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Quantum ontextuality is a soure of quantum omputational power and a theoretial delimiter

between lassial and quantum strutures. It has been substantiated by numerous experiments

and prompted generation of state independent ontextual sets, i.e., sets of quantum observables

apable to reveal quantum ontextuality for any quantum state of a given dimension. There are

two major lasses of state-independent ontextual sets: the Kohen-Speker ones and the operator-

based ones. In this paper, we present a third, hypergraph-based lass of ontextual sets. Hypergraph

inequalities serve as a measure of ontextuality. We limit ourselves to qutrits and obtain thousands

of 3-dim ontextual sets. The simplest of them involves only 5 quantum observables, thus enabling

a straightforward implementation. They also enable establishing new entropi ontextualities.

I. INTRODUCTION

Reently, quantum ontextuality found appliations in

quantum ommuniation [1, 2℄, quantum omputation

[3, 4℄, quantum nonloality [5℄, and lattie theory [6, 7℄.

This has prompted experimental implementation with

photons [8�19℄, lassial light [20�23℄, neutrons [24�26℄,

trapped ions [27℄, solid state moleular nulear spins [28℄,

and superonduting quantum systems [29℄.

Quantum ontextuality, the aforementioned itations

refer to, preludes assignments of predetermined values

to dense sets of projetion operators and in our approah

we shall keep to this feature of the onsidered ontex-

tual sets. Contextual theoretial models and experimen-

tal tests involve additional subtle issues, suh as the pos-

sibility of lassial nonontextual hidden variable models

that an reprodue quantum mehanial preditions up

to arbitrary preision [30℄ or a generalization and redef-

inition of nonontextuality [31, 32℄. These elaborations

are outside of the sope of the present paper, though,

sine it is primarily foused on ontextuality whih �nds

appliations within quantum omputation vs. nonon-

textuality whih is inherent in the urrent lassial bi-

nary omputation. That means that we onsider las-

sial models with predetermined binary values, that an

be assigned to measurement outomes of lassial observ-

ables, whih underlie the latter omputation, vs. quan-

tum models that do not allow for suh values and under-

lie quantum omputation. As for a diret relevane of

our results for quantum omputation we point out that

the hypergraph presented in Fig. 2 of [3℄, from whih the

ontextual �magi� of quantum omputation has been de-

rived, is a kind of hypergraph ontextual sets we present
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in this paper. However, the hypergraph is from a 4-dim

Hilbert spae, so, we will not elaborate on it in the paper.

We give a pedestrian overview of our approah, meth-

ods, and results as well as their bakground in the last

few paragraphs of this Introdution, desribing the orga-

nization of the paper.

A lass of state-independent ontextual (SIC) [33℄ sets

that have been elaborated on the most in the literature

are the Kohen-Speker (KS) sets [34�48℄. They boil

down to a list of n-dim vetors and their n-tuples of or-
thogonalities, suh that one annot assign de�nite binary

values to them.

Reently, di�erent SIC sets has been designed and/or

onsidered by Yu and Oh [49℄, Bengtsson, Blanh�eld,

and Cabello [33℄, Xu, Chen, and Su [50℄, Ramanathan

and Horodeki [51℄, and Cabello, Kleinmann, and Bu-

droni [52℄. They all make use of operators de�ned by

vetors that de�ne their sets. You and Oh onstrut

rather involved expression of state/vetor de�ned 3 × 3
operators that eventually redues to a multiple of a unit

operator while the other authors make use of projetors

whose expressions also redue to a multiple of a unit op-

erator. Therefore we all their sets the operator-based

ontextuality sets and assume that they form an operator

ontextuality lass. All the sets make use of a partiu-

lar list of 3-dim vetors and their orthogonal doublets

and triplets suh that a given expression of de�nite bi-

nary variables has an upper bound whih is lower than

the one of a orresponding quantum expression. The last

two Refs. [51, 52℄ also provide us with the neessary and

su�ient ondition for being a SIC set in any dimension.

The di�erene between the KS ontextuality and the

operator ontextuality is that KS statistis inludes mea-

sured values of all vetors from eah n-tuple, while the

statistis of measurements is built on values obtained via

operators de�ned by possibly less than n vetors from

eah n-tuple.
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In this paper, we blend the two aforementioned ontex-

tualities so as to arrive at a hypergraph one. We onsider

hypergraphs with 3-dim vetors in whih some of those

vetors that belong to only one triplet are dropped, as

in the observable approah, and generate smaller hyper-

graphs from them, suh that one annot assign de�nite

binary values to them, as in the KS approah. We all

our present approah the MKay-Megill-Pavi£i¢ hyper-

graph (MMPH) approah. MMPH non-binary sets di-

retly provide us with nonontextual inequalities. On

the other hand, via our algorithms and programs we ob-

tain thousands of smaller MMPH sets whih an serve

for various appliations as, e.g., to generate new entropi

tests of ontextuality or new operator-based ontextual

sets.

The smallest MMPH non-binary set we obtain is a

pentagon with �ve vetors (verties) ylially onneted

with 5 pairs of orthogonality (edges). It orresponds to

the pentagram from Ref. [53℄, implemented in [15, 20, 23℄.

The di�erene is that the pentagram inequality is state

dependent, while the MMPH pentagon inequality is state

independent. More spei�ally, in Ref. [53℄, one obtains

a nonlassial inequality by means of projetions of �ve

pentagram vetors at a hosen sixth vetor direted along

�vefold symmetry axis of the pentagram. By our method,

one gets a nonlassial inequality between the maximum

sum of possible assignments of 1, representing lassial

measurement liks, and the sum of probabilities of ob-

taining quantum measurement liks.

Entropi test of ontextuality for pentagram/pentagon

has been formulated in Ref. [54℄ following Ref. [55℄. It

an be straightforwardly reformulated for other MMPH

non-binary sets we obtained.

The paper is organized as follows.

In Se. II A we present the hypergraph formalism and

de�ne n-dim MMPH set and n-dim MMPH binary and

non-binary sets as well as �lled MMPH set. We explain

how verties and edges in an n-MMPH set orrespond to

vetors and their orthogonalities, i.e., m-tuples (2 ≤ m ≤
n) of mutually orthogonal vetors, respetively.

In Se. II B we give the KS theorem and a de�nition of

a KS set and prove that a KS set is a speial non-binary

set. In Def. II.3 we de�ne a ritial KS set, i.e., the one

whih would stop being a KS set if we removed any of

its edges. Then we introdue known KS sets to ompare

them with operator de�ned sets. In partiular, we start

with Conway-Cohen, Bub, Peres, and original Kohen-

Speker's sets. We show that the number of vetors they

are haraterised with in the original papers and most

of the subsequent ones as well as in books, i.e., 31, 33,

33, and 117, respetively, are not ritial. That, atually,

enables the whole approah presented in this paper. We

show that the aforementioned authors dropped the ve-

tors that are ontained in only one triplet. If we took

all the stripped vetors into aount, i.e., if we formed

�lled sets, we would get 51, 49, 57, and 192 vetors, re-

spetively. These sets are ritial and the majority of

researhers assumed that their stripped versions are rit-

ial too and so they did not try to use them as a soure

of smaller non-lassial 3-dim sets.

Next, we onnet and ompare KS sets with operator-

based sets, in partiular YU-Oh's 13 vetor set whose

�lled version has 25 vetors and 16 triplets�we denote it

as 25-16. In Fig. 1 we show Yu-Oh's 25-16 as a subgraph

of Peres' 57-40. In Fig. 2 we show how 25-16 an be

stripped of vetors ontained in only one triplet, so as to

a arrive at the original Yu-Oh's 13-16 set. Eqs. (1)-(6)

and their omments explain how Yu and Oh de�ned their

operators with the help of the 13 vetors and how they

used them to arrive, via Eq. (4), at the inequality de�ned

by Eq. (6). We then used the operator expression given

by Eq. (4) to test 50 sets smaller and bigger than the

13-16 but did not obtain an analogous result. Some of

the sets are shown in Fig. 3.

In Se. II C we give a historial bakground of strip-

ping the aforementioned vetors that are ontained in

only one triplet and explain what was behind that �in-

omplete triplets� issue. Then we give MMPH strings

of Conway-Kohen's 31-37, Bub's 33-36, Peres' 33-40,

and Kohen-Speker's 117-118 non-ritial but still non-

binary non-lassial MMPH sets and take them as our

master sets from whih we generate smaller non-binary

ritial MMPH sets in the next setion. However, we

stress that any set we obtain by stripping some other

number of verties ontained in only one edge from any

one of the original four KS sets an serve us as a master

set. We give a Peres' 40-40 set as an example.

In Se. II D we start with Def. II.4 of a ritial MMPH

non-binary set whih di�ers from the one of a ritial KS

set. If we strip more and more edges from a ritial KS

set we shall never ome to a KS set again. This is not so

with MMPH non-binary sets. MMPH non-binary ritial

sets might properly ontain smaller MMPH non-binary

ritial sets whose number of edges is smaller than the

original ritial set for at least 2 edges.

Via our algorithms and programs, we obtain thousands

of ritial sets from our master sets, whose distributions

are shown in Fig. 4. We say that a olletion of MMPH

non-binary subgraphs of an MMPH master form its lass.

Next we de�ne measurements whih an distinguish

ontextual from non-ontextual MMPH sets, i.e., non-

binary from binary ones. Similarly as with operator-

based ontextual measurements, dropped verties are

not onsidered, i.e., liks obtained at their orrespond-

ing out-ports are not taken into aount when obtain-

ing the statistis of olleted data. So, measurements

of MMPH non-binary sets are arried out as for KS sets

with triplets, i.e., with the 1/3 probability of detetion at

eah out-port, and via alibrated detetions of a partile

or a photon at out-ports of a gate representing a doublet

with the 1/2 probability of getting a lik at eah of the

two onsidered ports, while ignoring the third one. When

a vertex shares a mixture of triplet and doublet edges the

probability of detetion is 1/p, where 1/3 ≤ p ≤ 1/2. We

all detetions at all ports notwithstanding whether we

inlude them in our �nal statistis or not, unalibrated
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detetions�they simply have 1/3 probability of dete-

tion at every port.

To obtain ontextual distinguishers of an MMPH set

we onsider the sum of probabilities of getting liks for

all onsidered verties and all it a quantum hypergraph

index. We distinguish a alibrated quantum hypergraph

index, whih we denote as HIq and an unalibrated one,

whih we denote as HIq−unc. On the other hand, eah

MMPH set allows a maximal number of 1s assigned to

verties so as to satisfy the two onditions from Def. II.2.

