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We give a method for exhaustive generation of a huge number of Kochen–Specker contextual sets, based
on the 600-cell, for possible experiments and quantum gates. The method is complementary to our
previous parity proof generation of these sets, and it gives all sets while the parity proof method gives
only sets with an odd number of edges in their hypergraph representation. Thus we obtain 35 new kinds
of critical KS sets with an even number of edges. We also give a statistical estimate of the number of
sets that might be obtained in an eventual exhaustive enumeration.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Quantum contextuality is the property of a quantum system
that a result of any of its measurements might depend on other
compatible measurements that might be carried out on the sys-
tem. The so-called Kochen–Specker (KS) sets provide constructive
proofs of quantum contextuality and therefore provide straightfor-
ward blueprints for their experimental setups. KS sets are likely
to find applications in the field of quantum information, simi-
lar to ones recently found for the Bell setups in implementing
entanglements [1,2]. A. Cabello’s result [3], according to which
local contextuality can be used to reveal quantum nonlocality, sup-
ports the conjecture. Also our results [4–6] show that KS sets
play an important role in Hilbert space description of complex se-
tups.

A series of KS experiments have been carried out in the last
ten years. The most recent ones made use of quantum gates and
employed recently developed quantum information techniques of
handling, manipulating, and measuring of qubits by means of
quantum circuits of such gates. The experiments were proposed,
designed, and carried out for spin- 1

2 ⊗ 1
2 particles (correlated pho-

tons or spatial and spin neutron degrees of freedom) [7–17]. The
KS sets that were used in these experiments were from 2 × 2 = 4-
dim Hilbert space. In particular they were either from the 24–24
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class of KS sets (set with 18 through 24 vectors and 9 through 24
orthogonal vector tetrads) or the Mermin set [18].

Therefore in [19,18] we exhaustively generated all KS sets from
the 24–24 class without ascribing coordinates to Hilbert vector
(states, wave function) components. That was done by means of
McKay–Megill–Pavicic (MMP) hypergraph representation (MMP di-
agrams). Such sets can be implemented directly in both 3-dim
(spin-1, qutrits) and 4-dim (spin- 3

2 ) KS setups by means of, e.g.,
generalized Stern–Gerlach devices [20].

Most recently [21,22] we generated a number of KS sets from
a 4-dim 60–75 KS set we obtained from the so-called 600-cell
(the 4-dimensional analog of the icosahedron) [23]. Since they all
stem from this single 60–75 set and since no set from the 24–24
class belongs to it, we call it the 60–75 KS class. The experimental
implementations of the sets belonging to this class are straightfor-
ward although demanding. For instance, we let a spin- 3

2 systems
through a series generalized Stern–Gerlach devices, enabling con-
trol over outcoming directions of particles [20]. The approach can
also be used to make quantum gates.

For any experimental application it is not viable to consider
all possible millions of sets but only those that can be experi-
mentally distinguished. Hence, we extract critical non-redundant
non-isomorphic KS sets with 26 to 60 vectors from all possible
60–75 KS sets. “Critical” means that they are minimal in the sense
that no orthogonal tetrads can be removed without causing the KS
contradiction to disappear. We found several thousand critical KS
setups that have no experimental redundancies.

In [22] we developed a method of generation of all those KS
sets that allow the so-called parity proofs (see below). However,
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the parity proofs are applicable only to the sets with an odd num-
ber of tetrads of orthogonal vectors, and the aforementioned gen-
eration gives only such sets.

In this Letter, we describe a method for generating all KS sets
from the 60–75 KS class, in particular those sets that we cannot
obtain by our parity-proof-generation method. While in principle
the method is exhaustive, a full generation is at present too de-
manding. Instead, we used random samples of the search space
and applied Bernoulli trial probability analysis to obtain expected
means and confidence intervals. We obtained these samples using
techniques of graph theory. Also, since the parity proof method
is faster for obtaining critical KS sets with odd number of vec-
tor tetrads, we concentrate on even numbers of tetrads (see Ta-
ble 1). In this sense our probabilistic generation method and our
parity-proof-generation method are complementary. The former
method is better at finding a large number of critical sets of both
kinds.

