, satisfy both inequalities.

We present several small 
riti
al MMPH sets in Figs. 5

and 6 and dis
uss their features. We also 
al
ulate Yu-

Oh's inequalities for several sets di�erent from Yu-Oh's

13-16 set. None of the 50 tested sets satisfy the inequal-

ity.

In Se
. III we dis
uss and reexamine the steps and

details of our approa
h.

II. RESULTS

We 
onsider a set of quantum states represented by

ve
tors in a 3-dim Hilbert spa
e H
3
grouped in triplets

of mutually orthogonal ve
tors. We des
ribe su
h a

set by means of a hypergraph whi
h we 
all a M
Kay-

Megill-Pavi£i¢ hypergraph (MMPH). In it, ve
tors them-

selves are represented by verti
es and mutually orthog-

onal triplets of them by edges. However, an MMPH

itself has a de�nition whi
h is independent of a possi-

ble representation of verti
es by means of ve
tors. For

instan
e, there are MMPHs without a 
oordinatization,

i.e., MMPHs for whose verti
es ve
tors, one 
ould assign

to, do not exist. Also, edges 
an 
ontain less than 3 ver-

ti
es, i.e., 2, and form doublets. When a 
oordinatization

exist, that does not mean that a doublet belongs to a 2-

dim edge, but only that we do not take an existing third

vertex/ve
tor into a

ount.

A. Formalism

Let us de�ne the hypergraph formalism.

A hypergraph is a pair v-e where v is a set of elements


alled verti
es and e is a set of non-empty subsets of e

alled edges. Edge is a set of verti
es that are in some

sense related to ea
h other, in our 
ase orthogonal to ea
h

other.

The �rst de�nition of MMPH was given in [58℄ where

we 
alled them, not hypergraphs, but diagrams. In [46℄

we gave a de�nition of an n-dim MMP hypergraph whi
h

required that ea
h edge has at least 3 verti
es and that

edges that interse
t ea
h other in n-2 verti
es 
ontain

at least n verti
es. The de�nition of MMPH is slightly

di�erent.

De�nition II.1. An MMPH is an n-dim hypergraph in

whi
h

1. Every vertex belongs to at least one edge;

2. Every edge 
ontains at least 2 verti
es;

3. Edges that interse
t ea
h other in m − 2 verti
es


ontain at least m verti
es, where 2 ≤m ≤ n.
Then, in [47℄ we presented a hypergraph reformulation

of the Ko
hen-Spe
ker theorem [59℄ from whi
h we derive

the following de�nition of an MMPH non-binary set.

De�nition II.2. n-dim MMPH non-binary set, n ≥ 3, is
a hypergraph whose ea
h edge 
ontains at least two and

at most n verti
es to whi
h it is impossible to assign 1s

and 0s in su
h a way that

1. No two verti
es within any of its edges are both

assigned the value 1;

2. In any of its edges, not all of the verti
es are as-

signed the value 0.

An MMPH set to whi
h it is possible to assign 1s and

0s so as to satisfy the above two 
onditions we 
all an

MMPH binary set.

An MMPH non-binary set with edges of mixed sizes to

whi
h verti
es are added so as to make all edges of equal

size ea
h 
ontaining n verti
es is 
alled �lled MMPH set.

A 
oordinatization of an MMPH non-binary set means

that the verti
es of its �lled MMPH denote n-dim ve
tors

in H
n
, n ≥ 3 and that its edges represent orthogonal n-

tuples, 
ontaining verti
es 
orresponding to those mutu-

ally orthogonal ve
tors. Then the verti
es of an MMPH

set with edges of mixed sizes inherit its 
oordinatization

from the 
oordinatization of its �lled set. In our present

approa
h a 
oordinatization is automati
ally assigned to

ea
h hypergraph by the very pro
edure of its generation

from master MMPHs as we shall see below.

In the real 3-dim Hilbert spa
e edges form loops of

order �ve (pentagon) or higher as we proved in [35℄. For


omplex ve
tors our 
al
ulations always 
on�rmed this

result but we were unable to �nd an exa
t proof. Loops

of order two are pre
luded by Def. II.1(3).

MMPH are en
oded by means of printable ASCII 
har-

a
ters organized in a single string, and within it in edges,

whi
h are separated by 
ommas; ea
h string ends with

a period. Verti
es are denoted by one of the follow-

ing 
hara
ters: 1 2 ... 9 A B ... Z a b ... z ! "

# $ % & ' ( ) * - / : ; < = > ? � [ / ℄ � _ ` { | } ~

[35℄. When all of them are exhausted one reuses them

pre�xed by `+', then again by `++', and so forth. An

MMPH with k verti
es and l edges we denote as a k-l
set. In its graphi
al representation, verti
es are depi
ted

as dots and edges as straight or 
urved lines 
onne
ting

orthogonal verti
es. In its ASCII string representation

3
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(used for 
omputer pro
essing) ea
h MMPH is en
oded

in a single line followed by assignments of 
oordinati-

zation to k verti
es. We handle MMP hypergraphs by

means of algorithms in the programs SHORTD, MMP-

STRIP, MMPSUBGRAPH, VECFIND, STATES01, and

others [6, 39, 58, 60�62℄.

B. KS vs. operator 
ontextuality

Let us start with the Ko
hen-Spe
ker theorem and KS

sets. Then we shall 
onne
t them with the ve
tors and

operators of one type of operator-based 
ontextuality in-

trodu
ed by Yu and Oh.

Theorem II.1. (Ko
hen-Spe
ker [59, 63, 64℄) In H
n
,

n ≥ 3, there are sets of n-tuples of mutually orthogonal

ve
tors to whi
h it is impossible to assign 1s and 0s in

su
h a way that

1. No two orthogonal ve
tors are both assigned the

value 1;

2. In any group of n mutually orthogonal ve
tors, not

all of the ve
tors are assigned the value 0.

The sets of su
h ve
tors are 
alledKS sets and the ve
tors

themselves are 
alled KS ve
tors .

There is a one-to-one 
orresponden
e between KS n-

tuples of ve
tors and MMPH edges when they are all

of their maximal size, as established in [35, 46�48℄, and

between KS ve
tors and MMPH verti
es with 
oordina-

tization within an MMPH with maximal edges.

Theorem II.2. An n-dim MMPH non-binary set with

a 
oordinatization whose ea
h edge 
ontains n verti
es,

is a KS set.

Proof. It follows straightforwardly from the KS theorem,

its de�nition of a KS set and the aforementioned 
orre-

sponden
es between its ve
tors and MMPH verti
es.

In 1988 Asher Peres presented a simple proof of the

KS theorem in a 3-dim Hilbert spa
e using real ve
tors

[65℄. He impli
itly made use of 57 ve
tors/rays and 40

triplets of mutually orthogonal ve
tors but seemed to

have dropped 24 ve
tors that appear in only one triplet

and 
alled his proof a �33 ve
tor [ray℄ proof.� How-

ever, he admitted the role of the remaining ve
tors: �It


an be shown that if a single ray is deleted from the

set of 33, the 
ontradi
tion disappears. It is so even

if the deleted ray is not expli
itly listed in table 1.�

[65, L176, bottom paragraph℄. From [65, Table 1℄ we


an re
onstru
t the 33 ve
tors within their 40 triplets

together with the �non-expli
it� 24 ve
tors and repre-

sent them in our MMPH notation, obtaining an MMPH

non-binary set with 57 verti
es (ve
tors) and 40 edges

(triplets), i.e., a 57-40 KS set. We did so in two dif-

ferent ways with two resulting (but isomorphi
) hyper-

graphs in [6, Fig. 4℄ and [46, Fig. 19℄. Here we give

a third MMPH representation (isomorphi
 to the previ-

ous two) whi
h 
ontains the so-
alled full s
ale Yu-Oh

set 123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,

5LF,JPD,JM7,3OB,HN9. we elaborate on below. The

representation is 
arried out via our programs SUB-

GRAPH and LOOP [47℄.