We all the number lassial hypergraph index and de-

note it as HIc. Our weak ontextual distinguisher is the
inequality: HIq >HIc and the strong one is the inequal-

ity HIq−unc > HIc. Yu-Oh, Bub, Conway-Kohen, and

Peres' MMPH non-binary sets as well as others given in

the setion, like, e.g., 13-10, satisfy both inequalities.

We present several small ritial MMPH sets in Figs. 5

and 6 and disuss their features. We also alulate Yu-

Oh's inequalities for several sets di�erent from Yu-Oh's

13-16 set. None of the 50 tested sets satisfy the inequal-

ity.

In Se. III we disuss and reexamine the steps and

details of our approah.

II. RESULTS

We onsider a set of quantum states represented by

vetors in a 3-dim Hilbert spae H
3
grouped in triplets

of mutually orthogonal vetors. We desribe suh a

set by means of a hypergraph whih we all a MKay-

Megill-Pavi£i¢ hypergraph (MMPH). In it, vetors them-

selves are represented by verties and mutually orthog-

onal triplets of them by edges. However, an MMPH

itself has a de�nition whih is independent of a possi-

ble representation of verties by means of vetors. For

instane, there are MMPHs without a oordinatization,

i.e., MMPHs for whose verties vetors, one ould assign

to, do not exist. Also, edges an ontain less than 3 ver-

ties, i.e., 2, and form doublets. When a oordinatization

exist, that does not mean that a doublet belongs to a 2-

dim edge, but only that we do not take an existing third

vertex/vetor into aount.

A. Formalism

Let us de�ne the hypergraph formalism.

A hypergraph is a pair v-e where v is a set of elements

alled verties and e is a set of non-empty subsets of e
alled edges. Edge is a set of verties that are in some

sense related to eah other, in our ase orthogonal to eah

other.

The �rst de�nition of MMPH was given in [58℄ where

we alled them, not hypergraphs, but diagrams. In [46℄

we gave a de�nition of an n-dim MMP hypergraph whih

required that eah edge has at least 3 verties and that

edges that interset eah other in n-2 verties ontain

at least n verties. The de�nition of MMPH is slightly

di�erent.

De�nition II.1. An MMPH is an n-dim hypergraph in

whih

1. Every vertex belongs to at least one edge;

2. Every edge ontains at least 2 verties;

3. Edges that interset eah other in m − 2 verties

ontain at least m verties, where 2 ≤m ≤ n.
Then, in [47℄ we presented a hypergraph reformulation

of the Kohen-Speker theorem [59℄ from whih we derive

the following de�nition of an MMPH non-binary set.

De�nition II.2. n-dim MMPH non-binary set, n ≥ 3, is
a hypergraph whose eah edge ontains at least two and

at most n verties to whih it is impossible to assign 1s

and 0s in suh a way that

1. No two verties within any of its edges are both

assigned the value 1;

2. In any of its edges, not all of the verties are as-

signed the value 0.

An MMPH set to whih it is possible to assign 1s and

0s so as to satisfy the above two onditions we all an

MMPH binary set.

An MMPH non-binary set with edges of mixed sizes to

whih verties are added so as to make all edges of equal

size eah ontaining n verties is alled �lled MMPH set.

A oordinatization of an MMPH non-binary set means

that the verties of its �lled MMPH denote n-dim vetors

in H
n
, n ≥ 3 and that its edges represent orthogonal n-

tuples, ontaining verties orresponding to those mutu-

ally orthogonal vetors. Then the verties of an MMPH

set with edges of mixed sizes inherit its oordinatization

from the oordinatization of its �lled set. In our present

approah a oordinatization is automatially assigned to

eah hypergraph by the very proedure of its generation

from master MMPHs as we shall see below.

In the real 3-dim Hilbert spae edges form loops of

order �ve (pentagon) or higher as we proved in [35℄. For

omplex vetors our alulations always on�rmed this

result but we were unable to �nd an exat proof. Loops

of order two are preluded by Def. II.1(3).

MMPH are enoded by means of printable ASCII har-

aters organized in a single string, and within it in edges,

whih are separated by ommas; eah string ends with

a period. Verties are denoted by one of the follow-

ing haraters: 1 2 ... 9 A B ... Z a b ... z ! "

# $ % & ' ( ) * - / : ; < = > ? � [ / ℄ � _ ` { | } ~

[35℄. When all of them are exhausted one reuses them

pre�xed by `+', then again by `++', and so forth. An

MMPH with k verties and l edges we denote as a k-l
set. In its graphial representation, verties are depited

as dots and edges as straight or urved lines onneting

orthogonal verties. In its ASCII string representation

3
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(used for omputer proessing) eah MMPH is enoded

in a single line followed by assignments of oordinati-

zation to k verties. We handle MMP hypergraphs by

means of algorithms in the programs SHORTD, MMP-

STRIP, MMPSUBGRAPH, VECFIND, STATES01, and

others [6, 39, 58, 60�62℄.

B. KS vs. operator ontextuality

Let us start with the Kohen-Speker theorem and KS

sets. Then we shall onnet them with the vetors and

operators of one type of operator-based ontextuality in-

trodued by Yu and Oh.

Theorem II.1. (Kohen-Speker [59, 63, 64℄) In H
n
,

n ≥ 3, there are sets of n-tuples of mutually orthogonal

vetors to whih it is impossible to assign 1s and 0s in

suh a way that

1. No two orthogonal vetors are both assigned the

value 1;

2. In any group of n mutually orthogonal vetors, not

all of the vetors are assigned the value 0.

The sets of suh vetors are alledKS sets and the vetors

themselves are alled KS vetors .

There is a one-to-one orrespondene between KS n-

tuples of vetors and MMPH edges when they are all

of their maximal size, as established in [35, 46�48℄, and

between KS vetors and MMPH verties with oordina-

tization within an MMPH with maximal edges.

Theorem II.2. An n-dim MMPH non-binary set with

a oordinatization whose eah edge ontains n verties,

is a KS set.

Proof. It follows straightforwardly from the KS theorem,

its de�nition of a KS set and the aforementioned orre-

spondenes between its vetors and MMPH verties.

In 1988 Asher Peres presented a simple proof of the

KS theorem in a 3-dim Hilbert spae using real vetors

[65℄. He impliitly made use of 57 vetors/rays and 40

triplets of mutually orthogonal vetors but seemed to

have dropped 24 vetors that appear in only one triplet

and alled his proof a �33 vetor [ray℄ proof.� How-

ever, he admitted the role of the remaining vetors: �It

an be shown that if a single ray is deleted from the

set of 33, the ontradition disappears. It is so even

if the deleted ray is not expliitly listed in table 1.�

[65, L176, bottom paragraph℄. From [65, Table 1℄ we

an reonstrut the 33 vetors within their 40 triplets

together with the �non-expliit� 24 vetors and repre-

sent them in our MMPH notation, obtaining an MMPH

non-binary set with 57 verties (vetors) and 40 edges

(triplets), i.e., a 57-40 KS set. We did so in two dif-

ferent ways with two resulting (but isomorphi) hyper-

graphs in [6, Fig. 4℄ and [46, Fig. 19℄. Here we give

a third MMPH representation (isomorphi to the previ-

ous two) whih ontains the so-alled full sale Yu-Oh

set 123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,

5LF,JPD,JM7,3OB,HN9. we elaborate on below. The

representation is arried out via our programs SUB-

GRAPH and LOOP [47℄.

Peres' 57-40 MMPH KS set reads:

123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,

JM7,3BO,H9N,JPD,FL5,QRS,STA,AUV,VWX,XYO,OZa,

ab,dC,CeQ,Sha,QgX,Vf,bg9,qmU,Nnq,Bij,jku,

klN,ur8,8st,iqt,Tpk,Tot,uvU.

Its graphial representation is given in Fig. 1(a).
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FIG. 1. (a) Peres' KS set 57-40 in the MMPH representation

and ontaining the full sale Yu-Oh set (drawn in red); (b)

The full sale Yu-Oh non-KS set 25-16; Verties (vetors) that

share only one edge (triplet) are given as gray dots. See text.

Notie that gray dots 8,D,N,O in Fig.1(b) are not gray

in Fig.1(a) and therefore the representation of the orig-

inal full sale 57-40 Peres KS set (with all gray dots in-

luded) by means of the three original Yu-Oh non-KS

sets (with gray verties dropped), as depited in Fig. 1

of [66℄, apparently does not work. Also, as veri�ed with

our program SUBGRAPH, Yu-Oh's set is not a subgraph

of Peres' 33-40 set (with all gray dots dropped). On the

other hand, Yu-Oh's set annot be a subgraph of Peres'

57-40 beause it laks gray dots. The full sale Yu-Oh's

set 25-16 shown Fig.1(b) is, of ourse, a subgraph of the

full-sale Peres' 57-40 set as shown in Fig.1(a) an on-

�rmed by SUBGRAPH.

The arguments that all verties are indispensable for

an experimental implementation of a KS set an be found

in [67, In partiular Table on p. 804℄, [68, pp. 1583 top,

1588 bottom, and top 1589℄, and [69, p. 332, end of the

1st par.℄. In essene, every n-tuple from the KS Theorem

II.1 should ontain no less than n vetors.

Below, the oordinatization of Peres' 57-40 set is ob-

tained via VECFIND [47℄ from the vetor omponents

0,±1,√2 (the omponent −√2, used by Peres in [65℄ is

not needed):

1={1,

√
2,-1},3={0,1,

√
2},5={-1,

√
2,-1},7={

√
2,1,0},

8={-1,

√
2,0},9={0,0,1},A={0,1,0},B={1,0,0},

C={0,

√
2,1},D={0,-1,

√
2},F={1,

√
2,1},H={

√
2,-1,0},

4
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J={-1,

√
2,1},K={1,0,1},L={1,0,-1},N={1,

√
2,0},

O={0,

√
2,-1},Q={-1,-1,

√
2},S={

√
2,0,1},T={-1,0,

√
2},

U={1,0,

√
2},V={

√
2,0,-1},X={1,1,

√
2},a={-1,1,

√
2},

b={1,1,0},={1,-1,

√
2},g={1,-1,0},i={0,1,-1},j={0,1,1},

k={

√
2,-1,1},q={

√
2,-1,-1},t={

√
2,1,1},u={

√
2,1,-1}

The aforementioned Peres' statement �if a single ray is

deleted from the set of 33, the ontradition disappears�

amounts to a oarse de�nition of a vertex-ritial KS set:

�A KS [set℄ is termed ritial i� it annot be made smaller

by deleting the [verties℄� [70℄. However, in KS sets, there

are edges whose removal does not remove any vertex (but

nevertheless ause a disappearane of the KS property)

and, on the other hand, no vertex an be removed from a

KS set without removing at least one edge as well, in the

sense that all edges/n-tuples should ontain n mutually

orthogonal verties/vetors.