We develop algorithms that allow us to go survey a huge num-
ber of possible tetrads. In addition, based on statistical extrapola-
tion from our sample, we give an estimation method according to
which there might be ≈ 4.3 · 1012 (see Fig. 3) of non-isomorphic
critical KS sets that are subsets of the 60–75 set. The method is
however essentially classical, so that a future exhaustive genera-
tion might give far less numbers of critical sets. If it does, it will be
a measure quantum-classical difference. If not, then we will have
a powerful tool for estimating the reliability of random generation
of critical KS sets.

Finally, we give an overall picture of the critical KS sets we
found, describe patterns we have observed in their distribution,
and list some open questions about whether others that we
haven’t found yet exist and whether, for some sizes, we have ex-
hausted all possible isomorphism classes.

We make use of theory and algorithms from several disciplines:
quantum mechanics, lattice theory, graph theory, and geometry.
Thus in the context of our study, the term “vertex” is synonymous
with the terms “ray”, “atom”, “1-dim subspace”, and “vector” that
appear in the literature; “edge” with the terms “basis”, “block”, and
“tetrad (of mutually orthogonal vectors)”; and “MMP hypergraph”
with the terms “MMP diagram” and “KS sets”.

2. Results

The Kochen–Specker (KS) theorem states that a quantum sys-
tem cannot in general possess a definite value of a measurable
property prior to measurement, and quantum measurements (es-
sentially detector clicks) carried out on quantum systems cannot
always be ascribed predetermined values (say 0 and 1). This means
that two measurements of the same observable of the same sys-
tem sometimes must yield different outcomes in different contexts.
This is called the quantum contextuality. One way of proving the
theorem is to prove the existence of KS sets, i.e., to provide algo-
rithms for their constructive generation. The more abundant they
are, the more important the contextuality of quantum mechanics
appears to be.

Every KS set is a proof of the KS theorem. Kochen–Specker (KS) set is
a set of vectors |ψi〉, |ψ ′

i 〉, . . . in Hn , n � 3 to which it is impossible
to assign 1’s and 0’s in such a way that:

1. No two orthogonal vectors are both assigned the value 1;
2. Not all of any mutually orthogonal vectors are assigned the

value 0.
KS subsets of mutually orthogonal vectors in a 3-dim space we

call triads, in a 4-dim space tetrads, etc. A KS set is a union of
such triads, tetrads, etc. They can be represented by means of MMP
hypergraph defined below. In a KS set, the vectors correspond to
vertices and the tetrads to edges of MMP hypergraphs. (In the last
paragraph of this page we give a pedestrian introduction to this
correspondence.)

We define MMP hypergraphs as follows [19]

(i) Every vertex belongs to at least one edge;
(ii) Every edge contains at least 3 vertices;
(iii) Edges that intersect each other in n − 2 vertices contain at

least n vertices.

This definition enables us to formulate algorithms for exhaus-
tive generation of MMP hypergraphs. We work with subsets of
the starting hypergraph, the 60–75 one, so the job of generat-
ing the hypergraphs amounts to a creation of all possible sub-
sets of the 60–75 set with a specified number of edges deleted.
The “only” difficulty we face is the shear size of these generated
subsets—we are dealing with a haystack of 275 or 38 sextillion
subsets, in which we wish to find certain “needles” i.e. critical KS
sets.

The hypergraphs we obtain reflect only the orthogonal structure
of KS sets and do not in any way refer to the vector components of
the original 60–75 KS set. This is yet another aspect in which the
present method differs from the parity-proof method we used in
[22], which relies on the vector components of the vectors in each
KS set that was inherited from the original 60–75 set. For each
hypergraph we can, however, find appropriate vector components
with our program vectorfind or by interval analysis we devel-
oped in [19]. These components need not be those of the vectors
from the 60–75 set.