Peres' 57-40 MMPH KS set reads:

123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,

JM7,3BO,H9N,JPD,FL5,QRS,STA,AUV,VWX,XYO,OZa,

ab
,
dC,CeQ,Sha,QgX,Vf
,bg9,qmU,Nnq,Bij,jku,

klN,ur8,8st,iqt,Tpk,Tot,uvU.

Its graphi
al representation is given in Fig. 1(a).
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FIG. 1. (a) Peres' KS set 57-40 in the MMPH representation

and 
ontaining the full s
ale Yu-Oh set (drawn in red); (b)

The full s
ale Yu-Oh non-KS set 25-16; Verti
es (ve
tors) that

share only one edge (triplet) are given as gray dots. See text.

Noti
e that gray dots 8,D,N,O in Fig.1(b) are not gray

in Fig.1(a) and therefore the representation of the orig-

inal full s
ale 57-40 Peres KS set (with all gray dots in-


luded) by means of the three original Yu-Oh non-KS

sets (with gray verti
es dropped), as depi
ted in Fig. 1

of [66℄, apparently does not work. Also, as veri�ed with

our program SUBGRAPH, Yu-Oh's set is not a subgraph

of Peres' 33-40 set (with all gray dots dropped). On the

other hand, Yu-Oh's set 
annot be a subgraph of Peres'

57-40 be
ause it la
ks gray dots. The full s
ale Yu-Oh's

set 25-16 shown Fig.1(b) is, of 
ourse, a subgraph of the

full-s
ale Peres' 57-40 set as shown in Fig.1(a) an 
on-

�rmed by SUBGRAPH.

The arguments that all verti
es are indispensable for

an experimental implementation of a KS set 
an be found

in [67, In parti
ular Table on p. 804℄, [68, pp. 1583 top,

1588 bottom, and top 1589℄, and [69, p. 332, end of the

1st par.℄. In essen
e, every n-tuple from the KS Theorem

II.1 should 
ontain no less than n ve
tors.

Below, the 
oordinatization of Peres' 57-40 set is ob-

tained via VECFIND [47℄ from the ve
tor 
omponents

0,±1,√2 (the 
omponent −√2, used by Peres in [65℄ is

not needed):

1={1,

√
2,-1},3={0,1,

√
2},5={-1,

√
2,-1},7={

√
2,1,0},

8={-1,

√
2,0},9={0,0,1},A={0,1,0},B={1,0,0},

C={0,

√
2,1},D={0,-1,

√
2},F={1,

√
2,1},H={

√
2,-1,0},

4
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J={-1,

√
2,1},K={1,0,1},L={1,0,-1},N={1,

√
2,0},

O={0,

√
2,-1},Q={-1,-1,

√
2},S={

√
2,0,1},T={-1,0,

√
2},

U={1,0,

√
2},V={

√
2,0,-1},X={1,1,

√
2},a={-1,1,

√
2},

b={1,1,0},
={1,-1,

√
2},g={1,-1,0},i={0,1,-1},j={0,1,1},

k={

√
2,-1,1},q={

√
2,-1,-1},t={

√
2,1,1},u={

√
2,1,-1}

The aforementioned Peres' statement �if a single ray is

deleted from the set of 33, the 
ontradi
tion disappears�

amounts to a 
oarse de�nition of a vertex-
riti
al KS set:

�A KS [set℄ is termed 
riti
al i� it 
annot be made smaller

by deleting the [verti
es℄� [70℄. However, in KS sets, there

are edges whose removal does not remove any vertex (but

nevertheless 
ause a disappearan
e of the KS property)

and, on the other hand, no vertex 
an be removed from a

KS set without removing at least one edge as well, in the

sense that all edges/n-tuples should 
ontain n mutually

orthogonal verti
es/ve
tors.

Therefore, we adopt a de�nition of an edge-
riti
al KS

set [6, 46, 61℄ (MMPH sets will require a rede�nition of


riti
al sets, as we shall see later on):

De�nition II.3. KS sets that do not properly 
ontain

any KS subset, meaning that if any of its edges were re-

moved, they would stop being KS sets, are 
alled 
riti
al

KS sets.

Hen
e, the set 13,35,57,79,9AB,BD,DF,FH,H1,1JK,

KLA,5LF,JD,J7,3B,H9. Yu and Oh obtained in [49℄ 
an-

not be a KS set sin
e it is a subgraph of a 
riti
al KS set

(Peres' set) and therefore 
annot provide a proof of the

KS theorem 
ontrary to the 
laim in the title of [49℄, as

we also show in some detail in [46, Se
. XII℄. But, in [49℄,

Yu and Oh do de�ne a new kind of 
ontextuality whi
h

we shall analyse and whi
h we sumarize as follows.

Consider the MMPH of the Yu-Oh representation of

the MMPH Peres' subgraph, from Fig. 1(b), shown in

Fig. 2. They removed all the verti
es that share only one

edge and whi
h are depi
ted as gray dots in Fig. 2(a).

Then they de�ne operators by means of the remaining

verti
es/ve
tors/rays/states whi
h serve them to de�ne

�lters either for preparation or for dete
tion of arbitrary

input or output states, respe
tively. The pro
edure goes

as follows.

Some of the ve
tors from Fig. 2(a) are represented as

∣y−1 ⟩ = 1√
2

⎛
⎜
⎝
0

1

−1
⎞
⎟
⎠
, ∣h2⟩ = 1√

3

⎛
⎜
⎝
1

−1
1

⎞
⎟
⎠
, ∣z3⟩ =

⎛
⎜
⎝
0

0

1

⎞
⎟
⎠
, ∣N⟩ = 1√

6

⎛
⎜
⎝
2

−1
1

⎞
⎟
⎠
. (1)

Ve
tors serve Yu and Oh to de�ne the following oper-

ators

Âi = I − 2∣i⟩⟨i∣ (2)

where i = 1, . . . ,13 
orrespond to y−1 , y
−

2 , . . . , z3 and we

add i = 14, . . . ,25 
orresponding to gray dots in Fig. 2(a).
For instan
e, for i = 1,8,13,20, 
orresponding to ve
tors

from Eq. (1), we have:

Â1 =
⎛
⎜
⎝
1 0 0

0 0 1

0 1 0

⎞
⎟
⎠
, Â8 = 1

3

⎛
⎜
⎝
1 2 −2
2 1 2

−2 2 1

⎞
⎟
⎠
, Â13 =

⎛
⎜
⎝
1 0 0

0 1 0

0 0 −1
⎞
⎟
⎠
, Â20 = 1

3

⎛
⎜
⎝
−1 2 2

2 2 1

−2 1 2

⎞
⎟
⎠
. (3)

The operators 
an be 
ombined in the following way:

L̂13 =
13

∑
i

Âi − 1

4

13

∑
i

13

∑
j

ΓijÂiÂj = 25

3
I = 8.3̇I, (4)

where Γij = 1 whenever 
orresponding ve
tors i, j are

orthogonal to ea
h other and Γij = 0 when they are not;

also Γii = 0. The value 25/3 is 
urious sin
e it is also

the sum of probabilities of dete
ting photons in the full

s
ale setup 25-16 shown in Fig. 1(b). That may be purely

a

idental. Also L̂25 is not diagonal. Yu and Oh 
onsider

neither ve
tors ∣i⟩ nor operators Âi for i = 14, . . . ,25
The fa
t that ea
h Âi has the spe
trum {−1,1,1}

prompted Yu-Oh to 
al
ulate the upper bound of a 
or-

responding expression for 13 
lassi
al variables with pre-

determined values -1 and 1:

C13 =
13

∑
i

ai − 1

4

13

∑
i

13

∑
j

Γijaiaj ≤ 8 (5)

The inequality

⟨L̂⟩ >Max[C] (6)

has been veri�ed experimentally [16, 21℄ and also im-

proved theoreti
ally by 
hanging the 
oe�
ients in

Eqs. (4) and (5) [71, 72℄. However, no other set, apart

from Yu-Oh's 13-16 itself, with su
h properties has been

found sin
e.