Therefore, we adopt a de�nition of an edge-ritial KS

set [6, 46, 61℄ (MMPH sets will require a rede�nition of

ritial sets, as we shall see later on):

De�nition II.3. KS sets that do not properly ontain

any KS subset, meaning that if any of its edges were re-

moved, they would stop being KS sets, are alled ritial

KS sets.

Hene, the set 13,35,57,79,9AB,BD,DF,FH,H1,1JK,

KLA,5LF,JD,J7,3B,H9. Yu and Oh obtained in [49℄ an-

not be a KS set sine it is a subgraph of a ritial KS set

(Peres' set) and therefore annot provide a proof of the

KS theorem ontrary to the laim in the title of [49℄, as

we also show in some detail in [46, Se. XII℄. But, in [49℄,

Yu and Oh do de�ne a new kind of ontextuality whih

we shall analyse and whih we sumarize as follows.

Consider the MMPH of the Yu-Oh representation of

the MMPH Peres' subgraph, from Fig. 1(b), shown in

Fig. 2. They removed all the verties that share only one

edge and whih are depited as gray dots in Fig. 2(a).

Then they de�ne operators by means of the remaining

verties/vetors/rays/states whih serve them to de�ne

�lters either for preparation or for detetion of arbitrary

input or output states, respetively. The proedure goes

as follows.

Some of the vetors from Fig. 2(a) are represented as

∣y−1 ⟩ = 1√
2

⎛
⎜
⎝
0

1

−1
⎞
⎟
⎠
, ∣h2⟩ = 1√

3

⎛
⎜
⎝
1

−1
1

⎞
⎟
⎠
, ∣z3⟩ =

⎛
⎜
⎝
0

0

1

⎞
⎟
⎠
, ∣N⟩ = 1√

6

⎛
⎜
⎝
2

−1
1

⎞
⎟
⎠
. (1)

Vetors serve Yu and Oh to de�ne the following oper-

ators

Âi = I − 2∣i⟩⟨i∣ (2)

where i = 1, . . . ,13 orrespond to y−1 , y
−

2 , . . . , z3 and we

add i = 14, . . . ,25 orresponding to gray dots in Fig. 2(a).
For instane, for i = 1,8,13,20, orresponding to vetors

from Eq. (1), we have:

Â1 =
⎛
⎜
⎝
1 0 0

0 0 1

0 1 0

⎞
⎟
⎠
, Â8 = 1

3

⎛
⎜
⎝
1 2 −2
2 1 2

−2 2 1

⎞
⎟
⎠
, Â13 =

⎛
⎜
⎝
1 0 0

0 1 0

0 0 −1
⎞
⎟
⎠
, Â20 = 1

3

⎛
⎜
⎝
−1 2 2

2 2 1

−2 1 2

⎞
⎟
⎠
. (3)

The operators an be ombined in the following way:

L̂13 =
13

∑
i

Âi − 1

4

13

∑
i

13

∑
j

ΓijÂiÂj = 25

3
I = 8.3̇I, (4)

where Γij = 1 whenever orresponding vetors i, j are

orthogonal to eah other and Γij = 0 when they are not;

also Γii = 0. The value 25/3 is urious sine it is also

the sum of probabilities of deteting photons in the full

sale setup 25-16 shown in Fig. 1(b). That may be purely

aidental. Also L̂25 is not diagonal. Yu and Oh onsider

neither vetors ∣i⟩ nor operators Âi for i = 14, . . . ,25
The fat that eah Âi has the spetrum {−1,1,1}

prompted Yu-Oh to alulate the upper bound of a or-

responding expression for 13 lassial variables with pre-

determined values -1 and 1:

C13 =
13

∑
i

ai − 1

4

13

∑
i

13

∑
j

Γijaiaj ≤ 8 (5)

The inequality

⟨L̂⟩ >Max[C] (6)

has been veri�ed experimentally [16, 21℄ and also im-

proved theoretially by hanging the oe�ients in

Eqs. (4) and (5) [71, 72℄. However, no other set, apart

from Yu-Oh's 13-16 itself, with suh properties has been

found sine.
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FIG. 2. (a) An MMPH subgraph of Peres' KS MMPH; (b) Yu-Oh's redution of (a); () Yu-Oh's Fig. 2 from [49℄; (d) Yu and

Oh adopted a mixture of Kohen & Speker notation [59℄; Cf. [46, Fig. 19℄ (the triangles in ()) and MMPH notation (the irle

in ()).

We tested 50 sets and found that L̂ of MMPHs with-

out left right symmetry mostly do not have diagonal ma-

tries, although some do, and that L̂s of the majority

of symmetri MMPHs are also not diagonal; when they

are, they are often not multiples of I; for the ones whose

L̂s are multiples of I we found that they satisfy either

⟨L̂⟩ < Max[C] or at most ⟨L̂⟩ = Max[C], i.e., we have
not found instanes of Eq. (6) being satis�ed. We give

some examples below.

We should stress here that our de�nition of a subgraph

di�ers from a standard one. The standard de�nition as-

sumes that a subgraph is a hypergraph ontained in a

bigger hypergraph as is. In ontradistintion, we shall

assume that a subgraph might also be a hypergraph ob-

tained from a bigger hypergraph by taking out some

edges and onneting the remaining edges together, or

simply by taking out some verties. The latter subgraph

we denote as subgraph. For instane 123,345,567.

is a standard subgraph of 123,345,567,781., while

123,345,561. and 13,345,567,781. are its subgraphs.

Yu-Oh's 13-16 set is a subgraph of Peres' full sale 57-40

set. It is not a subgraph of either Peres' 57-40 or Peres'

33-40.

For a symmetri Kohen & Speker's divided hexagon

[35, Fig. 6(ii)℄ MMPH 8-7, a subgraph of the KS set 117-

118 [59℄, shown in Fig. 3(a), we obtain ⟨L̂8⟩ =Max[C8] =
9/2. The ontextuality of the set has previously been

onsidered in [73℄.

From Peres' original KS set, using our programs

STATES01, LOOP, and VECFIND we an generate ar-

bitrary many subsets. Most of them are asymmetri and

their L̂s are non-diagonal. Also, many of highly symmet-
ri ones, as, e.g., 16-15 shown in Fig. 3(b) with L̂16 given

in Eq. (7), are not diagonal.

L̂16 = 1

6

⎛
⎜
⎝
57 4 4

4 54 3

4 3 60

⎞
⎟
⎠

(7)

An example of a non-symmetri 13-11 with a diagonal

L̂ is given in Fig. 3(). It has ⟨L̂13⟩ = 7.5 andMax[C13] =

7.75, i.e., ⟨L̂⟩ <Max[C].
We might try to onstrut a symmetri MMPH, e.g.,

the 16-13 one given in Fig. 3(d). For it we obtain

⟨L̂13⟩ = 9.5 and Max[C13] = 9.75, i.e., again ⟨L̂⟩ <
Max[C]. However, the main problem with suh on-

struted MMPHs is that the probability of oming aross

their �lled (full sale) versions with oordinatizations

and therefore belonging to the 3-dim Hilbert spae is

minute, i.e., negligible even via automated onstrution

and searh on a superomputer. The full sale version

(23-13) of the aforementioned 16-13 apparently does not

have a oordinatization, either.

We give more examples of ⟨L̂⟩ vs.Max[C] alulations
for other MMPHs in Se. II D.

C. MMPH masters

There are several fats we would like to stress as start-

ing points of our elaboration on the MMPH non-binary

sets.

(i) Peres wrote: â��It an be shown that if a single

ray is deleted from the set of 33, the ontradition

disappears. It is so even if the deleted ray is not

expliitly listed in table 1.â�� [65, L176, bottom

paragraph℄

Ad (i) The �rst sentene is wrong beause MMPH

33-40 set 123,345,47,79,92A,AC,C4,AF,5F,HJ,

HL,H7M,NCO,OPQ,QRL,RT,TJ,JPV,VX,XR,Va,La,

e,T1,g,FXM,Mhi,ijg,jl,le,ehn,np,pj,nN,

gN,t9,tlO,t5,ap1,1MO. is not ritial as veri�ed

by STATES01. It is also not a KS set but only

an MMPH non-binary set. The seond sentene is

onditionally orret beause the full sale MMPH

57-40, 123,345,467,789,92A,ABC,CD4,AEF,5GF,

HIJ,HKL,H7M,NCO.OPQ,QRL,RST,TUJ,JPV,VWX,

XYR,VZa,Lba,de,T1,fg,FXM,Mhi,ijg,jkl,

lme,ehn,nop,pqj,nrN,gsN,tu9,tlO,tv5,ap1,

1MO. is a ritial KS set but only if assume that

with the deleted ray we also delete the edge/triplet

6
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(c)(a) (b) (d)

13−11
8−7

16−15
16−13

FIG. 3. (a) Hexagon MMPH from the KS set 192(117)-118 [35, Fig. 6(ii)℄ where it appears in 15 instanes; (b) a symmetri

subgraph of Peres' MMPH with a non-diagonal L̂; () an asymmetri subgraph of Peres' MMPH with a diagonal L̂ and

⟨L̂⟩ < Max[C]; (d) a onstruted symmetri MMPH with a diagonal L̂ and ⟨L̂⟩ < Max[C] but whose full sale version does

not have a oordinatization.

it belonged to. (This instane of Peres' 57-40

KS set is isomorphi to the one given above;

the sequene of haraters is di�erent due to a

reshu�ing by automated tools we used to obtain

33-40 as a subgraph of 57-40.