We encode MMP hypergraphs by means of alphanumeric and
other printable ASCII characters. Each vertex is represented by one
of the following characters: 1 2 3 4 5 6 7 8 9 A B C D E
F G H I J K L M N O P Q R S T U V W X Y Z a b c
d e f g h i j k l m n o p q r s t u v w x y z !
" # $ % & ’ ( ) * - / : ; < = > ? @ [ \ ] ^ _ ‘
{ | } ~ , and then again all these characters prefixed by ‘+’, then
prefixed by ‘++’, etc.

Each edge is represented by a string of characters that repre-
sent vertices. Edges are separated by commas. All edges in a line
form a representation of a hypergraph. The order of the edges is
irrelevant. We often present them starting with edges forming the
biggest loop to facilitate their possible drawing. The line must end
with a full stop. Skipping of characters is allowed.

In Fig. 1 we show a graphical representation of the minimal
(26–13) critical KS hypergraph we found and which we shall now
use to show a correspondence between the vector and the MMP
hypergraph representation of any KS set.

Each vertex represents a vector in a 4-dim space. For instance,
G= {1,0,0,0}, F= {0,1,0,0}, E= {0,0,1,0}, D= {0,0,0,1}. They
are mutually orthogonal and that means they form an edge—GFED.
Our program vectorfind can assign all vectors, that correspond
to edges from the 26–13 set, component values from the set
{0,±1,±(

√
5 + 1)/2,±(

√
5 − 1)/2} and that means that the sys-

tem of equations that define all orthogonalities for the 26–13 does
have a solution. Now our program states01 (which exhaustively
checks all possible assignments) checks whether all the vertices
can be ascribed 0 and 1 according to the KS rules 1 and 2 above
and verifies that it is not possible. The main point here is that we
can always go from MMP hypergraphs to vectors and back and that
states01 works with MMP hypergraphs. MMP hypergraphs are
linear while the system of equations describing mutual orthogo-
nality of vectors are nonlinear. Therefore the evaluation of MMP
hypergraphs by means of states01 is exponentially faster than
solving nonlinear equations and this is what makes our generation
of KS sets feasible in particular for those ones with an even num-
ber of tetrads (edges). While the algorithm used in states01 is
comparatively fast, the verification of KS sets for MMP hypergraphs
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Fig. 1. The first KS set 26–13 with odd number of edges on the left vividly illustrate the parity proof: all vertices share two edges. The two graphs on the right represent
42–24 KS with some edges shown in the first figure and come in the second. They are drawn by Asymptote (vector graphic language). By changing parameters one can
interactively control and change the shape of each edge line and unambiguously discern vertices that share an edge.
with an odd number of edges can be even faster using our “parity
proofs” algorithm described in [22].

Parity proof. Looking at the 26–13 KS set in Fig. 1, we see that we
cannot ascribe values 0 and 1 to all vertices so that in each edge
we ascribe 1 to one of the vertices and 0 to the others. For in all
these hypergraphs, each vertex shares exactly two edges, so there
should be an even number of 1s. At the same time, each edge must
contain one 1 by definition, and since there are an odd number of
edges, there should be an odd number of 1s—a contradiction. �

In this parity proof and in more involved ones in [22], we have
an odd number of edges. We found 90 kinds of such critical KS
sets starting with a 26–13 and ending with a 60–41. The KS sets
we found by means of parity proofs in Ref. [22], but did not occur
in the statistical samples we used for the algorithms described in
this Letter, we indicate by “⊗” in Table 1 below.

In Table 1 and Fig. 3, we show the distribution of each kind
we found by the random sampling; on average 3 · 108 for each of
13–63 edges (1–12 and 64–75 were exhaustively scanned), we ob-
tained 35 kinds of critical KS sets with an even number of edges,
which cannot be obtained by the parity-proof method. Three ex-
amples of them are given in Figs. 1 and 2—hypergraphs automati-
cally drawn by our program written in Asymptote.