5
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211
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3

110=y

010=z2

001=z3

110=y3

y2 y2

h3 h0

y3

y3

z3

z2

y1 z1 y1

h21h
z2

y1

y2

y3

y3

y2

z1

y1

z3

1h h3

h2

h0

(a)

011=y1

211

112

2

100=z1

3111=h

011=y1

(b) (c) (d) Kochen & Specker
notation

equivalent

MMPH notation

isomorphic

or

101=y

121

101=y

111=h2

121121

111=h1

FIG. 2. (a) An MMPH subgraph of Peres' KS MMPH; (b) Yu-Oh's redu
tion of (a); (
) Yu-Oh's Fig. 2 from [49℄; (d) Yu and

Oh adopted a mixture of Ko
hen & Spe
ker notation [59℄; Cf. [46, Fig. 19℄ (the triangles in (
)) and MMPH notation (the 
ir
le

in (
)).

We tested 50 sets and found that L̂ of MMPHs with-

out left right symmetry mostly do not have diagonal ma-

tri
es, although some do, and that L̂s of the majority

of symmetri
 MMPHs are also not diagonal; when they

are, they are often not multiples of I; for the ones whose

L̂s are multiples of I we found that they satisfy either

⟨L̂⟩ < Max[C] or at most ⟨L̂⟩ = Max[C], i.e., we have
not found instan
es of Eq. (6) being satis�ed. We give

some examples below.

We should stress here that our de�nition of a subgraph

di�ers from a standard one. The standard de�nition as-

sumes that a subgraph is a hypergraph 
ontained in a

bigger hypergraph as is. In 
ontradistin
tion, we shall

assume that a subgraph might also be a hypergraph ob-

tained from a bigger hypergraph by taking out some

edges and 
onne
ting the remaining edges together, or

simply by taking out some verti
es. The latter subgraph

we denote as subgraph. For instan
e 123,345,567.

is a standard subgraph of 123,345,567,781., while

123,345,561. and 13,345,567,781. are its subgraphs.

Yu-Oh's 13-16 set is a subgraph of Peres' full s
ale 57-40

set. It is not a subgraph of either Peres' 57-40 or Peres'

33-40.

For a symmetri
 Ko
hen & Spe
ker's divided hexagon

[35, Fig. 6(ii)℄ MMPH 8-7, a subgraph of the KS set 117-

118 [59℄, shown in Fig. 3(a), we obtain ⟨L̂8⟩ =Max[C8] =
9/2. The 
ontextuality of the set has previously been


onsidered in [73℄.

From Peres' original KS set, using our programs

STATES01, LOOP, and VECFIND we 
an generate ar-

bitrary many subsets. Most of them are asymmetri
 and

their L̂s are non-diagonal. Also, many of highly symmet-
ri
 ones, as, e.g., 16-15 shown in Fig. 3(b) with L̂16 given

in Eq. (7), are not diagonal.

L̂16 = 1

6

⎛
⎜
⎝
57 4 4

4 54 3

4 3 60

⎞
⎟
⎠

(7)

An example of a non-symmetri
 13-11 with a diagonal

L̂ is given in Fig. 3(
). It has ⟨L̂13⟩ = 7.5 andMax[C13] =

7.75, i.e., ⟨L̂⟩ <Max[C].
We might try to 
onstru
t a symmetri
 MMPH, e.g.,

the 16-13 one given in Fig. 3(d). For it we obtain

⟨L̂13⟩ = 9.5 and Max[C13] = 9.75, i.e., again ⟨L̂⟩ <
Max[C]. However, the main problem with su
h 
on-

stru
ted MMPHs is that the probability of 
oming a
ross

their �lled (full s
ale) versions with 
oordinatizations

and therefore belonging to the 3-dim Hilbert spa
e is

minute, i.e., negligible even via automated 
onstru
tion

and sear
h on a super
omputer. The full s
ale version

(23-13) of the aforementioned 16-13 apparently does not

have a 
oordinatization, either.

We give more examples of ⟨L̂⟩ vs.Max[C] 
al
ulations
for other MMPHs in Se
. II D.

C. MMPH masters

There are several fa
ts we would like to stress as start-

ing points of our elaboration on the MMPH non-binary

sets.

(i) Peres wrote: â��It 
an be shown that if a single

ray is deleted from the set of 33, the 
ontradi
tion

disappears. It is so even if the deleted ray is not

expli
itly listed in table 1.â�� [65, L176, bottom

paragraph℄

Ad (i) The �rst senten
e is wrong be
ause MMPH

33-40 set 123,345,47,79,92A,AC,C4,AF,5F,HJ,

HL,H7M,NCO,OPQ,QRL,RT,TJ,JPV,VX,XR,Va,La,


e,
T1,
g,FXM,Mhi,ijg,jl,le,ehn,np,pj,nN,

gN,t9,tlO,t5,ap1,1MO. is not 
riti
al as veri�ed

by STATES01. It is also not a KS set but only

an MMPH non-binary set. The se
ond senten
e is


onditionally 
orre
t be
ause the full s
ale MMPH

57-40, 123,345,467,789,92A,ABC,CD4,AEF,5GF,

HIJ,HKL,H7M,NCO.OPQ,QRL,RST,TUJ,JPV,VWX,

XYR,VZa,Lba,
de,
T1,
fg,FXM,Mhi,ijg,jkl,

lme,ehn,nop,pqj,nrN,gsN,tu9,tlO,tv5,ap1,

1MO. is a 
riti
al KS set but only if assume that

with the deleted ray we also delete the edge/triplet

6
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(c)(a) (b) (d)

13−11
8−7

16−15
16−13

FIG. 3. (a) Hexagon MMPH from the KS set 192(117)-118 [35, Fig. 6(ii)℄ where it appears in 15 instan
es; (b) a symmetri


subgraph of Peres' MMPH with a non-diagonal L̂; (
) an asymmetri
 subgraph of Peres' MMPH with a diagonal L̂ and

⟨L̂⟩ < Max[C]; (d) a 
onstru
ted symmetri
 MMPH with a diagonal L̂ and ⟨L̂⟩ < Max[C] but whose full s
ale version does

not have a 
oordinatization.

it belonged to. (This instan
e of Peres' 57-40

KS set is isomorphi
 to the one given above;

the sequen
e of 
hara
ters is di�erent due to a

reshu�ing by automated tools we used to obtain

33-40 as a subgraph of 57-40.

(ii) Yu and Oh write: �The KS value assignments to

the 13-ray set [13-16℄ are possible; i.e., no logi
al


ontradi
tion 
an be extra
ted by 
onsidering 
on-

ditions 1 and 2 [of Theorem II.1℄.� [49, p. 3, left


olumn, top℄

Ad (ii) The 
laim is provisionally 
orre
t, but not be
ause

�no logi
al 
ontradi
tion 
an be extra
ted by 
on-

sidering 
onditions 1 and 2��it 
an be extra
ted:

in 13-16 it is impossible to assign 1s and 0s in su
h a

way that 
onditions 1 and 2 are satis�ed�and not

be
ause �value assignments to the 13-ray set are

possible��they are not possible: one 
annot assign

1s and 0s to its rays in su
h a way that 
onditions

1 and 2 are satis�ed�but be
ause the 13-16 set is

not a set of triplets and therefore does not satisfy

the �rst part of the KS theorem.