(ii) Yu and Oh write: �The KS value assignments to

the 13-ray set [13-16℄ are possible; i.e., no logial

ontradition an be extrated by onsidering on-

ditions 1 and 2 [of Theorem II.1℄.� [49, p. 3, left

olumn, top℄

Ad (ii) The laim is provisionally orret, but not beause

�no logial ontradition an be extrated by on-

sidering onditions 1 and 2��it an be extrated:

in 13-16 it is impossible to assign 1s and 0s in suh a

way that onditions 1 and 2 are satis�ed�and not

beause �value assignments to the 13-ray set are

possible��they are not possible: one annot assign

1s and 0s to its rays in suh a way that onditions

1 and 2 are satis�ed�but beause the 13-16 set is

not a set of triplets and therefore does not satisfy

the �rst part of the KS theorem.

The �inomplete triplets� issue reappears in many pa-

pers and books. For instane in Karl Svozil's book [74℄ in

Se. 7.4 there is an exellent symmetri �gure of Peres'

33-40 set [Fig.7.12℄, we, atually, made use of to write

down MMPH 57-40 set, but we had to add 24 verties

that were not there; 33 vetors and their orrespond-

ing logial proposition were expliitly given, but the re-

maining 24 vetors were not mentioned. In the original

Kohen-Speker paper [59℄ the triplets (edges with 3 ver-

ties) were depited as triangles and doublets (triplets

from whih one vertex was dropped) as straight lines�

all together 117 verties of 192 ones ontained in 118

triplets. Their triangles are shown in [35, Fig. 6(ii)℄. The

same triangles are used in the Yu-Oh's set and are shown

in Fig. 2(d). This triangle notation is a soure of some

onfusion in the literature and researh, though. For in-

stane, in [52℄ on p. 4, Fig. 1 (b), where one line from

one of the triangles from Yu-Oh's set is deleted, we read:

�(b) GYO minus one edge.� However, the lines in the

triangle are not edges. The whole triangle is an edge

(triplet) as shown in Fig. 2(d). The lines within a triangle

are orthogonalities and a removal of one of them means

splitting the triplet into two doublets, i.e., inreasing the

number of edges in the set. So, the set in Fig. 1(a) of

[52℄ has 16 edges, while the set in Fig. 1(b) has 17 edges.

In any ase the set (b) is not a subgraph of (a) nor is

(a) a subgraph of (b). Of ourse, a removal of one of the

orthogonalities must also be aompanied by a swith to

a new oordinatization of the whole set.

In the The Kohen-Speker Theorem artile in the

Stanford Enylopedia of Philosophy only 117 verties

were onsidered. �[W℄hat KS have shown is that a set

of 117 yes-no observables annot onsistently be assigned

0-1 values� [75℄. Je�rey Bub writes: �This yields a total

of 49 rays and 36 orthogonal triples. Now the only rays

that our in only one orthogonal triple are the 16 rays

with a 5 as omponent. Removing these 16 rays from the

49 rays yields the following set of 33 rays that annot be

olored.� [76℄. However, 49 rays also annot be olored

and the 49-36 is ritial, while 33-36 is not.

These fats o�er the following approah, though. The

aforementioned onditions 1 and 2 are also ontained in

the Def. II.2 of an MMPH non-binary set and Peres' 33-

40, Yu-Oh's 13-16, Bub's 33-36, Conway-Kohen's 31-37,

and Kohen-Speker' 117-118 sets all violate the ondi-

tions 1 and 2, thus on�rming that these sets are MMPH

non-binary sets. Moreover, they atually enable us to get

many smaller MMPH non-binary sets from them beause

none of these sets is ritial. And they are all equipped

with at least the oordinatization they inherit from their

full saled versions 57-40, 25-16, 49-36, 51-37, and 192-

118, respetively, but often with even simpler ones.

The MMPH strings of the last three sets are:

Bub's 33-36 (derived from the full sale 49-36 [46,

Fig. 19℄): 12,134,156,67,48,9AB,CDE,6B,4E,2FG,2HI,

EG,GB,8I,I7,AJ,AK,C7L,MN9,HON,N3P,PL,MFQ,QL,

M5R,RD,DO,STC,JHT,T5U,S3K,SFV,VW,98W,WU,X9C.

Conway-Kohen's 31-37 (derived from the full sale 51-37

[46, Fig. 19℄): 123,245,26,57,89A,BCD,5D,3EF,3G,DF,

FA,9H,87I,9J,CK,CL,LM,HN,M1N,KO,1OP,Q6R,QGH,BQS,

PR,PJ,S4J,SET,NT,TI,RI,UV8,VGK,U6L,4V,UE,18B.

7
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and the Kohen-Speker's 117-118 (derived from the orig- inal full sale 192-118 [46, Fig. 19℄):

12,234,45,56,678,81,9A,ABC,CD,DE,EFG,G9,HI,IJK,KL,LM,MNO,OH,PQ,QRS,ST,TU,UVW,WP,1X,XYZ,Za,ab,bd,

d1,ef,fgh,hi,ij,jkl,le,mn,nop,pq,qr,rst,tm,uv,vwx,xy,yz,z!","u,#$,$%&,&','(,()*,*#,e-,-/:,:;,;<,

<=>,>e,?�,�[/,/℄,℄�,�_`,`?,{|,|}~,~+1,+1+2,+2+3+4,+4{,+5+6,+6+7+8,+8+9,+9+A,+A+B+C,+C+5,+D+E,
+E+F+G,+G+H,+H+I,+I+J+K,+K+D,?+L,+L+M+N,+N+O,+O+P,+P+Q+R,+R?,37,BF,JN,RV,Y,gk,os,w!,%),/=,[_,

}+3,+7+B,+F+J,+M+Q,95e,HDe,PLe,aTe,mi?,uq?,y'?,;#?,{℄1,+5+11,+D+91,+O+H1,1e?.

All of them have oordinatizations and none of them

is ritial. They will be our MMPH non-binary master

sets we shall get smaller MMPH non-binary ritial

sets from, in Se. II D. Here we want to stress that

we have hosen the above sets to be our masters for

historial reasons. But any set we obtain by stripping

the original four KS sets from some other number of

verties being ontained in only one edge an serve us

as a master set. For instane, by stripping not 24 but

17 suh verties from Peres' 57-40 KS set, we obtain

the following set whih we an also use as our master

set�Peres' 40-40 (derived from the full sale 57-40 [46,

Fig. 19℄): 123,345,467,78,829,9A,A4,9B,5B,CD,CE,

C7F,GAH,HIJ,JKE,KLM,MND,DIO,OPQ,QRK,OST,ET,UVW,

UM1,UX,BQF,FYZ,ZaX,ab,bW,WY,d,da,G,XG,e8,

ebH,e5,Td1,1FH.

We present two smaller ritial MMPH non-binary sets

35-27 and 38-30, obtained from this 40-40 set, in Ap-

pendix A 3 beause they are bigger than Peres' 33-40 and

they are ritial, while Peres' 33-40 is not. Also, ritials

with 33 or less verties we obtained from Peres' 33-40

and from Peres' 40-40 oinide. The di�erene is only

in ritials with 34 to 38 verties whih we, of ourse,

annot obtain from Peres' 33-40 set.

D. Classes of MMPH non-binary sets, their

implementation, and their inequalities

From the MMPH non-binary master sets given in

Se. II C we obtain smaller MMPH non-binary ritial

sets via STATES01. There is a prinipal di�erene in the

feature of ritiality between these sets and the full sale

KS sets, though.

If we removed any of the edges of a full sale KS ritial

set, the remaining set would not be a KS set any more

(see Def. II.3). If we then ontinued to strip further edges

from the remaining set, we would never arrive at a KS

set again. This is not so with an MMPH non-binary

ritial set. When we remove any of its edges it does

stop being an MMPH non-binary set, but if we removed

further edges from the obtained set, it would often turn

into a smaller MMPH non-binary ritial set. Therefore

we introdue:

De�nition II.4. An MMPH non-binary set is alled an

MMPH non-binary ritial sets if a removal of any of its

edges would turn the remaining set into an MMPH binary

set. MMPH non-binary ritial sets might properly on-

tain smaller MMPH non-binary ritial sets whose num-

ber of edges is smaller than the original ritial set for at

least 2 edges.

Bub and Conway-Kohen's master sets share the oor-

dinatization while Peres and Kohen-Speker's ones have

di�erent ones mutually and with respet to the former

two sets. Therefore, also the lasses of smaller MMPH

non-binary ritial sets we obtain from them will be

struturally di�erent.

From these master sets we generated lasses of smaller

MMPH non-binary ritial sets by means of our programs

[35, 47℄, although the algorithms and programs should be

redesigned and rewritten for an automated generation.

MMPH sets generated from a master set we all a lass

of MMPH sets. So, we shall talk about Bub, Conway-

Kohen, Peres, and Kohen-Speker's lasses. Distribu-

tions of their ritials are shown in Fig. 4. The riti-

als are mostly the standard subgraphs of their masters

obtained via our automated algorithms and programs,

exept for a limited number of smaller subgraphs we ob-

tained via new algorithms whih are still under develop-

ment. Most subgraphs have a parity proof unlike most

of the standard subgraphs of whih only a very few have

a parity proof.

Notie that the biggest ritial sets in Fig. 4(a,) have

the same number of verties as their master sets, but 9,12

edges less, respetively.

A possible experimental implementation of MMPH

non-binary sets might be made in analogy to the exper-

imental implementation of KS sets arried out in [12℄.

The di�erene is that the latter sets ontain only triplets,

while the former ones ontain triplets and doublets, simi-

larly to the Yu-Oh's 13-16 set, or even only doublets as in

the 5-5 set. To arry out measurements on KS sets means

that we have to verify that the probability of deteting

a partile or a photon at eah out-port of a gate repre-

senting an edge (triplet) is 1/3. Yu-Oh's implementation

rely on gates de�ned via Eqs. (2) and (4) by means of 13

verties/vetors/rays/states and the gates representing

12 dropped verties are not onsidered. Measurements

on MMPH non-binary sets might be arried out as for

KS sets with triplets (with the 1/3 probability of dete-

tion at eah out-port) and via alibrated detetions of a

partile or a photon at out-ports of a gate representing a

doublet with the 1/2 probability of deteting a partile

at eah of the two onsidered ports. When a vertex share

a mixture of triplet and doublet edges the probability of

detetion is 1/p, where 1/3 ≤ p ≤ 1/2. The data obtained

8
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FIG. 4. (a) Distribution of MMPH non-binary ritial sets generated from Bub's MMPH non-binary master set; (b) Conway-

Kohen's ritials; () Peres' ritials; (d) Kohen-Speker's ritials.

at the out-ports orresponding to the dropped third ver-

ties are disarded or we simply do not measure them

at all as in Yu-Oh's experiments [16, 21, 71℄. To assure

an equal distribution of outomes at eah port, the in-

puts to doublet gates should be saled up with respet to

the full triplet ones by 3/2 and this is why we all them

alibrated.