We also obtained 62 kinds of critical KS sets with an odd num-
ber of edges. They are all among 90 kinds of KS critical sets we
obtained by the parity-proof method in [22]. Those that we did
not obtain in our samples are indicated by “⊗” in Table 1. Our
scanning in [22] was designed to obtain as many different kinds
of critical sets as possible. So, we always stopped scanning as soon
as we found a new kind and therefore we cannot estimate their
numbers.

In our ASCII presentation of MMP hypergraphs below we first
write down n edges (tetrads) form n-gons but in general they can
be written in any order. We obtained them by our program loop-
big. Additional examples of hypergraphs of each kind not given
here are listed in Appendix B.

There are three types of edges in an MMP hypergraph

Polygon edges those that form the n-gon.
Free edges those that contain vertices that do not belong to the

n-gon. We call these vertices free vertices.
Span edges all others.

To better discern the vertices in an MMP hypergraph we often
represent them by two figures showing first free edges and then
span edges.

42–24 (13) 3124, 4VIU, UX97, 7586, 6WOd, dHBT,
TRSM, MKJL, LcCb, bPGf, fgAe, eYQa, aZE3, 9ABC,
DEF8, GHIJ, NOPQ, WXYF, ecVD, gUSO, ZTN7, bWR2,
fK63, eJ72. Shown in Fig. 1.
50–30 (15) 3124, 4DEF, Fm6i, ihbP, POQJ, JHIG,
GoCj, jkKS, SRTU, UeLd, dl7W, WVNX, Xg8f, fnAZ,
ZYa3, 5678, 9ABC, KLMN, bcaM, TQFC, ecEB, lkPA,
mdZO, mgRI, iYKH, njcW, jhg4, VHA4, oaR7, oife.
Shown in Fig. 2.

60–40 (18) 3124, 4576, 6yau, uvVt, trqs, soTP,
Pxh9, 98AB, BpWM, MJLK, KicU, UwOl, lmnk, kjSH,
HGIF, FCED, DYRf, feg3, NOPM, QRSB, TUVW, XYZW,
abcd, hiI2, odZS, pjc7, qLA6, wtbH, xvpg, yxnR,
rhSJ, vOEA, mYP6, ieCB, oneG, ncXA, ulhf, reaO,
wpoD, slB4. Shown in Fig. 2.

To obtain these hypergraphs, we used a procedure that strips
one edge at a time. For n input hypergraphs each with b edges,
n · b output hypergraphs, each with n − 1 edges, were generated.
After passing these output hypergraphs through several filters to
eliminate unconnected hypergraphs, duplicates, non-KS sets, and
isomorphic sets, a smaller number of hypergraphs usually resulted.
To keep the run time feasible, we took a semi-random1 sample of
the generated hypergraphs so that in the end we would have ap-
proximately the same number n of KS sets to send to the next
edge-stripping step. The algorithms and programs we used to ob-
tain KS critical sets listed in Table 1 are described in Section 3.

3. Algorithms

For the purpose of the KS theorem, the vertices of an MMP hy-
pergraph are interpreted as rays, i.e. 1-dim subspaces of a Hilbert
space, each specified by a representative (non-zero) vector in the
subspace. The vertices on a single edge are assumed to be mutu-
ally orthogonal rays or vectors. In order for an MMP hypergraph to
correspond to a KS set, first there must exist an assignment of vec-
tors to the vertices such that the orthogonality conditions specified
by the edges are satisfied. Second, there must not exist an assign-
ment of 0/1 (non-dispersive or classical) probability states to the
vertices such that each edge has exactly one vertex assigned to 1
and others assigned to 0.

For a given MMP hypergraph, we use two programs to confirm
these two conditions. The first one, vectorfind, attempts to find
an assignment of vectors to the vertices that meets the above re-
quirement (see Appendix B). The second program, states01 (see
Appendix A), determines whether or not a 0/1 assignment is pos-
sible that meets the above requirement. An additional option was
added to states01 to determine if a hypergraph is critical, i.e.,
whether the hypergraph is a KS one but becomes non-KS if any
single edge is removed.