The �in
omplete triplets� issue reappears in many pa-

pers and books. For instan
e in Karl Svozil's book [74℄ in

Se
. 7.4 there is an ex
ellent symmetri
 �gure of Peres'

33-40 set [Fig.7.12℄, we, a
tually, made use of to write

down MMPH 57-40 set, but we had to add 24 verti
es

that were not there; 33 ve
tors and their 
orrespond-

ing logi
al proposition were expli
itly given, but the re-

maining 24 ve
tors were not mentioned. In the original

Ko
hen-Spe
ker paper [59℄ the triplets (edges with 3 ver-

ti
es) were depi
ted as triangles and doublets (triplets

from whi
h one vertex was dropped) as straight lines�

all together 117 verti
es of 192 ones 
ontained in 118

triplets. Their triangles are shown in [35, Fig. 6(ii)℄. The

same triangles are used in the Yu-Oh's set and are shown

in Fig. 2(d). This triangle notation is a sour
e of some


onfusion in the literature and resear
h, though. For in-

stan
e, in [52℄ on p. 4, Fig. 1 (b), where one line from

one of the triangles from Yu-Oh's set is deleted, we read:

�(b) GYO minus one edge.� However, the lines in the

triangle are not edges. The whole triangle is an edge

(triplet) as shown in Fig. 2(d). The lines within a triangle

are orthogonalities and a removal of one of them means

splitting the triplet into two doublets, i.e., in
reasing the

number of edges in the set. So, the set in Fig. 1(a) of

[52℄ has 16 edges, while the set in Fig. 1(b) has 17 edges.

In any 
ase the set (b) is not a subgraph of (a) nor is

(a) a subgraph of (b). Of 
ourse, a removal of one of the

orthogonalities must also be a

ompanied by a swit
h to

a new 
oordinatization of the whole set.

In the The Ko
hen-Spe
ker Theorem arti
le in the

Stanford En
y
lopedia of Philosophy only 117 verti
es

were 
onsidered. �[W℄hat KS have shown is that a set

of 117 yes-no observables 
annot 
onsistently be assigned

0-1 values� [75℄. Je�rey Bub writes: �This yields a total

of 49 rays and 36 orthogonal triples. Now the only rays

that o

ur in only one orthogonal triple are the 16 rays

with a 5 as 
omponent. Removing these 16 rays from the

49 rays yields the following set of 33 rays that 
annot be


olored.� [76℄. However, 49 rays also 
annot be 
olored

and the 49-36 is 
riti
al, while 33-36 is not.

These fa
ts o�er the following approa
h, though. The

aforementioned 
onditions 1 and 2 are also 
ontained in

the Def. II.2 of an MMPH non-binary set and Peres' 33-

40, Yu-Oh's 13-16, Bub's 33-36, Conway-Ko
hen's 31-37,

and Ko
hen-Spe
ker' 117-118 sets all violate the 
ondi-

tions 1 and 2, thus 
on�rming that these sets are MMPH

non-binary sets. Moreover, they a
tually enable us to get

many smaller MMPH non-binary sets from them be
ause

none of these sets is 
riti
al. And they are all equipped

with at least the 
oordinatization they inherit from their

full s
aled versions 57-40, 25-16, 49-36, 51-37, and 192-

118, respe
tively, but often with even simpler ones.

The MMPH strings of the last three sets are:

Bub's 33-36 (derived from the full s
ale 49-36 [46,

Fig. 19℄): 12,134,156,67,48,9AB,CDE,6B,4E,2FG,2HI,

EG,GB,8I,I7,AJ,AK,C7L,MN9,HON,N3P,PL,MFQ,QL,

M5R,RD,DO,STC,JHT,T5U,S3K,SFV,VW,98W,WU,X9C.

Conway-Ko
hen's 31-37 (derived from the full s
ale 51-37

[46, Fig. 19℄): 123,245,26,57,89A,BCD,5D,3EF,3G,DF,

FA,9H,87I,9J,CK,CL,LM,HN,M1N,KO,1OP,Q6R,QGH,BQS,

PR,PJ,S4J,SET,NT,TI,RI,UV8,VGK,U6L,4V,UE,18B.

7
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and the Ko
hen-Spe
ker's 117-118 (derived from the orig- inal full s
ale 192-118 [46, Fig. 19℄):

12,234,45,56,678,81,9A,ABC,CD,DE,EFG,G9,HI,IJK,KL,LM,MNO,OH,PQ,QRS,ST,TU,UVW,WP,1X,XYZ,Za,ab,b
d,

d1,ef,fgh,hi,ij,jkl,le,mn,nop,pq,qr,rst,tm,uv,vwx,xy,yz,z!","u,#$,$%&,&','(,()*,*#,e-,-/:,:;,;<,

<=>,>e,?�,�[/,/℄,℄�,�_`,`?,{|,|}~,~+1,+1+2,+2+3+4,+4{,+5+6,+6+7+8,+8+9,+9+A,+A+B+C,+C+5,+D+E,
+E+F+G,+G+H,+H+I,+I+J+K,+K+D,?+L,+L+M+N,+N+O,+O+P,+P+Q+R,+R?,37,BF,JN,RV,Y
,gk,os,w!,%),/=,[_,

}+3,+7+B,+F+J,+M+Q,95e,HDe,PLe,aTe,mi?,uq?,y'?,;#?,{℄1,+5+11,+D+91,+O+H1,1e?.

All of them have 
oordinatizations and none of them

is 
riti
al. They will be our MMPH non-binary master

sets we shall get smaller MMPH non-binary 
riti
al

sets from, in Se
. II D. Here we want to stress that

we have 
hosen the above sets to be our masters for

histori
al reasons. But any set we obtain by stripping

the original four KS sets from some other number of

verti
es being 
ontained in only one edge 
an serve us

as a master set. For instan
e, by stripping not 24 but

17 su
h verti
es from Peres' 57-40 KS set, we obtain

the following set whi
h we 
an also use as our master

set�Peres' 40-40 (derived from the full s
ale 57-40 [46,

Fig. 19℄): 123,345,467,78,829,9A,A4,9B,5B,CD,CE,

C7F,GAH,HIJ,JKE,KLM,MND,DIO,OPQ,QRK,OST,ET,UVW,

UM1,UX,BQF,FYZ,ZaX,ab,bW,WY
,
d,da,
G,XG,e8,

ebH,e5,Td1,1FH.

We present two smaller 
riti
al MMPH non-binary sets

35-27 and 38-30, obtained from this 40-40 set, in Ap-

pendix A 3 be
ause they are bigger than Peres' 33-40 and

they are 
riti
al, while Peres' 33-40 is not. Also, 
riti
als

with 33 or less verti
es we obtained from Peres' 33-40

and from Peres' 40-40 
oin
ide. The di�eren
e is only

in 
riti
als with 34 to 38 verti
es whi
h we, of 
ourse,


annot obtain from Peres' 33-40 set.

D. Classes of MMPH non-binary sets, their

implementation, and their inequalities

From the MMPH non-binary master sets given in

Se
. II C we obtain smaller MMPH non-binary 
riti
al

sets via STATES01. There is a prin
ipal di�eren
e in the

feature of 
riti
ality between these sets and the full s
ale

KS sets, though.