The inequalities to be experimentally veri�ed for the

MMPH non-binary sets an be de�ned as for the other

two kinds of sets. For instane, for Yu-Oh's 13-16 set

we verify their inequality given by Eq. (6): 8.3 > 8.

Let us onsider the set as shown in Fig. 1(b) (exlud-

ing the gray dots). This set ontains 4 triplets and 12

doublets. Verties A,K,L share only triplets, so the prob-

ability of having a lik along them is 1/3. Verties

3,7,D,H share only doublets and the probability of get-

ting liks along them is 1/2. Verties 1,5,9,B,F,J share

a triplet and two doublets, eah, what yields the probabil-

ity (1/2+1/2+1/3)/3 = 4/9. Altogether, the probabilities
for 13 verties sum up to 3× 1/3+ 4× 1/2+6×4/9 = 17/3.
Let us all this sum a quantum hypergraph index of an

MMPH set and denote it as HIq. On the other hand, the
set 13-16 allows at most four 1s. This is a lassial upper

bound for getting lassial detetion liks. Let us all

this lassial upper bound, i.r., the maximal number of

1s we an assign to verties of a MMPH non-binary set so

as to satisfy the two onditions from Def. II.2, a lassial

hypergraph index HIc. Hene, we obtain the inequality

HIq[13-16] = 17/3 = 5.6̇ > HIc[13-16] = 4. Notie, that

even unalibrated probabilities give us HIq−unc[13-16] =
13/3 = 4.3̇ > HIc[13-16] = 4. We obtain unalibrated

probabilities by measuring all verties in all edges in

Fig. 1(b), meaning with gray dots inluded. With eah

vertex in every edge we have a probability of getting a

lik, i.e., of assigning 1 to it, being equal to 1/3. If

we now seleted the 13 red-dot verties, we would get

13/3 = 4.3̇ whih is also greater than HIc[13-16] = 4. No-
tie also that the maximal number of 1s we an assign to

verties in the full sale 25-16 set is 11 and that gives us

the inequality HIq[25-16] = 25/3 = 8.3̇ <HIc[25-16] = 11
whih is yet another proof that 25-16 is not a KS set.

It is interesting that three of four onsidered mas-

ters also satisfy the unalibrated inequality HIq−unc >
HIc. Bub's 33-36: HIq−unc[33-36] = 11 > HIc[33-36] =
10, Conway-Kohen's 31-37: HIq−unc[31-37] = 10.3̇ >
HIc[31-37] = 8, and Peres' 33-40 HIq−unc[33-40] = 11 >
HIc[33-40] = 6.
Let us now present several smaller MMPH ritials

from eah lass, onsider their properties, and alulate

Yu-Oh-like expressions and values for some of them.

The smallest Bub's ritial subgraph with oordina-

tization we found is the pentagon 5-5 12,23,34,45,51

(with the gray dots exluded) shown in Fig. 5(a). The

full sale hypergraph 10-5 162,273,384,495,5A1 is also

shown Fig. 5(a) (with the gray dots inluded).

As we proved in [35℄, the smallest loop edges an

form in a 3-dim spae with verties endowed with a

real oordinatization is a pentagon. We ould not

�nd (with Mathematia) a omplex oordinatization

of any smaller MMPH, either. We onjeture that the

�lled pentagon MMPH 10-5 is the smallest MMPH

with a oordinatization in the 3-dim Hilbert spae.

Its oordinatization is, e.g., 1={0,0,1},2={0,1,0},

3={1,0,1},4={1,1,-1},5={1,-1,0},6={1,0,0},7={1,0,-1},

8={-1,2,1},9={1,1,2},A={1,1,0}. It, of ourse, inludes

the oordinatization of 5-5. As we an easily hek,

the maximal number of 1s assignable to verties of

5-5, satisfying the two aforementioned ondition, is

2. Thus we have the following ontextual inequality

HIq[5-5] = 5 × 1/2 = 2.5 > HIc[5-5] = 2. Yu-Oh's ap-

proah does not o�er us suh a ontextual distinguisher

sine for L̂ and C of Eqs. (4), (5), and (6) we get

9
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FIG. 5. Critials generated from Bub's master: (a) subgraph pentagon 5-5; (b) subgraph 10-9; () standard subgraph 14-11;

Critial generated from Peres' master: (d) 13-11.

L̂10 = 2.5I and C10 ≤ 2.5. Hene, ⟨L̂10⟩ = Max[C10].
MMPH non-binary subgraph 5-5 an atually be gener-

ated in all four MMPH lasses, but we have not shown

them for Conway-Kohen and Peres' lasses in Fig. 4.

The pentagon 5-5 has a parity proof.

Subsequent small Bub's ritial subgraphs we ob-

tained, are 9-9 and 10-9. The latter is shown in

Fig. 5(b). Its MMPH string an be easily read o�

from the �gure: 12,23,34,456,67,78,89,9A1,A5.

Its possible oordinatization is: 1={0,0,1},2={1,1,0},

3={1,-1,1},4={0,1,1},5={2,-1,1},6={1,1,-1},7={1,0,1},

8={1,2,-1},9={2,-1,0},A={1,2,0}. Vetor omponent

`2' is here beause the set of 1-A vertex oordinates

is a subset of the 1-H set of oordinates of the �lled

set 17-9. As for the ontextuality veri�ation, we have

HIq[10-9] = 6 × (1/2 + 1/3)/2 + 4 × 1/2 = 9/2 = 4.53̇ >
HIc[10-9] = 4. On the other hand, we have L̂10 = 5.5I

and C10 ≤ 5.5. Hene, ⟨L̂10⟩ =Max[C10]. The set has a
parity proof.

The �rst standard subgraph in the Bub's lass we

found is 14-11 shown in Fig. 5(). Its oordinatization is

1={2,0,1},2={-1,-1,2},3={1,-1,0},4={1,1,1},5={2,-1,-1},

6={0,1,-1},7={2,1,1},8={-1,1,1},9={1,1,0},A={1,-1,2},

B={2,0,-1},C={1,0,2},D={0,1,0},E={-1,0,2}.

HIq[14-11] = 4 × 1/3 + 10 × (1/2 + 1/3)/2 = 11/2 = 5.53̇ >
HIc[14-11] = 5. The Yu-Oh approah gives: L̂10 = 8.5I
and C10 ≤ 8.75. Hene, ⟨L̂14⟩ < Max[C14]. The set is

one of the few standard subgraphs that have a parity

proof. The only other Bub's ritials with a parity proof

we found are 14-13, 18-15, 24-19, and 28-23.

Another ritial with L̂ = cI (c is a onstant) we

found is 14-13: 12,23,34,45,56,67,789,9A,AB,BC,CD,

DE1,E8. ⟨L̂14⟩ = 7.5 <Max[C14] = 7.75.
Yu-Oh's 13-16 is from the Peres' lass but the

only other ritial with L̂ = cI we found in Peres'

lass is the subgraph 13-11 shown in Fig. 4(d):

12,234,56,678,89,9A,ABC,CD,D1,35,4B7. ⟨L̂13⟩ =
7.5 < Max[C13] = 7.75, The oordinatization is

1={1,1,

√
2},2={0,

√
2,-1},3={0,1,

√
2}, 4={1,0,0},

5={1,

√
2,-1},6={

√
2,-1,0},7={0,0,1},8={1,

√
2,0},

9={

√
2,-1,1},A={1,0,-

√
2},B={0,1,0},C={

√
2,0,1},

D={1,1,-

√
2}. The omponents ±√2 ome from the o-

ordinatization of the �lled set 20-11 whih requires the

omponents ±√2,3, i.e., more than Peres' master set it-

self. This is beause 13-11 is a subgraph and not a stan-

dard subgraph of the master set. HIq[13-11] = 5.53̇ >
HIc[13-11] = 5. The ritial 13-11 has a parity proof.

We found no standard subgraph of Peres' master with a

parity proof, though.

In Fig. 4(b), only ritial standard subgraphs obtained

via automated generation are shown. Hene, they are

all subgraphs of Conway-Kohen's master but we shall

explain how one an generate subgraphs from them.

Let us onsider Conway-Kohen's ritial 13-10

shown in Fig. 6(a): 12,234,45,56,678,89,9A1,ABC,

3B7,CD5. Its oordinatization is: 1={1,1,0},2={-1,1,1},

3={1,0,1},4={1,2,-1},5={0,1,2},6={1,-2,1},7={1,0,-1},

8={1,1,1},9={1,-1,0},A={0,0,1},B={0,1,0},C={1,0,0},

D={0,2,-1}., after taking into aount the �lled 17-10 set.

Similarly to Yu-Oh's set, the 13-10 set exhibits both on-

textual indies: HIq[13-10] = 4.94̇ > HIc[13-10] = 4 and

HIq−unc[13-10] = 13/3 = 4.3̇ > HIc[13-10] = 4. If we take
out the vertex D (the gray dot in Fig. 6(a)) the result-

ing subgraph 12-10 is ritial too, whih also shows that

vertex-ritiality is not onsistent. Unlike Yu-Oh's set,

neither 13-10 nor 12-10 have L̂ = cI satis�ed. L̂13 is not

diagonal and L̂12 is diagonal but it is not a multiple of the

unit matrix. The set 12-10 does not exhibit both ontex-

tual distinguishers: HIq[12-10] = 4.754̇ > HIc[12-10] = 4
but HIq−unc[12-10] = 12/3 = 4 = HIc[12-10] = 4. It is, of
ourse, due to the lower number of verties, sine the ge-

ometrial struture of the MMPHs, yielding the lassial

index 4, remains the same.

We �nd similar features within Kohen-Speker's

MMPH lass. Let us take two MMPH ritials from the

middle of the distribution shown in Fig. 4(d). 32-25a:

45,5P7,76,6Q9,98,8V2,2UI,IHA,AB,BC,CG,GDK,KLJ,

JYF,F3,3E,EWN,NMO,OR4,123,DE,STL,UTC,XMF,ZHG.

and 35-25b: 12, 2TJ,JK,KQM,ML,LDF,FG,GZ3,34,4U6,

65,5X7,78,8W9,9A,AV1,BC,DE,HI,NO,PO,RPI,SNH,

YEC,OLB. Their oordinatizations are too long to be

given here. Neither of them nor any other standard

subgraph in the Kohen-Speker's lass we obtained in

10
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loop is a 16-gon; See text.