The 60-vertex, 75-edge MMP hypergraph based on the 600-cell
described above (which we refer to as 60–75) has been shown to

1 “Semi-random” because while we removed random edges from each input hy-
pergraph, we chose uniformly spaced samples from the set of input hypergraphs
(see 1st paragraph of Appendix C).
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Table 1
List of KS critical sets we obtained in this Letter. By ⊗ we indicate the existence of KS critical sets (at least one set) we obtained in [22] by the parity proof method. The
average sample sizes of 3 · 108 sets used here were too small to obtain them by our algorithms/programs.

Critical KS sets with odd number of edges . . . with even number of edges

ver 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 24 26 28 30 32 34 36 38 40

26 1

30 3
32 1
33 2
34 5

36 11
37 9
38 6 10
39 30
40 38 10
41 22 5
42 6 16 3 1
43 22 38
44 14 16 ⊗
45 3 5 32 2
46 1 3 130 ⊗ 3
47 1 74 ⊗ 6
48 2 19 9 ⊗ 11
49 ⊗ ⊗ 11 1 3 9
50 1 ⊗ 7 13 39
51 ⊗ 1 33 ⊗ 19 18
52 ⊗ ⊗ 37 33 4 69
53 ⊗ ⊗ 11 114 ⊗ 1 73 45
54 ⊗ ⊗ ⊗ 153 16 26 275
55 ⊗ 1 56 158 ⊗ 5 339 25
56 ⊗ ⊗ 21 241 28 136 262
57 ⊗ 1 133 378 54 448 45
58 ⊗ ⊗ 30 678 27 2 256 493
59 ⊗ 2 308 381 1 55 864 16
60 ⊗ ⊗ 48 562 1 5 316 145

Fig. 2. The two left figures represent a critical 50–30 KS set (15-gon): the first shows free edges only and the second span edges only. The right two figures represent a
critical 60–40 KS set (18-gon) (one of the biggest critical KS sets we found): the first shows free edges; the second, span edges. Letters and edges might appear overcrowded,
but the MMP notation provides a clear alternate representation for each of them—we need not give ASCII characters at all. (We give enlarged figures in Appendix B.)
be a KS set [24]. However, it has redundancies (is not a critical
set) because we can remove edges from it and it will continue to
be a KS set. The purpose of this study was to try to find subsets of
the 60–75 hypergraph that are critical i.e. that are minimal in the
sense that if any one edge is removed, the subset is no longer a KS
set.

While the program vectorfind independently confirmed
that 60–75 admits the necessary vector assignment, such an as-
signment remains valid when an edge is removed. Thus it is not
necessary to run vectorfind on subsets of 60–75. However, a
KS set will eventually become a non-KS one when enough edges
are removed, and the program states01 is used to test for this
condition.

A basic method in our study was to start with the 60–75 hy-
pergraph and generate successive subsets, each with one or more
edges stripped off of the previous subset, then keep the ones that
stayed KS and discard non-KS one. Of these, ones isomorphic to
others were also discarded.

The program mmpstrip was used to generate subsets with
edges stripped off. The user provides the number of edges k to
strip from an input MMP hypergraph with n edges, and by default
the program will produce all

(n
k

)
subsets with a simple combina-

torial algorithm that generates a sequence of subsets known as
the “banker’s sequence” [25]. Partial output sets can be generated
with start and end parameters. By default, mmpstrip will scan
linearly through the edges to pick every ith one when the incre-
ment parameter is i. The program will optionally randomise the
edge selection, so that while a fraction 1/i of edges is picked from
each input hypergraph, which edges are picked are random.

Optionally, mmpstrip can take truly random samples with re-
placement (for a given number of edges) from the starting 60–75
MMP hypergraph (in contrast to the semi-random method of the
previous paragraph). This mode was used to verify or improve
some of the statistical estimates in Fig. 3. A cryptographic hash
of the time of day, process ID, and CPU time is used as the seed
for the pseudo-random number generator. The seed may also be
provided by the user in order to repeat a result.