If we removed any of the edges of a full s
ale KS 
riti
al

set, the remaining set would not be a KS set any more

(see Def. II.3). If we then 
ontinued to strip further edges

from the remaining set, we would never arrive at a KS

set again. This is not so with an MMPH non-binary


riti
al set. When we remove any of its edges it does

stop being an MMPH non-binary set, but if we removed

further edges from the obtained set, it would often turn

into a smaller MMPH non-binary 
riti
al set. Therefore

we introdu
e:

De�nition II.4. An MMPH non-binary set is 
alled an

MMPH non-binary 
riti
al sets if a removal of any of its

edges would turn the remaining set into an MMPH binary

set. MMPH non-binary 
riti
al sets might properly 
on-

tain smaller MMPH non-binary 
riti
al sets whose num-

ber of edges is smaller than the original 
riti
al set for at

least 2 edges.

Bub and Conway-Ko
hen's master sets share the 
oor-

dinatization while Peres and Ko
hen-Spe
ker's ones have

di�erent ones mutually and with respe
t to the former

two sets. Therefore, also the 
lasses of smaller MMPH

non-binary 
riti
al sets we obtain from them will be

stru
turally di�erent.

From these master sets we generated 
lasses of smaller

MMPH non-binary 
riti
al sets by means of our programs

[35, 47℄, although the algorithms and programs should be

redesigned and rewritten for an automated generation.

MMPH sets generated from a master set we 
all a 
lass

of MMPH sets. So, we shall talk about Bub, Conway-

Ko
hen, Peres, and Ko
hen-Spe
ker's 
lasses. Distribu-

tions of their 
riti
als are shown in Fig. 4. The 
riti-


als are mostly the standard subgraphs of their masters

obtained via our automated algorithms and programs,

ex
ept for a limited number of smaller subgraphs we ob-

tained via new algorithms whi
h are still under develop-

ment. Most subgraphs have a parity proof unlike most

of the standard subgraphs of whi
h only a very few have

a parity proof.

Noti
e that the biggest 
riti
al sets in Fig. 4(a,
) have

the same number of verti
es as their master sets, but 9,12

edges less, respe
tively.

A possible experimental implementation of MMPH

non-binary sets might be made in analogy to the exper-

imental implementation of KS sets 
arried out in [12℄.

The di�eren
e is that the latter sets 
ontain only triplets,

while the former ones 
ontain triplets and doublets, simi-

larly to the Yu-Oh's 13-16 set, or even only doublets as in

the 5-5 set. To 
arry out measurements on KS sets means

that we have to verify that the probability of dete
ting

a parti
le or a photon at ea
h out-port of a gate repre-

senting an edge (triplet) is 1/3. Yu-Oh's implementation

rely on gates de�ned via Eqs. (2) and (4) by means of 13

verti
es/ve
tors/rays/states and the gates representing

12 dropped verti
es are not 
onsidered. Measurements

on MMPH non-binary sets might be 
arried out as for

KS sets with triplets (with the 1/3 probability of dete
-

tion at ea
h out-port) and via 
alibrated dete
tions of a

parti
le or a photon at out-ports of a gate representing a

doublet with the 1/2 probability of dete
ting a parti
le

at ea
h of the two 
onsidered ports. When a vertex share

a mixture of triplet and doublet edges the probability of

dete
tion is 1/p, where 1/3 ≤ p ≤ 1/2. The data obtained

8
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FIG. 4. (a) Distribution of MMPH non-binary 
riti
al sets generated from Bub's MMPH non-binary master set; (b) Conway-

Ko
hen's 
riti
als; (
) Peres' 
riti
als; (d) Ko
hen-Spe
ker's 
riti
als.

at the out-ports 
orresponding to the dropped third ver-

ti
es are dis
arded or we simply do not measure them

at all as in Yu-Oh's experiments [16, 21, 71℄. To assure

an equal distribution of out
omes at ea
h port, the in-

puts to doublet gates should be s
aled up with respe
t to

the full triplet ones by 3/2 and this is why we 
all them


alibrated.

The inequalities to be experimentally veri�ed for the

MMPH non-binary sets 
an be de�ned as for the other

two kinds of sets. For instan
e, for Yu-Oh's 13-16 set

we verify their inequality given by Eq. (6): 8.3 > 8.

Let us 
onsider the set as shown in Fig. 1(b) (ex
lud-

ing the gray dots). This set 
ontains 4 triplets and 12

doublets. Verti
es A,K,L share only triplets, so the prob-

ability of having a 
li
k along them is 1/3. Verti
es

3,7,D,H share only doublets and the probability of get-

ting 
li
ks along them is 1/2. Verti
es 1,5,9,B,F,J share

a triplet and two doublets, ea
h, what yields the probabil-

ity (1/2+1/2+1/3)/3 = 4/9. Altogether, the probabilities
for 13 verti
es sum up to 3× 1/3+ 4× 1/2+6×4/9 = 17/3.
Let us 
all this sum a quantum hypergraph index of an

MMPH set and denote it as HIq. On the other hand, the
set 13-16 allows at most four 1s. This is a 
lassi
al upper

bound for getting 
lassi
al dete
tion 
li
ks. Let us 
all

this 
lassi
al upper bound, i.r., the maximal number of

1s we 
an assign to verti
es of a MMPH non-binary set so

as to satisfy the two 
onditions from Def. II.2, a 
lassi
al

hypergraph index HIc. Hen
e, we obtain the inequality

HIq[13-16] = 17/3 = 5.6̇ > HIc[13-16] = 4. Noti
e, that

even un
alibrated probabilities give us HIq−unc[13-16] =
13/3 = 4.3̇ > HIc[13-16] = 4. We obtain un
alibrated

probabilities by measuring all verti
es in all edges in

Fig. 1(b), meaning with gray dots in
luded. With ea
h

vertex in every edge we have a probability of getting a


li
k, i.e., of assigning 1 to it, being equal to 1/3. If

we now sele
ted the 13 red-dot verti
es, we would get

13/3 = 4.3̇ whi
h is also greater than HIc[13-16] = 4. No-
ti
e also that the maximal number of 1s we 
an assign to

verti
es in the full s
ale 25-16 set is 11 and that gives us

the inequality HIq[25-16] = 25/3 = 8.3̇ <HIc[25-16] = 11
whi
h is yet another proof that 25-16 is not a KS set.

It is interesting that three of four 
onsidered mas-

ters also satisfy the un
alibrated inequality HIq−unc >
HIc. Bub's 33-36: HIq−unc[33-36] = 11 > HIc[33-36] =
10, Conway-Ko
hen's 31-37: HIq−unc[31-37] = 10.3̇ >
HIc[31-37] = 8, and Peres' 33-40 HIq−unc[33-40] = 11 >
HIc[33-40] = 6.
Let us now present several smaller MMPH 
riti
als

from ea
h 
lass, 
onsider their properties, and 
al
ulate

Yu-Oh-like expressions and values for some of them.

The smallest Bub's 
riti
al subgraph with 
oordina-

tization we found is the pentagon 5-5 12,23,34,45,51

(with the gray dots ex
luded) shown in Fig. 5(a). The

full s
ale hypergraph 10-5 162,273,384,495,5A1 is also

shown Fig. 5(a) (with the gray dots in
luded).

As we proved in [35℄, the smallest loop edges 
an

form in a 3-dim spa
e with verti
es endowed with a

real 
oordinatization is a pentagon. We 
ould not

�nd (with Mathemati
a) a 
omplex 
oordinatization

of any smaller MMPH, either. We 
onje
ture that the

�lled pentagon MMPH 10-5 is the smallest MMPH

with a 
oordinatization in the 3-dim Hilbert spa
e.