Fig. 4(d) has a parity proof.

Their di�erent geometrial struture yield di�erent

lassial hypergraph indies: HIc[35-25a] = 11 and

HIc[35-25b] = 12. However, the number of verties and
therefore the quantum unalibrated hypergraph indies

of both MMPHs are the same: HIq−unc[35-25] = 35/3 =
11.6̇. That means that 35-25a exhibits ontextuality even
for unalibrated measurement outomes, while 35-25a

does not. Their alibrated indies are: HIq[35-25a] =
12.4̇ > HIc[35-25a] = 11 and HIq[35-25b] = 13.75 >
HIc[35-25b] = 12. Pentagons in 35-25b in Fig. 6() are

subgraphs of Kohen-Speker's master unlike the pen-

tagon 5-5 (without gray dots) in Fig. 5, whih is a

subgraph. If we removed all gray dots, the resulting set

25-25 will not be ritial any more, but if we leave S and

R in the red pentagon, the resulting 27-25 set will be rit-

ial. This annot be ahieved with the green pentagon:

leaving Y as the only gray dot in the 26-25 set will not

make it ritial. L̂ of the double pentagon is not diagonal.

In Appendix A we give hosen MMPH non-binary rit-

ial sets whih are standard subgraphs of the four MMPH

master sets.

III. DISCUSSION

In the last half a entury a vast number of on-

strutive proofs of quantum ontextuality were obtained

in even dimensional Hilbert spaes, but only a very

few in odd dimensional ones. In partiular, in the 3-

dim spae: Bub, Conway-Kohen, Peres, and Kohen-

Speker's KS sets, Yu-Oh ontextual set, and Klyahko-

Can-Biniio§lu-Shumovsky's pentagram/pentagon state-

dependent set. All together 6 sets.

In this paper we present n-dim hypergraph ontextu-

ality whih onsists in generating sets whih prelude bi-

nary assignments of values 0 and 1 to verties of a hyper-

graph, suh that 1 is assigned to only one of the verties

in eah edge of the hypergraph, where an edge an on-

tain less than n mutually orthogonal verties. Suh a set

whih we all an n-dim MMPH non-binary set, is de�ned

by Def. II.2. We stay with n = 3, i.e., we deal with qutrits
only, although the method an be extrapolated to any di-

mension. The method serves us to distinguish lassial

models with predetermined binary values, that an be as-

signed to measurement outomes of lassial observables

underlying lassial omputation, from quantum models

that do not allow for suh values and that underlie quan-

tum omputation.

Let us make use of a graphial representation of an n-
dim MMPH to desribe the method. Verties within an

MMP hypergraph are drawn as dots and edges ontain-

ing mutually orthogonal verties are drawn with the help

of straight or urved lines onneting these �orthogonal

dots� as shown in Figs. 1, 2, 3, 5, and 6. There an be

a di�erent number of verties/dots in edges. Our pro-

gram then veri�es whether a hosen MMPH k-l violates
or obeys the 0,1 assignment rules from Def. II.2. Edges

in MMPH k-l might ontain 3 or 2 verties. We then

onsider a �lled MMPH k′-l in whih we add a vertex to

eah edge whih ontains only 2 verties and try to �nd

a oordinatization for it. If suessful, we make a one-to-

one orrespondene between verties and vetors in the

n-dim Hilbert spae, i.e., for the MMPH k′-l set. The

MMPH k-l set inherits the oordinatization from from

the MMPH k′-l set. If we implemented the MMPH k′-

l, eah edge would be a gate with n outomes and the

probability of deteting an outome would be 1/n.
Now, our approah onsists in disarding the outomes

orresponding to hosen verties whih share (are on-

tained in) only one edge from hosen edges and onsider-

ing outomes only of the remaining verties. In the 3-dim

Hilbert spae, that means that some of the edges/gates

should be taken as doublets and the others as triplets.

Our programs an handle suh MMPHs beause they

are written for edges of mixed sizes. Measurements on

MMPH non-binary sets might then be arried for triplets

in a standard manner, i.e., with the probability of 1/3 of

obtaining a lik (value 1) at eah of the three ports, at

11
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a gate orresponding to an edge/triple, and via a al-

ibrated detetion at out-ports of a gate representing a

doublet with the probability of 1/2. For verties that

share triplet and doublet edges, the probability would be

equal to 1/p, where 1/3 ≤ p ≤ 1/2. Calibration onsists in

sending three input partiles to a doublet gate for eah

two sent to a triplet gate, i.e., the ratio of doublet to

triplet inputs should be 3/2.

To obtain a measure of quantum ontextuality of an

MMPH non-binary set we de�ne hypergraph indies. A

lassial hypergraph index HIc is the maximal number

of 1s we an assign to verties within edges of an MMPH

so as to obey the 0,1 assignment rules from Def. II.2. A

(alibrated) quantum hypergraph index HIq is the sum

of alibrated probabilities for all k verties of the afore-

mentioned k-l MMPH. An unalibrated quantum hyper-

graph index HIq−unc is the sum of 1/3-probabilities for

all k′ verties of the aforementioned k′-l MMPH. A ba-

si measure of quantum ontextuality of an MMPH non-

binary set is the inequalityHIc <HIq. If it were satis�ed,
the MMPH would be ontextual. If not, it wouldn't. A

stronger measure of quantum ontextuality of an MMPH

non-binary set is the inequality HIc < HIq−unc. Some

of the onsidered MMPHs do satisfy both inequalities.

For instane, Yu-Oh's set 13-16, MMPH 13-10 shown in

Fig. 6(a), MMPH 35-25a shown in Fig. 6(b), and the

MMPH master sets onsidered in Se. II D. Other onsid-

ered ritial non-binary MMPHs satisfy only alibrated

inequalities but that is su�ient for experimental veri�-

ation of ontextuality and possible appliations.

We get thousands of MMPH non-binary sets as fol-

lows. For the time being, we start with the previously

found KS sets: Bub 49-36, Conway-Kohen 51-37, Peres

57-40, and Kohen-Speker's 192-118 whih are all riti-

al, i.e., if we took out any edge from any of them they

would stop being KS [46, Def. 3℄. However, when we

strip all the verties ontained in only one edge we ob-

tain Bub 33-36, Conway-Kohen 32-37, Peres 33-40, and

Kohen-Speker's 117-118 master sets, none of whih is

ritial. This enables us to generate thousands of new

smaller MMPH ritial sets from them via our programs.

Their distributions are shown in Fig. 4. Chosen MMPHs

ritial sets are given in Se. II D and Appendix A and

shown in Figs. 5 and 6. They an be easily implemented,

in partiular the smaller ones.

The large number of obtained sets an also be used for

an automated testing of Yu-Oh's operators and inequal-

ities along the examples we gave in Ses. II B and IID.

For that we are developing new algorithms and programs.

This is a work in progress.

Next, one an make use of the obtained MMPHs to

formulate new entropi tests of ontextualities following

Kurzy«ski, Ramanathan, and Kaszlikowski [54℄. In 2012

they only had one pentagram/pentagon set [53℄ at their

disposal. The pentagon 5-5 set is the simplest MMPH

set we obtained (see Fig. 4) and many other generated

small sets an now serve the purpose.

Also, the methods of evaluating onditions for being a

SIC set developed in [51, 52℄ and the methods of Cabello-

Severini-Winter graph-theoreti approah to quantum

orrelations [56℄ require samples of hypergraphs and that

is what our method o�ers�a onstrutive probabilisti

generation of arbitrary MMPH sets when oupled with

automated vetor generation algorithms we developed in

[47℄.

Finally, we stress that the MMPH onstrutive gen-

eration of non-binary quantum sets from operationally

hosen vetors out of all possible ones within suh sets

ontribute to our understanding of the physial origin of

quantum orrelations sine they represent a new MMPH

senario for getting �quantum orrelations from simple

assumptions� presented in [57℄.

IV. METHODS

The methods we use to handle quantum ontextual

sets rely on algorithms and programs within the MMP

language: VECFIND, STATES01, MMPSTRIP, MMP-

SHUFFLE, SUBGRAPH, LOOP, and SHORTD devel-

oped in [6, 38, 39, 58, 60, 61, 77, 78℄. They are freely

available at http://goo.gl/xbx8U2. MMPHs an be vi-

sualized via hypergraph �gures onsisting of dots and

lines and represented as a string of ASCII haraters.

The latter representation enables proessing billions of

MMPHs simultaneously via superomputers and lusters.

For the latter elaboration, we developed other dynamial

programs spei� program to handle and parallelize jobs

with arbitrary number of MMP hypergraph verties and

edges.

ACKNOWLEDGMENTS

Supported by the Ministry of Siene and Eduation of

Croatia through the Center of Exellene for Advaned

Materials and Sensing Devies (CEMS) funding, and

by MSE grants Nos. KK.01.1.1.01.0001 and 533-19-15-

0022. Computational support was provided by the lus-

ter Isabella of the Zagreb University Computing Centre

and by the Croatian National Grid Infrastruture (CRO-

NGI).Tehnial supports by Emir Imamagi¢ and Daniel

Vr£i¢ from Isabella and CRO-NGI are gratefully aknowl-

edged.

12



Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107

Appendix A: ASCII strings from MMPH non-binary lasses

Below we give several hosen standard subgraphs from the four lasses of ritial MMPH sets shown in Fig.4. The

�rst number in eah line is m of the biggest m-gon loop for the MMPH in the line. The seond and third numbers

are the numbers of the MMPH verties and edges, respetively. Three ommas ��,� denote the end of a loop and *

behind an ASCII symbol means that the symbol belongs to the loop.

1. Bub's lass

10-v18-e13 213,36,6GC,CDB,BH8,89,9I4,45,5EA,A2�,73*,9*2*,FD*7.

11-v21-e16 213,3A,AHG,GFE,E57,76,6KL,LD8,89,9IC,C2�,45*,B3*,D*2*,JF*B,H*8*4.

14-v24-e18 12,2L3,34,4KG,GHI,I85,56,6B,BC,CA,A9,9FE,ED,DO1�,78*,JH*F*,MN7,ND*C*.

13-v27-e20 213,3L4,45,5B,BC,CMN,NOE,E6F,FD9,9A,AJI,IHG,GP2�,6*7,87,D*3*,KL*H*,QRO*,O*82*,RD*B*.