In order to detect isomorphic hypergraphs, one of two programs
was used. For testing small sets of hypergraphs, we used the pro-
gram subgraph described in Ref. [18], which has the advantage
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Fig. 3. Overall statistics calculated for subsets of 60–75 given on a logarithmic scale.
The samples (for 13–63 edges; 64–75 search was exhaustive) contained on average
3 · 108 MMP hypergraphs. “Observed odd (even) criticals” refer to odd (even) num-
bers of critical KS sets. The sudden jump in the “estimated max crit”. (EMC) plot
at 53 edges is caused by a change in the sample size, as explained in the text. The
EMC points are not plotted when zero.

of displaying the isomorphism mapping for manual verification.
For a large number of hypergraphs, we used Brendan McKay’s pro-
gram shortd, which has a much faster run time.

The program longest singles out longest loops from the list
of all possible loops (which is the output of the program loop-
big). The program parse or parse_all then “writes” a pro-
gram or programs in the vector graphics language Asymptote for
drawing a chosen hypergraph or all hypergraphs, respectively.

The longest loop of each hypergraph is drawn as n-sided regu-
lar (equilateral and equiangular) polygon, where n is the number of
edges in the loop. By default, free vertices, i.e. vertices that are not
on the loop, are placed inside the polygon, off-centre, on vertical
lines, with not more than 4 vertices on one line, but the user can
change options for their placement. Edges contained in the longest
loop are drawn as straight lines, while other edges are drawn as
Bézier curves (specifically, Asymptote is based on Donald Knuth’s
METAFONT). The user can interactively change the “tension” of the
curve and the amount of “curl” at its endpoints, in order to in-
teractively control and change the shape of each edge line and
unambiguously discern vertices that share an edge.

4. Sample space statistics

There are 3.8 · 1022 possible subsets of the 60–75 set (disre-
garding any symmetry) and, among them, approximately 7.5 · 1017

KS sets. An exhaustive search for critical KS sets was not feasible
for the present survey, but it may become feasible in the future,
possibly requiring a year or more on a supercomputer.

For our survey, we searched a total of around 1010 KS sets, ran-
domly chosen for a given edge size, to find the critical KS sets
among them. We then performed a statistical analysis to estimate
the total number of critical KS sets that would be found by an
exhaustive search. The final result is that we can expect a total of
4.3 ·1012 non-isomorphic critical sets, with a 95% confidence inter-
val between 4.0 · 1012 and 4.6 · 1012 based on the statistical model
we used.

If an exhaustive search is eventually performed, it is possible to
store the complete set of non-isomorphic critical sets with current
technology. Each critical set (in MMP hypergraph notation) requires
an average of about 260 bytes, thus requiring 260 · 4.3 · 1012 =
1.1 · 1015 bytes (1.1 petabytes) of storage.

The plots of Fig. 3 provide an overview of the subsets of 60–75,
broken down by the number of edges. These plots are intended
to provide a guideline for estimating the work that would be re-
quired for an exhaustive search for a particular number of edges or
range of them. The details of the statistical methods we used and
a detailed description of Fig. 3, are given in Appendix C.

In our survey, no critical sets were observed in KS sets with
42 or more edges. In these cases, EMC in Fig. 3 has little to do
with the number of critical sets (if any) that actually exist in that
edge range. Instead, it could be interpreted as “zero with statisti-
cal noise” and is primarily a function of the number of samples we
took and the search space size for the particular edge size. It sim-
ply indicates that, based on a Bernoulli trial probability model, it
is unlikely (with 95% confidence) that there are more critical sets
than EMC The sudden jump between 52 and 53 edges is due to
the fact that we changed the number of samples from 5.3 · 107

per edge size to 8.6 · 106. If an exhaustive search shows that
there are no critical sets at all above 41 edges, that will be com-
pletely consistent with the EMC bound. In fact, we conjecture that
the number of critical sets will be zero soon after 41 edges (see
Appendix C, last paragraph).