Its 
oordinatization is, e.g., 1={0,0,1},2={0,1,0},

3={1,0,1},4={1,1,-1},5={1,-1,0},6={1,0,0},7={1,0,-1},

8={-1,2,1},9={1,1,2},A={1,1,0}. It, of 
ourse, in
ludes

the 
oordinatization of 5-5. As we 
an easily 
he
k,

the maximal number of 1s assignable to verti
es of

5-5, satisfying the two aforementioned 
ondition, is

2. Thus we have the following 
ontextual inequality

HIq[5-5] = 5 × 1/2 = 2.5 > HIc[5-5] = 2. Yu-Oh's ap-

proa
h does not o�er us su
h a 
ontextual distinguisher

sin
e for L̂ and C of Eqs. (4), (5), and (6) we get

9
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FIG. 5. Criti
als generated from Bub's master: (a) subgraph pentagon 5-5; (b) subgraph 10-9; (
) standard subgraph 14-11;

Criti
al generated from Peres' master: (d) 13-11.

L̂10 = 2.5I and C10 ≤ 2.5. Hen
e, ⟨L̂10⟩ = Max[C10].
MMPH non-binary subgraph 5-5 
an a
tually be gener-

ated in all four MMPH 
lasses, but we have not shown

them for Conway-Ko
hen and Peres' 
lasses in Fig. 4.

The pentagon 5-5 has a parity proof.

Subsequent small Bub's 
riti
al subgraphs we ob-

tained, are 9-9 and 10-9. The latter is shown in

Fig. 5(b). Its MMPH string 
an be easily read o�

from the �gure: 12,23,34,456,67,78,89,9A1,A5.

Its possible 
oordinatization is: 1={0,0,1},2={1,1,0},

3={1,-1,1},4={0,1,1},5={2,-1,1},6={1,1,-1},7={1,0,1},

8={1,2,-1},9={2,-1,0},A={1,2,0}. Ve
tor 
omponent

`2' is here be
ause the set of 1-A vertex 
oordinates

is a subset of the 1-H set of 
oordinates of the �lled

set 17-9. As for the 
ontextuality veri�
ation, we have

HIq[10-9] = 6 × (1/2 + 1/3)/2 + 4 × 1/2 = 9/2 = 4.53̇ >
HIc[10-9] = 4. On the other hand, we have L̂10 = 5.5I

and C10 ≤ 5.5. Hen
e, ⟨L̂10⟩ =Max[C10]. The set has a
parity proof.

The �rst standard subgraph in the Bub's 
lass we

found is 14-11 shown in Fig. 5(
). Its 
oordinatization is

1={2,0,1},2={-1,-1,2},3={1,-1,0},4={1,1,1},5={2,-1,-1},

6={0,1,-1},7={2,1,1},8={-1,1,1},9={1,1,0},A={1,-1,2},

B={2,0,-1},C={1,0,2},D={0,1,0},E={-1,0,2}.

HIq[14-11] = 4 × 1/3 + 10 × (1/2 + 1/3)/2 = 11/2 = 5.53̇ >
HIc[14-11] = 5. The Yu-Oh approa
h gives: L̂10 = 8.5I
and C10 ≤ 8.75. Hen
e, ⟨L̂14⟩ < Max[C14]. The set is

one of the few standard subgraphs that have a parity

proof. The only other Bub's 
riti
als with a parity proof

we found are 14-13, 18-15, 24-19, and 28-23.

Another 
riti
al with L̂ = cI (c is a 
onstant) we

found is 14-13: 12,23,34,45,56,67,789,9A,AB,BC,CD,

DE1,E8. ⟨L̂14⟩ = 7.5 <Max[C14] = 7.75.
Yu-Oh's 13-16 is from the Peres' 
lass but the

only other 
riti
al with L̂ = cI we found in Peres'


lass is the subgraph 13-11 shown in Fig. 4(d):

12,234,56,678,89,9A,ABC,CD,D1,35,4B7. ⟨L̂13⟩ =
7.5 < Max[C13] = 7.75, The 
oordinatization is

1={1,1,

√
2},2={0,

√
2,-1},3={0,1,

√
2}, 4={1,0,0},

5={1,

√
2,-1},6={

√
2,-1,0},7={0,0,1},8={1,

√
2,0},

9={

√
2,-1,1},A={1,0,-

√
2},B={0,1,0},C={

√
2,0,1},

D={1,1,-

√
2}. The 
omponents ±√2 
ome from the 
o-

ordinatization of the �lled set 20-11 whi
h requires the


omponents ±√2,3, i.e., more than Peres' master set it-

self. This is be
ause 13-11 is a subgraph and not a stan-

dard subgraph of the master set. HIq[13-11] = 5.53̇ >
HIc[13-11] = 5. The 
riti
al 13-11 has a parity proof.

We found no standard subgraph of Peres' master with a

parity proof, though.

In Fig. 4(b), only 
riti
al standard subgraphs obtained

via automated generation are shown. Hen
e, they are

all subgraphs of Conway-Ko
hen's master but we shall

explain how one 
an generate subgraphs from them.

Let us 
onsider Conway-Ko
hen's 
riti
al 13-10

shown in Fig. 6(a): 12,234,45,56,678,89,9A1,ABC,

3B7,CD5. Its 
oordinatization is: 1={1,1,0},2={-1,1,1},

3={1,0,1},4={1,2,-1},5={0,1,2},6={1,-2,1},7={1,0,-1},

8={1,1,1},9={1,-1,0},A={0,0,1},B={0,1,0},C={1,0,0},

D={0,2,-1}., after taking into a

ount the �lled 17-10 set.

Similarly to Yu-Oh's set, the 13-10 set exhibits both 
on-

textual indi
es: HIq[13-10] = 4.94̇ > HIc[13-10] = 4 and

HIq−unc[13-10] = 13/3 = 4.3̇ > HIc[13-10] = 4. If we take
out the vertex D (the gray dot in Fig. 6(a)) the result-

ing subgraph 12-10 is 
riti
al too, whi
h also shows that

vertex-
riti
ality is not 
onsistent. Unlike Yu-Oh's set,

neither 13-10 nor 12-10 have L̂ = cI satis�ed. L̂13 is not

diagonal and L̂12 is diagonal but it is not a multiple of the

unit matrix. The set 12-10 does not exhibit both 
ontex-

tual distinguishers: HIq[12-10] = 4.754̇ > HIc[12-10] = 4
but HIq−unc[12-10] = 12/3 = 4 = HIc[12-10] = 4. It is, of

ourse, due to the lower number of verti
es, sin
e the ge-

ometri
al stru
ture of the MMPHs, yielding the 
lassi
al

index 4, remains the same.

We �nd similar features within Ko
hen-Spe
ker's

MMPH 
lass. Let us take two MMPH 
riti
als from the

middle of the distribution shown in Fig. 4(d). 32-25a:

45,5P7,76,6Q9,98,8V2,2UI,IHA,AB,BC,CG,GDK,KLJ,

JYF,F3,3E,EWN,NMO,OR4,123,DE,STL,UTC,XMF,ZHG.

and 35-25b: 12, 2TJ,JK,KQM,ML,LDF,FG,GZ3,34,4U6,

65,5X7,78,8W9,9A,AV1,BC,DE,HI,NO,PO,RPI,SNH,

YEC,OLB. Their 
oordinatizations are too long to be

given here. Neither of them nor any other standard

subgraph in the Ko
hen-Spe
ker's 
lass we obtained in

10
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FIG. 6. (a) Conway-Ko
hen's MMPH non-binary 
riti
al set 13-10; (b) Ko
hen-Spe
ker's 35-25a 
riti
al with un
alibrated


ontextuality; the outer loop is a 19-gon; (
) Ko
hen-Spe
ker's 35-25b 
riti
al without un
alibrated 
ontextuality; the outer

loop is a 16-gon; See text.