17-v30-e23 543,3PC,CB,BA,AON,NJ6,67,7KL,L2S,SRI,IH,HTM,MGD,DE,E9,98,8Q5�,12*3*,FG*,J*5*,

P*O*M*,US*Q*,N*F2*.

17-v33-e26 45,5CL,L7E,EF,FG,GBH,HIJ,JN,NRS,SWO,O6P,PMQ,QA2,2V8,89,9TU,U34�,12*3*,6*7*,A*B*,

C*D,KL*H*,G*D,M*J*,O*H*3*,XU*R*.

2. Conway-Kohen's lass

8-v15-e11 12,2E7,78,8D3,34,4C6,65,5F1�,9AB,B7*6*,A3*1*.

12-v22-e16 67,7GF,FB,B5D,D3,3ME,EC,CK8,89,9HI,I2A,AL6�,12*3*,45*,A*B*C*,J42*.

14-v26-e19 312,2F,FMN,NL5,596,67,7OJ,JIE,EB,BA,APD,DC,CQH,H3�,45*3*,89*,G2*, KL*G,I*H*8.

15-v29-e22 12,2RH,HQ3,34,47M,MT9,9A,AJE,ED,DIF,FG,GC,CB,B5N,NS1�,5*6,7*8,H*I*,KL8,LD*6,OPG*,

PN*M*.

17-v30-e24 12,2TD,DH,HRO,O87,76,65,5P4,43,3SJ,JK,K9L,LIM,MQN,NCE,EB,BU1�,8*9*,AB*,C*D*,FG,I*G,

P*GA,Q*J*F.

3. Peres' lass

10-v15-e12 12,2A,AC8,87,7D5,56,6B9,94,43,3E1�,E*C*B*,FE*D*.

14-v19-e16 12,23,34,4E,EGA,A9,9HB,BC,CFD,D8,87,7I6,65,51�,I*G*F*,JI*H*.

14-v27-e19 12,2QD,DE,E3I,IJK,KM5,56,6L8,87,7PG,GHF,FAB,BC,CR1�,3*4,9A*,E*C*,NJ*9, OH*4.

20-v35-e27 213,3G,GLM,MNE,EF,FVX,XYU,UP5,5I,IT7,78,89,9S6,6J,JZQ,QHA,AB,BKD,DC,CR2�,45*6*,

H*I*,F*3*,OP*K*,V*Q*L*,T*S*2*,WX*R*.

22-v38-e30 345,5SU,UTH,HI,IR2,2Z,ZFa,aJW,WVX,XQG,G7,76,6LC,CB,BMD,DE,EYA,A9,98,8ON,NbK,KP3�,

12*3*,F*G*,J*5*,J*I*,K*E*,P*Q*L*,R*S*M*,a*Y*O*.

4. Kohen-Speker' lass

7-v12-e9 12,23,34,456,6A9,987,7C1�,5*1*,B8*3*.

12-v19-e14 12,2IA,AB,BC8,87,7E5,56,6D4,43,3FG,G9H,HJ1�,9*A*,H*D*C*.

16-v30-e21 312,2E,EMN,NL8,8RC,CD,D7,76,6GH,HP9,9SA,AB,BQ4,45,5IJ,JO3�,8*9*3*,F2*,KL*F,TO*B*,

UP*D*.

18-v38-e27 34,4VD,DE,ETG,GF,FO,ON,NHJ,JK,KSC,CB,BZ5,56,6Y9,9A,AX7,78,8W3�,12,H*I,LM,PQ,RQ,

UMI,aR2,bP1,QN*L.

18-v46-e33 56,6a8,87,7e9,9A,AC,CB,BdD,DE,EbG,GF,FiP,PQ,QYX,XT,THJ,JK,Kh5�,12,34,H*I,LM,NO,

RS,T*US,VU,WU,ZRO,fI4,gM3,jW2,kV1,T*NL.

12-v54-e39 78,8oV,VW,WgX,XY,YZ,ZfU,UT,TpA,A9,9Ps,sN7�,12,34,56,BC,DE,FG,HI,JK,LM,N*O,P*Q,RS,

ab,b,dS,eaR,hK2,iI1,jM6,kOG,lQ5,mC4,nE3,qY*D,rbB,s*LH,s*JF.
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[8℄ Simon, C.; Żukowski, M.; Weinfurter, H.; Zeilinger, A.

Feasible Kohen-Speker Experiment with Single Parti-

les. Phys. Rev. Lett. 2000, 85, 1783�1786.

[9℄ Mihler, M.; Weinfurter, H.; Żukowski, M. Experiments

towards Falsi�ation of Nonontextual Hidden Variables.

Phys. Rev. Lett. 2000, 84, 5457�5461.

[10℄ Amselem, E.; Rådmark, M.; Bourennane, M.; Cabello,

A. State-Independent Quantum Contextuality with Sin-

gle Photons. Phys. Rev. Lett. 2009, 103, 160405�1�4.

[11℄ Liu, B.H.; Huang, Y.F.; Gong, Y.X.; Sun, F.W.; Zhang,

Y.S.; Li, C.F.; Guo, G.C. Experimental Demonstration

of Quantum Contextuality with Nonentangled Photons.

Phys. Rev. A 2009, 80, 044101�1�4.

[12℄ D'Ambrosio, V.; Herbauts, I.; Amselem, E.; Nagali, E.;

Bourennane, M.; Siarrino, F.; Cabello, A. Experimen-

tal Implementation of a Kohen-Speker Set of Quantum

Tests. Phys. Rev. X 2013, 3, 011012�1�10.

[13℄ Huang, Y.F.; Li, C.F.; Yong-Sheng Zhang, J.W.P.; Guo,

G.C. Realization of All-or-nothing-type Kohen-Speker

Experiment with Single Photons. Phys. Rev. Lett. 2002,

88, 240402�1�4.

[14℄ Huang, Y.F.; Li, C.F.; Zhang, Y.S.; Pan, J.W.; Guo,

G.C. Experimental Test of the Kohen-Speker Theorem

with Single Photons. Phys. Rev. Lett. 2003, 90, 250401�

1�4.

[15℄ Lapkiewiz, R.; Li, P.; Shae�, C.; Langford, N.K.;

Ramelow, S.; Wie±niak, M.; Zeilinger, A. Experimen-

tal Non-Classiality of an Indivisible Quantum System.

Nature 2011, 474, 490�493.

[16℄ Zu, C.; Wang, Y.X.; Deng, D.L.; Chang, X.Y.; Liu, K.;

Hou, P.Y.; Yang, H.X.; Duan, L.M. State-Independent

Experimental Test of Quantum Contextuality in an Indi-

visible System. Phys. Rev. Lett. 2012, 109, 150401�1�5.

[17℄ Cañas, G.; Etheverry, S.; Gómez, E.S.; Saavedra,

C.; Xavier, G.B.; Lima, G.; Cabello, A. Experimen-

tal Implementation of an Eight-Dimensional Kohen-

Speker Set and Observation of Its Connetion with the

Greenberger-Horne-Zeilinger Theorem. Phys. Rev. A

2014, 90, 012119�1�8.

[18℄ Cañas, G.; Arias, M.; Etheverry, S.; Gómez, E.S.; Ca-

bello, A.; Saavedra, C.; Xavier, G.B.; Lima, G. Applying

the Simplest Kohen-Speker Set for Quantum Informa-

tion Proessing. Phys. Rev. Lett. 2014, 113, 090404�1�5.

[19℄ Zhan, X.; Zhang, X.; Li, J.; Zhang, Y.; Sanders, B.C.;

Xue, P. Realization of the Contextuality-Nonloality

Tradeo� with a Qubit-Qutrit Photon Pair. Physial Re-

view Letters 2016, 116, 090401.

[20℄ Li, T.; Zeng1, Q.; Song, X.; Zhang, X. Experimental

Contextuality in Classial Light. Sienti� Reports 2017,

7, 44467�1�8.

[21℄ Li, T.; Zeng, Q.; Zhang, X.; Chen, T.; Zhang, X. State-

Independent Contextuality in Classial Light 2019. (to

appear).

[22℄ Frustaglia, D.; Baltanás, J.P.; Velázquez-Ahumada,

M.C.; Fernández-Prieto, A.; Lujambio, A.; Losada, V.;

Freire, M.J.; Cabello, A. Classial Physis and the

Bounds of Quantum Correlations. Phys. Rev. Lett. 2016,

116, 250404�1�5.

[23℄ Zhang, A.; Xu, H.; Xie, J.; Zhang, H.; Smith, B.J.; Kim,

M.S.; Zhang, L. Experimental Test of Contextuality in

Quantum and Classial Systems. Phys. Rev. Lett. 2004,

122, 080401�1�6.

[24℄ Hasegawa, Y.; Loidl, R.; Badurek, G.; Baron, M.; Rauh,

H. Quantum Contextuality in a Single-Neutron Optial

Experiment. Phys. Rev. Lett. 2006, 97, 230401�1�4.

[25℄ Cabello, A.; Filipp, S.; Rauh, H.; Hasegawa, Y. Pro-

posed Experiment for Testing Quantum Contextuality

with Neutrons. Phys. Rev. Lett. 2008, 100, 130404�1�4.

[26℄ Bartosik, H.; Klepp, J.; Shmitzer, C.; Sponar, S.; Ca-

bello, A.; Rauh, H.; Hasegawa, Y. Experimental Test

of Quantum Contextuality in Neutron Interferometry.

Phys. Rev. Lett. 2009, 103, 040403�1�4.

[27℄ Kirhmair, G.; Zähringer, F.; Gerritsma, R.; Kleinmann,

M.; Gühne, O.; Cabello, A.; Blatt, R.; Roos, C.F. State-

Independent Experimental Test of Quantum Contextu-

ality. Nature 2009, 460, 494�497.

[28℄ Moussa, O.; Ryan, C.A.; Cory, D.G.; La�amme, R.

Testing Contextuality on Quantum Ensembles with One

Clean Qubit. Phys. Rev. Lett. 2010, 104, 160501�1�4.

[29℄ Jerger, M.; Reshitnyk, Y.; Oppliger, M.; Poto£nik, A.;

Mondal, M.; Wallra�, A.; Goodenough, K.; Wehner, S.;

Juliusson, K.; Langford, N.K.; Fedorov, A. Contextual-

ity without Nonloality in a Superonduting Quantum

System. Nature Commun. 2016, 7, 12930�1�6.