5. Conclusions

Kochen–Specker (KS) sets and setups proposed, designed, and
experimentally carried out so far were either 3-, 4-, 8-, . . . dimen-
sional KS sets (Peres’, Cabello’s, etc.) or the Mermin set. They aim
at finding particular valuation of the KS observables that prove
the quantum contextuality and disprove any noncontextual clas-
sical valuations of those observables. Our aim is to make KS sets
independent of a particular choice of either vectors or observables
so as to make them suitable for building quantum gates in quan-
tum circuits.

For this application, we should have a choice of gates of dif-
ferent sizes, that is, consisting of sufficiently many vectors and
sufficiently many gates for a chosen number of vectors, and this is
what we achieved in the previous sections. We generated a large
number of 4-dim critical non-redundant non-isomorphic KS sets
with 26 to 60 vectors based on the 600-cell (the 4-dimensional
analog of the icosahedron). “Critical” means that no orthogonal
tetrads can be removed without causing the KS contradiction to
disappear. In other words, they represent a KS setup that has no
experimental redundancy.

The generation was achieved by algorithms and computer pro-
grams described in Section 3, with which we found the critical
sets summarized in Fig. 3. In Section 4 and Appendix C, we give
the detailed statistical estimates of the total critical sets that ex-
ist based on our samples. The statistical techniques we used are
general-purpose and can be useful for any similar experiment in
which an exhaustive enumeration of outcomes is not feasible.

Critical sets obtained by a future exhaustive generation might
be far less numerous then their statistical estimates given above.
We could not make any realistic predictions on numerosity and
existence of critical sets that might be observed in the future but
have not been observed so far. Our estimates of the total number
of KS sets is in good agreement with the data we so far obtained
by exhaustive generation. E.g., by exhaustive generation of KS sets
with 63, 64, 65, and 66 edges we obtain 1.8 ·109, 4.1 ·108, 1.0 ·108,
and 1.1 · 107 sets versus estimated 1.8 · 109, 3.4 · 108, 5.7 · 107, and
8.8 · 106, respectively.

The main theoretical results of our generation are that

• the 24–24 and the 60–75 classes are disjoint (in the sense that
the biggest set of the 24–24 class is the single Peres’ 24–24 set
and the smallest set from the 60–75 class is the 26–13 one;

• the maximal loop of all sets from the 24–24 class is always a
hexagon while the maximal loops of the sets from the 60–75
class grow (form at least an octagon) as the number of vectors
and edges increase (see Figs. 1–2);
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• there is an unexpectedly large and rich universe with an es-
timated 4.3 · 1012 non-isomorphic critical sets inside of the
60–75;

• in [4] we found that only one of the known 3-dim KS sets
passes a series of equations (but not all) that hold in any
Hilbert space—the so-called orthoarguesian equations. We
have not found any such KS set in the 60–75 class so far. Both
results show that orthogonality of vectors does not suffice for
a complete Hilbert space description of KS sets;

• there is only one KS set with 24 vectors (vertices) and 24
tetrads (edges), and it contains all KS sets from the 24–24 class
with the chosen values of vector components [18]. In contrast
to this, there are many non-isomorphic KS sets with 60 vec-
tors and 60 tetrads with many non-isomorphic subsets.

Another open question is to find physical and geometrical rea-
sons for having only hexagon maximal loops in the 24–24 class
and for having particular octagons, nonagons, decagons, etc., in the
60–75 class.
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Appendix A. Algorithms and programs behind Table 1

The iterative processes and algorithms and programs we used
to obtain the critical KS sets listed in Table 1 are given as a sup-
plementary material.

Appendix B. Samples of KS set with even number of edges

ASCII MMP hypergraphs for critical KS sets with even number
of edges, additional figures, and a detailed vector-hypergraph cor-
respondence are given as a supplementary material.
Appendix C. Details for sample space statistics

Theoretical details that served us to obtain Fig. 3 are given as a
supplementary material.

Appendix D. Supplementary material

Supplementary material related to this article can be found on-
line at doi:10.1016/j.physleta.2011.07.050.
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