Fig. 4(d) has a parity proof.

Their di�erent geometri
al stru
ture yield di�erent


lassi
al hypergraph indi
es: HIc[35-25a] = 11 and

HIc[35-25b] = 12. However, the number of verti
es and
therefore the quantum un
alibrated hypergraph indi
es

of both MMPHs are the same: HIq−unc[35-25] = 35/3 =
11.6̇. That means that 35-25a exhibits 
ontextuality even
for un
alibrated measurement out
omes, while 35-25a

does not. Their 
alibrated indi
es are: HIq[35-25a] =
12.4̇ > HIc[35-25a] = 11 and HIq[35-25b] = 13.75 >
HIc[35-25b] = 12. Pentagons in 35-25b in Fig. 6(
) are

subgraphs of Ko
hen-Spe
ker's master unlike the pen-

tagon 5-5 (without gray dots) in Fig. 5, whi
h is a

subgraph. If we removed all gray dots, the resulting set

25-25 will not be 
riti
al any more, but if we leave S and

R in the red pentagon, the resulting 27-25 set will be 
rit-

i
al. This 
annot be a
hieved with the green pentagon:

leaving Y as the only gray dot in the 26-25 set will not

make it 
riti
al. L̂ of the double pentagon is not diagonal.

In Appendix A we give 
hosen MMPH non-binary 
rit-

i
al sets whi
h are standard subgraphs of the four MMPH

master sets.

III. DISCUSSION

In the last half a 
entury a vast number of 
on-

stru
tive proofs of quantum 
ontextuality were obtained

in even dimensional Hilbert spa
es, but only a very

few in odd dimensional ones. In parti
ular, in the 3-

dim spa
e: Bub, Conway-Ko
hen, Peres, and Ko
hen-

Spe
ker's KS sets, Yu-Oh 
ontextual set, and Klya
hko-

Can-Bini
io§lu-Shumovsky's pentagram/pentagon state-

dependent set. All together 6 sets.

In this paper we present n-dim hypergraph 
ontextu-

ality whi
h 
onsists in generating sets whi
h pre
lude bi-

nary assignments of values 0 and 1 to verti
es of a hyper-

graph, su
h that 1 is assigned to only one of the verti
es

in ea
h edge of the hypergraph, where an edge 
an 
on-

tain less than n mutually orthogonal verti
es. Su
h a set

whi
h we 
all an n-dim MMPH non-binary set, is de�ned

by Def. II.2. We stay with n = 3, i.e., we deal with qutrits
only, although the method 
an be extrapolated to any di-

mension. The method serves us to distinguish 
lassi
al

models with predetermined binary values, that 
an be as-

signed to measurement out
omes of 
lassi
al observables

underlying 
lassi
al 
omputation, from quantum models

that do not allow for su
h values and that underlie quan-

tum 
omputation.

Let us make use of a graphi
al representation of an n-
dim MMPH to des
ribe the method. Verti
es within an

MMP hypergraph are drawn as dots and edges 
ontain-

ing mutually orthogonal verti
es are drawn with the help

of straight or 
urved lines 
onne
ting these �orthogonal

dots� as shown in Figs. 1, 2, 3, 5, and 6. There 
an be

a di�erent number of verti
es/dots in edges. Our pro-

gram then veri�es whether a 
hosen MMPH k-l violates
or obeys the 0,1 assignment rules from Def. II.2. Edges

in MMPH k-l might 
ontain 3 or 2 verti
es. We then


onsider a �lled MMPH k′-l in whi
h we add a vertex to

ea
h edge whi
h 
ontains only 2 verti
es and try to �nd

a 
oordinatization for it. If su

essful, we make a one-to-

one 
orresponden
e between verti
es and ve
tors in the

n-dim Hilbert spa
e, i.e., for the MMPH k′-l set. The

MMPH k-l set inherits the 
oordinatization from from

the MMPH k′-l set. If we implemented the MMPH k′-

l, ea
h edge would be a gate with n out
omes and the

probability of dete
ting an out
ome would be 1/n.
Now, our approa
h 
onsists in dis
arding the out
omes


orresponding to 
hosen verti
es whi
h share (are 
on-

tained in) only one edge from 
hosen edges and 
onsider-

ing out
omes only of the remaining verti
es. In the 3-dim

Hilbert spa
e, that means that some of the edges/gates

should be taken as doublets and the others as triplets.

Our programs 
an handle su
h MMPHs be
ause they

are written for edges of mixed sizes. Measurements on

MMPH non-binary sets might then be 
arried for triplets

in a standard manner, i.e., with the probability of 1/3 of

obtaining a 
li
k (value 1) at ea
h of the three ports, at

11
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a gate 
orresponding to an edge/triple, and via a 
al-

ibrated dete
tion at out-ports of a gate representing a

doublet with the probability of 1/2. For verti
es that

share triplet and doublet edges, the probability would be

equal to 1/p, where 1/3 ≤ p ≤ 1/2. Calibration 
onsists in

sending three input parti
les to a doublet gate for ea
h

two sent to a triplet gate, i.e., the ratio of doublet to

triplet inputs should be 3/2.

To obtain a measure of quantum 
ontextuality of an

MMPH non-binary set we de�ne hypergraph indi
es. A


lassi
al hypergraph index HIc is the maximal number

of 1s we 
an assign to verti
es within edges of an MMPH

so as to obey the 0,1 assignment rules from Def. II.2. A

(
alibrated) quantum hypergraph index HIq is the sum

of 
alibrated probabilities for all k verti
es of the afore-

mentioned k-l MMPH. An un
alibrated quantum hyper-

graph index HIq−unc is the sum of 1/3-probabilities for

all k′ verti
es of the aforementioned k′-l MMPH. A ba-

si
 measure of quantum 
ontextuality of an MMPH non-

binary set is the inequalityHIc <HIq. If it were satis�ed,
the MMPH would be 
ontextual. If not, it wouldn't. A

stronger measure of quantum 
ontextuality of an MMPH

non-binary set is the inequality HIc < HIq−unc. Some

of the 
onsidered MMPHs do satisfy both inequalities.

For instan
e, Yu-Oh's set 13-16, MMPH 13-10 shown in

Fig. 6(a), MMPH 35-25a shown in Fig. 6(b), and the

MMPH master sets 
onsidered in Se
. II D. Other 
onsid-

ered 
riti
al non-binary MMPHs satisfy only 
alibrated

inequalities but that is su�
ient for experimental veri�-


ation of 
ontextuality and possible appli
ations.

We get thousands of MMPH non-binary sets as fol-

lows. For the time being, we start with the previously

found KS sets: Bub 49-36, Conway-Ko
hen 51-37, Peres

57-40, and Ko
hen-Spe
ker's 192-118 whi
h are all 
riti-


al, i.e., if we took out any edge from any of them they

would stop being KS [46, Def. 3℄. However, when we

strip all the verti
es 
ontained in only one edge we ob-

tain Bub 33-36, Conway-Ko
hen 32-37, Peres 33-40, and

Ko
hen-Spe
ker's 117-118 master sets, none of whi
h is


riti
al. This enables us to generate thousands of new

smaller MMPH 
riti
al sets from them via our programs.

Their distributions are shown in Fig. 4. Chosen MMPHs


riti
al sets are given in Se
. II D and Appendix A and

shown in Figs. 5 and 6. They 
an be easily implemented,

in parti
ular the smaller ones.