[30℄ Barrett, J.; Kent, A. Nonontextuality, Finite Preision

Measurement and the Kohen-Speker. Stud. Hist. Phi-

los. Mod. Phys. 2004, 35, 151�176.

[31℄ Kunjwal, R.; Spekkens, R.W. From the Kohen-

Speker Theorem to Nonontextuality Inequalities with-

out Assuming Determinism. Phys. Rev. Lett. 2015,

115, 110403�1�5.

[32℄ Kunjwal, R. Hypergraph Framework for Irreduible

Nonontextuality Inequalities from Logial Proofs of the

Kohen-Speker Theorem. arXiv:1805.02083, 2018.

[33℄ Bengtsson, I.; Blanh�eld, K.; Cabello, A. A Kohen-

Speker Inequality from a SIC. Phys. Lett. A 2012,

376, 374�376.

[34℄ Cabello, A.; Estebaranz, J.M.; Garía-Alaine, G. Bell-

Kohen-Speker Theorem: A Proof with 18 Vetors.

Phys. Lett. A 1996, 212, 183�187.

[35℄ Pavi£i¢, M.; Merlet, J.P.; MKay, B.D.; Megill, N.D.

14



Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107

Kohen-Speker Vetors. J. Phys. A 2005, 38, 1577�

1592.

[36℄ Waegell, M.; Aravind, P.K. Critial Nonolorings of the

600-Cell Proving the Bell-Kohen-Speker Theorem. J.

Phys. A 2010, 43, 105304�1�13.

[37℄ Waegell, M.; Aravind, P.K. Parity Proofs of the Kohen-

Speker Theorem Based on 60 Complex Rays in Four

Dimensions. J. Phys. A 2011, 44, 505303�1�15.

[38℄ Megill, N.D.; Fresl, K.; Waegell, M.; Aravind, P.K.;

Pavi£i¢, M. Probabilisti Generation of Quantum Con-

textual Sets. Phys. Lett. A 2011, 375, 3419�3424.

[39℄ Pavi£i¢, M.; Megill, N.D.; Aravind, P.K.; Waegell, M.

New Class of 4-Dim Kohen-Speker Sets. J. Math. Phys.

2011, 52, 022104�1�9.

[40℄ Waegell, M.; Aravind, P.K.; Megill, N.D.; Pavi£i¢, M.

Parity Proofs of the Bell-Kohen-Speker Theorem Based

on the 600-ell. Found. Phys. 2011, 41, 883�904.

[41℄ Waegell, M.; Aravind, P.K. Proofs of Kohen-Speker

Theorem Based on a System of Three Qubits. J. Phys.

A 2012, 45, 405301�1�13.

[42℄ Waegell, M.; Aravind, P.K. Proofs of the Kohen-Speker

Theorem Based on the N-Qubit Pauli Group. Phys. Rev.

A 2013, 88, 012102�1�10.

[43℄ Waegell, M.; Aravind, P.K. Parity Proofs of the Kohen-

Speker Theorem Based on 120-Cell. Found. Phys. 2014,

44, 1085�1095.

[44℄ Waegell, M.; Aravind, P.K. Parity Proofs of the Kohen-

Speker Theorem Based on the Lie Algebra E8. J. Phys.

A 2015, 48, 225301�1�17.

[45℄ Waegell, M.; Aravind, P.K. The Penrose Dodeahedron

and the Witting Polytope Are Idential in CP
3
. Phys.

Lett. A 2017, 381, 1853�1857.

[46℄ Pavi£i¢, M. Arbitrarily Exhaustive Hypergraph Genera-

tion of 4-, 6-, 8-, 16-, and 32-Dimensional Quantum Con-

textual Sets. Phys. Rev. A 2017, 95, 062121�1�25.

[47℄ Pavi£i¢, M.; Megill, N.D. Vetor Generation of Quantum

Contextual Sets in Even Dimensional Hilbert Spaes. En-

tropy 2018, 20.

[48℄ Pavi£i¢, M.; Waegel, M.; Megill, N.D.; Aravind, P. Auto-

mated Generation of Kohen-Speker Sets. Si. Reports

2019, 9, 6765�1�11.

[49℄ Yu, S.; Oh, C.H. State-Independent Proof of Kohen-

Speker Theorem with 13 Rays. Phys. Rev. Lett. 2012,

108, 030402�1�5.

[50℄ Xu, Z.P.; Chen, J.L.; Su, H.Y. State-independent ontex-

tuality sets for a qutrit. Phys. Lett. A 2015, 379, 1868�

1870.

[51℄ Ramanathan, R.; Horodeki, P. Neessary and Su�-

ient Condition for State-Independent Contextual Mea-

surement Senarios. Phys. Rev. Lett. 2014, 112, 040404�

1�5.

[52℄ Cabello, A.; Kleinmann, M.; Budroni, C. Neessary

and Su�ient Condition for Quantum State-Independent

Contextuality. Phys. Rev. Lett. 2014, 114, 250402�1�5.

[53℄ Klyahko, A.A.; Can, M.A.; Biniio§lu, S.; Shumovsky,

A.S. Simple Test for Hidden Variables in Spin-1 Systems.

Phys. Rev. A 2008, 101, 020403�1�4.

[54℄ Kurzy«ski, P.; Ramanathan, R.; Kaszlikowski, D. En-

tropi Test of Quantum Contextuality. Phys. Rev. Lett.

2012, 109, 020404�1�5.

[55℄ Braunstein, S.L.; Caves, C.M. Information- Theoreti

Bell Inequalities. Phys. Rev. Lett. 1988, 61, 662�665.

[56℄ Cabello, A.; Severini, S.; Winter, A. Graph-Theoreti

Approah to Quantum Correlations. Phys. Rev. Lett.

2014, 112, 040401�1�5.

[57℄ Cabello, A. Quantum Correlations from Simple Assump-

tions. Phys. Rev. A 2019, 100, 032120�1�14.

[58℄ Pavi£i¢, M.; Merlet, J.P.; MKay, B.D.; Megill, N.D.

Kohen-Speker Vetors. J. Phys. A 2005, 38, 1577�

1592 and 3709 (orrigendum).

[59℄ Kohen, S.; Speker, E.P. The problem of hidden vari-

ables in quantum mehanis. J. Math. Meh. 1967,

17, 59�87.

[60℄ MKay, B.D.; Megill, N.D.; Pavi£i¢, M. Algorithms for

Greehie Diagrams. Int. J. Theor. Phys. 2000, 39, 2381�

2406.

[61℄ Pavi£i¢, M.; Megill, N.D.; Merlet, J.P. New Kohen-

Speker Sets in Four Dimensions. Phys. Lett. A 2010,

374, 2122�2128.

[62℄ Megill, N.D.; Fresl, K.; Waegell, M.; Aravind, P.K.;

Pavi£i¢, M. Probabilisti Generation of Quantum Con-

textual Sets; Supplementary Material. Phys. Lett. A

2011, 375, 3419�3424. Supplementary Material.

[63℄ Gleason, A.M. Measures on the losed subspaes of a

Hilbert spae. J. Math. Meh. 1957, 6, 885�893.

[64℄ Zimba, J.; Penrose, R. On Bell Non-Loality without

Probabilities: More Curious Geometry. Stud. Hist. Phil.

Si. 1993, 24, 697�720.

[65℄ Peres, A. Two Simple Proofs of the Bell-Kohen-Speker

Theorem. J. Phys. A 1991, 24, L175�L178.

[66℄ Bengtsson, I. Gleason, Kohen-Speker, and a Competi-

tion that Never Was. AIP Conferene Proeedings 1508,

125 (2012), 2012, Vol. 1508, pp. 125�1�8.

[67℄ Larsson, J.Å. A Kohen-Speker Inequality. Europhys.

Lett. 2002, 58, 799�805.

[68℄ Pavi£i¢, M.; Merlet, J.P.; MKay, B.D.; Megill, N.D.

Kohen-Speker Vetors. J. Phys. A 2005, 38, 1577�

1592. and 38, 3709 (2005) (orrigendum).

[69℄ Held, C. Kohen-Speker Theorem. In Compendium of

Quantum Physis; Greenberger, D.; Hentshel, K.; Wein-

ert, F., Eds.; Springer: New-York, 2009; pp. 331�335.

[70℄ Ruuge, A.E. New Examples of Kohen�Speker-Type

Con�gurations on Three Qubits. J. Phys. A 2012,

45, 465304�1�17.

[71℄ Cabello, A.; Amselem, E.; Blanh�eld, K.; Bouren-

nane, M.; Bengtsson, I. Proposed Experiments of

Qutrit State-Independent Contextuality and Two-Qutrit

Contextuality-Based Nonloality. Phys. Rev. A 2012,

85, 032108�1�4.

[72℄ Kleinmann, M.; Budroni, C.; Larsson, J.Å.; Gühne, O.;

Cabello, A. Optimal Inequalities for State-Independent

Contextuality. Phys. Rev. Lett. 2012, 109, 250402�1�5.

[73℄ Clifton, R. Getting Contextual and Nonloal Elements-

of-Reality the Easy Way. Am. J. Phys. 1993, 61, 443�

447.

[74℄ Svozil, K. Quantum Logi; Disrete Mathematis and

Theoretial Computer Siene, Springer-Verlag: New

York, 1998.

[75℄ Held, C. The Kohen-Speker Theorem. In The Stan-

ford Enylopedia of Philosophy; Zalta, E.N., Ed.; Stan-

ford University, Spring 2018. https://plato.stanford.edu/

arhives/spr2018/entries/kohen-speker.

[76℄ Bub, J. Shütte's Tautology and the Kohen-Speker

Theorem. Found. Phys. 1996, 26, 787�806.

[77℄ Pavi£i¢, M.; Megill, N.D. Quantum Logi and Quantum

Computation. In Handbook of Quantum Logi and Quan-

tum Strutures; Engesser, K.; Gabbay, D.; Lehmann, D.,

Eds.; Elsevier: Amsterdam, 2007; Vol. Quantum Stru-

15



Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107Mladen Pavi£i¢, Hypergraph Contextuality Entropy 21 (11), 1107

tures, pp. 751�787.

[78℄ Megill, N.D.; Pavi£i¢, M. New Classes of Kohen-Speker

Contextual Sets (Invited Talk). Proeedings of the 40th

MIPRO Convention held on 22-26 May 2017. IEEE,

2017, IEEE Xplore Digital Library, pp. 195�200. ISBN:

9781509049691.

16