The large number of obtained sets 
an also be used for

an automated testing of Yu-Oh's operators and inequal-

ities along the examples we gave in Se
s. II B and IID.

For that we are developing new algorithms and programs.

This is a work in progress.

Next, one 
an make use of the obtained MMPHs to

formulate new entropi
 tests of 
ontextualities following

Kurzy«ski, Ramanathan, and Kaszlikowski [54℄. In 2012

they only had one pentagram/pentagon set [53℄ at their

disposal. The pentagon 5-5 set is the simplest MMPH

set we obtained (see Fig. 4) and many other generated

small sets 
an now serve the purpose.

Also, the methods of evaluating 
onditions for being a

SIC set developed in [51, 52℄ and the methods of Cabello-

Severini-Winter graph-theoreti
 approa
h to quantum


orrelations [56℄ require samples of hypergraphs and that

is what our method o�ers�a 
onstru
tive probabilisti


generation of arbitrary MMPH sets when 
oupled with

automated ve
tor generation algorithms we developed in

[47℄.

Finally, we stress that the MMPH 
onstru
tive gen-

eration of non-binary quantum sets from operationally


hosen ve
tors out of all possible ones within su
h sets


ontribute to our understanding of the physi
al origin of

quantum 
orrelations sin
e they represent a new MMPH

s
enario for getting �quantum 
orrelations from simple

assumptions� presented in [57℄.

IV. METHODS

The methods we use to handle quantum 
ontextual

sets rely on algorithms and programs within the MMP

language: VECFIND, STATES01, MMPSTRIP, MMP-

SHUFFLE, SUBGRAPH, LOOP, and SHORTD devel-

oped in [6, 38, 39, 58, 60, 61, 77, 78℄. They are freely

available at http://goo.gl/xbx8U2. MMPHs 
an be vi-

sualized via hypergraph �gures 
onsisting of dots and

lines and represented as a string of ASCII 
hara
ters.

The latter representation enables pro
essing billions of

MMPHs simultaneously via super
omputers and 
lusters.

For the latter elaboration, we developed other dynami
al

programs spe
i�
 program to handle and parallelize jobs

with arbitrary number of MMP hypergraph verti
es and

edges.
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Appendix A: ASCII strings from MMPH non-binary 
lasses

Below we give several 
hosen standard subgraphs from the four 
lasses of 
riti
al MMPH sets shown in Fig.4. The

�rst number in ea
h line is m of the biggest m-gon loop for the MMPH in the line. The se
ond and third numbers

are the numbers of the MMPH verti
es and edges, respe
tively. Three 
ommas ��,� denote the end of a loop and *

behind an ASCII symbol means that the symbol belongs to the loop.

1. Bub's 
lass

10-v18-e13 213,36,6GC,CDB,BH8,89,9I4,45,5EA,A2�,73*,9*2*,FD*7.

11-v21-e16 213,3A,AHG,GFE,E57,76,6KL,LD8,89,9IC,C2�,45*,B3*,D*2*,JF*B,H*8*4.

14-v24-e18 12,2L3,34,4KG,GHI,I85,56,6B,BC,CA,A9,9FE,ED,DO1�,78*,JH*F*,MN7,ND*C*.

13-v27-e20 213,3L4,45,5B,BC,CMN,NOE,E6F,FD9,9A,AJI,IHG,GP2�,6*7,87,D*3*,KL*H*,QRO*,O*82*,RD*B*.

17-v30-e23 543,3PC,CB,BA,AON,NJ6,67,7KL,L2S,SRI,IH,HTM,MGD,DE,E9,98,8Q5�,12*3*,FG*,J*5*,

P*O*M*,US*Q*,N*F2*.

17-v33-e26 45,5CL,L7E,EF,FG,GBH,HIJ,JN,NRS,SWO,O6P,PMQ,QA2,2V8,89,9TU,U34�,12*3*,6*7*,A*B*,

C*D,KL*H*,G*D,M*J*,O*H*3*,XU*R*.

2. Conway-Ko
hen's 
lass

8-v15-e11 12,2E7,78,8D3,34,4C6,65,5F1�,9AB,B7*6*,A3*1*.

12-v22-e16 67,7GF,FB,B5D,D3,3ME,EC,CK8,89,9HI,I2A,AL6�,12*3*,45*,A*B*C*,J42*.

14-v26-e19 312,2F,FMN,NL5,596,67,7OJ,JIE,EB,BA,APD,DC,CQH,H3�,45*3*,89*,G2*, KL*G,I*H*8.

15-v29-e22 12,2RH,HQ3,34,47M,MT9,9A,AJE,ED,DIF,FG,GC,CB,B5N,NS1�,5*6,7*8,H*I*,KL8,LD*6,OPG*,

PN*M*.

17-v30-e24 12,2TD,DH,HRO,O87,76,65,5P4,43,3SJ,JK,K9L,LIM,MQN,NCE,EB,BU1�,8*9*,AB*,C*D*,FG,I*G,

P*GA,Q*J*F.

3. Peres' 
lass

10-v15-e12 12,2A,AC8,87,7D5,56,6B9,94,43,3E1�,E*C*B*,FE*D*.

14-v19-e16 12,23,34,4E,EGA,A9,9HB,BC,CFD,D8,87,7I6,65,51�,I*G*F*,JI*H*.

14-v27-e19 12,2QD,DE,E3I,IJK,KM5,56,6L8,87,7PG,GHF,FAB,BC,CR1�,3*4,9A*,E*C*,NJ*9, OH*4.

20-v35-e27 213,3G,GLM,MNE,EF,FVX,XYU,UP5,5I,IT7,78,89,9S6,6J,JZQ,QHA,AB,BKD,DC,CR2�,45*6*,

H*I*,F*3*,OP*K*,V*Q*L*,T*S*2*,WX*R*.

22-v38-e30 345,5SU,UTH,HI,IR2,2
Z,ZFa,aJW,WVX,XQG,G7,76,6LC,CB,BMD,DE,EYA,A9,98,8ON,NbK,KP3�,

12*3*,F*G*,J*5*,J*I*,K*E*,P*Q*L*,R*S*M*,a*Y*O*.

4. Ko
hen-Spe
ker' 
lass

7-v12-e9 12,23,34,456,6A9,987,7C1�,5*1*,B8*3*.

12-v19-e14 12,2IA,AB,BC8,87,7E5,56,6D4,43,3FG,G9H,HJ1�,9*A*,H*D*C*.

16-v30-e21 312,2E,EMN,NL8,8RC,CD,D7,76,6GH,HP9,9SA,AB,BQ4,45,5IJ,JO3�,8*9*3*,F2*,KL*F,TO*B*,

UP*D*.

18-v38-e27 34,4VD,DE,ETG,GF,F
O,ON,NHJ,JK,KSC,CB,BZ5,56,6Y9,9A,AX7,78,8W3�,12,H*I,LM,PQ,RQ,

UMI,aR2,bP1,QN*L.

18-v46-e33 56,6a8,87,7e9,9A,A
C,CB,BdD,DE,EbG,GF,FiP,PQ,QYX,XT,THJ,JK,Kh5�,12,34,H*I,LM,NO,

RS,T*US,VU,WU,ZRO,fI4,gM3,jW2,kV1,T*NL.

12-v54-e39 78,8oV,VW,WgX,XY,YZ,ZfU,UT,TpA,A9,9Ps,sN7�,12,34,56,BC,DE,FG,HI,JK,LM,N*O,P*Q,RS,

ab,
b,d
S,eaR,hK2,iI1,jM6,kOG,lQ5,mC4,nE3,qY*D,rbB,s*LH,s*JF.
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